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predicting overall survival of hepatocellular
carcinoma: a study based on data mining
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Abstract

Background: Hepatocellular carcinoma (HCC), is the fifth most common cancer in the world and the second most
common cause of cancer-related deaths. Over 500,000 new HCC cases are diagnosed each year. Combining
advanced genomic analysis with proteomic characterization not only has great potential in the discovery of useful
biomarkers but also drives the development of new diagnostic methods.

Methods: This study obtained proteomic data from Clinical Proteomic Tumor Analysis Consortium (CPTAC) and
validated in The Cancer Proteome Atlas (TCPA) and TCGA dataset to identify HCC biomarkers and the dysfunctional
of proteogenomics.

Results: The CPTAC database contained data for 159 patients diagnosed with Hepatitis-B related HCC and 422
differentially expressed proteins (112 upregulated and 310 downregulated proteins). Restricting our analysis to the
intersection in survival-related proteins between CPTAC and TCPA database revealed four coverage survival-related
proteins including PCNA, MSH6, CDK1, and ASNS.

Conclusion: This study established a novel protein signature for HCC prognosis prediction using data retrieved
from online databases. However, the signatures need to be verified using independent cohorts and functional
experiments.
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Background
Hepatocellular carcinoma (HCC), is the fifth most com-
mon cancer in the world and the second most common
cause of cancer-related deaths. Over 500,000 new HCC
cases are diagnosed each year [1]. Viral hepatitis and
nonalcoholic steatohepatitis are the most common
causes of cirrhosis which underlies approximately 80%
of cases of HCC [2]. HCC prognosis remains a challenge
due to the recurrence of HCC and the 5-year overall
survival rate is only 34 to 50% [3]. Despite the rapid ad-
vancements in medical technology, there are still no

effective treatment strategies for HCC patients [4].
Byeno et al [5] reported that based on long-term survival
data, the serum OPN and DKK1 levels in patients with
liver cancer can be used as novel biomarkers that predict
prognosis. Other serum markers, such as alpha-
fetoprotein (AFP) and alkaline phosphatase (ALP or
AKP), have also been reported in clinical practice, how-
ever, these markers lack sufficient sensitivity and specifi-
city [6]. Therefore, it is necessary to find effective
biomarkers essential for diagnosis and treatment for
HCC.
Proteomics is a field of research that studies the pro-

teins at a large-scale level. Biomarker analysis uses high-
throughput sequencing technologies in proteomics and
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genomics. Mass spectrometry-based targeted proteomics
has been used to set up multiple omics. Mass
spectrometry-based identification of matching or hom-
ologous peptide identification can further refine gene
model [7]. This allows for an in-depth analysis of host-
pathogen interactions. Combining advanced genomic
analysis with proteomic characterization not only has
great potential in the discovery of useful biomarkers but
also drives the development of new diagnostic methods
and therapies. Proteogenomic studies have enabled the
exploration of the prognosis of cancer progression, how-
ever, its role and mechanism remain unclear. Chiou et al
[8] used integrated proteomic, genomic, and transcrip-
tomic techniques to obtain protein expression profiles
from HCC patients. This study found that S100A9 and
granulin protein markers were associated with tumori-
genesis and cancer metastasis in HCC. Similarly, Chen
et al [9] using a proteomic approach found that curcu-
min/β-cyclodextrin polymer (CUR/CDP) inclusion com-
plex exhibited inhibitory effects on HepG2 cell growth.
Over the last few years, integrative tools useful in exe-
cuting complete proteogenomics analyses have been de-
veloped. In this study, we systematically evaluated the
prognostic protein signature for the prediction of overall
survival (OS) for HCC patients. The availability of high-
throughput expression data has made it possible to use
global gene expression information to analyze the gen-
etic and clinical aspects of HCC patients. Therefore, in
this study, protein data from Clinical Proteomic Tumor
Analysis Consortium (CPTAC) and validated in The
Cancer Proteome Atlas (TCPA) and the cancer genomic
maps (TCGA) dataset was used to identify HCC bio-
markers and the dysfunctional of proteogenomics.

Methods
Data collection
CPTAC is a public repository of well-characterized, mass
spectrometry (MS)-based and targeted proteomic assays,
useful in characterizing the protein inventory in tumors
by leveraging the latest advances in mass spectrometry-
based discovery proteomics [10]. TCPA is a user-friendly
data portal that contains 8167 tumor samples in total,
which consists primarily of TCGA tumor tissue samples
and provides a unique opportunity to validate the TCGA
data and identify model cell lines for functional investi-
gations [11]. TCGA has generated multi-platform cancer
genomic data and generated some proteomic data using
the Reverse Phase Protein Array (RPPA) platform, meas-
uring protein levels in tumors for about 150 proteins
and 50 phosphoproteins [12]. In this study, proteomics
data was downloaded from TCPA (level 4) and com-
bined with clinical data from TCGA, and comprehensive
analysis of proteomics performed through CPTAC.

Establishing the prognostic gene signature
Univariate Cox regression analysis was performed to
identify prognostic genes and establish their genetic
characteristics. The prognostic gene signature was dem-
onstrated as risk score = (CoefficientmRNA1 × expres-
sion of mRNA1) + (CoefficientmRNA2 × expression of
mRNA2) +⋯ + (CoefficientmRNAn × expression
mRNAn). Based on the median risk score, the patients
were classified into the low-risk (<median) group and a
high-risk (≥median) group. The Kaplan–Meier survival
analysis was used to analyze the survival difference be-
tween the high and low groups.

Building and validating a predictive nomogram
Nomograms are often used to predict the prognosis of
cancer. Mainly because they can simplify statistical predic-
tion models to a single numerical assessment of the prob-
ability of an event (such as relapse or death) depending on
the condition of an individual patient [13]. A receiver op-
erating characteristic (ROC) curve was plotted over time
to assess the prediction accuracy of prognostic signals in
HCC patients. Univariate and multifactorial Cox regres-
sion analysis was used to analyze the relationship between
gene clinicopathological parameters.

Statistical analysis
Statistical analyses were performed using R (version
3.5.3) and R Bioconductor software packages. Benja-
mini–Hochberg’s method was used to convert P values
to FDR. Perl language was used for data matrix and data
processing and a P value less than 0.05 was used. The
identification of differentially expressed proteins between
HCC and non-cancerous samples in CPTAC used
|log2FC| > 1 and a P-value < 0.05 was considered to be
statistically significant.

Results
Establishment of the prognostic gene signatures
Figure 1 presents a flow chart of this study scheme. A
total of 159 patients diagnosed with Hepatitis-B related
HCC [14] (159 tumor tissues and 159 paratumor tissues
Table S1) and 422 differentially proteins (112 upregu-
lated and 310 downregulated Table S2) were identified
from the CPTAC database. To analyze the function of
the identified differentially expressed proteins, biological
analyses were performed using gene ontology (GO) en-
richment and KEGG pathway analysis. GO analysis re-
vealed that the GO terms related to biological processes
(BP) of differentially expressed proteins were enriched in
fatty acid biosynthesis and catabolism, molecular func-
tion (MF) were mainly enriched in cofactor binding, co-
enzyme binding, vitamin binding, monooxygenase
activity, carboxylic acid-binding, iron ion binding, and
organic acid binding and cell component (CC) were
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mainly enriched in the mitochondrial matrix, MCM com-
plex, collagen trimer, peroxisome, microbody, microbody
part, peroxisomal part, peroxisomal matrix, and micro-
body lumen. KEGG pathway analysis revealed that the dif-
ferentially expressed proteins were mainly enriched in
retinol metabolism, chemical carcinogenesis, drug
metabolism-cytochrome P450, fatty acid degradation,

arginine biosynthesis, PPAR signaling pathway and other
metabolic pathways (Fig. 2).

Protein-protein interaction (PPI) network construction and
module analysis
To further explore the relationship between differentially
expressed proteins at the protein level, the PPI network

Fig. 1 The flow chart showing the scheme of the study on protein prognostic signatures

Fig. 2 Functions of the identified differentially expressed proteins using GO enrichment and KEGG pathway analysis
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was constructed based on the interactions of differen-
tially expressed proteins. A total of 542 interactions and
236 nodes were screened to establish the PPI network
and the top five most contiguous nodes between genes
were CDK1, AOX1, CYP2E1, CYP3A4, and TOP2A
(Table S3-S4).

Survival analysis
Survival data was extracted from HCC patients in CPTA
C and used to perform univariate Cox regression ana-
lysis. The expression of survival-related proteins revealed
105 survival-related proteins (P<0.05, Table S5). Univari-
ate and multivariate Cox regression analysis was per-
formed on the clinical factors and survival-related
proteins and 41 proteins that can act as independent
prognostic factors for OS were identified (Table S6-S7).
ROC curves were used to investigate the use of the pro-
tein patterns as early predictors of HCC incidence. This
model demonstrated that 8 proteins (MCM3, MCM7,
PCNA, SLC39A1, SMC2, TOP2A, UBE2C, and UHRF1)
had an AUC value above 0.7 (Table S8). Table S9 pre-
sents detailed information about the relationship be-
tween the 8 proteins and clinical factors. The 8 proteins
were used to build a prognostic model, and the median
risk score set as the threshold to divide the cohort into
high-risk and low-risk groups. The detailed prognostic
signature information of the HCC group is shown in
Fig. 3.

Building a predictive nomogram
A Nomogram was constructed by involving clinical
pathology and prognosis models. The LASSO logistic re-
gression algorithm was used to select the most import-
ant prediction markers which greatly contributed to the
final prediction model. The model included features in
CPTAC: gender, age, tumor differentiation, history of
liver cirrhosis, number of tumors, tumor size, tumor
thrombus, tumor encapsulation, HBcAb, AFP, PTT, TB,
ALB, ALT, and GGT (Fig. 4). The use of the prognostic
model and clinical pathology data can improve the sensi-
tivity and specificity of 1-, 3-, and 5-year OS prediction.

Immunohistochemistry analysis
Proteomics data was downloaded from TCPA-HCC
(level 4; 184 samples and 218 proteins) and combined
with clinical data from TCGA. Univariate Cox regression
analysis determined the expression of survival-related
proteins (Table S10). and we intersect survival-related
proteins with CPTAC database, and four survival-related
proteins PCNA, MSH6, CDK1, and ASNS were identi-
fied. The Human Protein Atlas (HPA) is a website that
involves immunohistochemistry-based expression data
for distribution and expression of 20 tumor tissues, 47
cell lines, 48 human normal tissues, and 12 blood cells

[15]. In this study, the direct contrast of protein expres-
sion of the four genes between normal and HCC tissues
was used by immunohistochemistry image and the re-
sults are shown in Fig. 5. However, PCNA, CDK1, and
ASNS proteins were not expressed in normal liver tis-
sues but were expressed in high to medium levels in
HCC tissues. Besides, MSH6 was lowly expressed in nor-
mal tissues and highly expressed in tumor tissues. TIME
R (Differential gene expression module) is a comprehen-
sive asset for systematical investigation of immune infil-
trates over various malignancy types. It was used to
explore PCNA, MSH6, CDK1, and ASNS based on thou-
sands of variations in copy numbers or gene expressions
in patients with HCC. Similar to our findings, the four
proteins were significantly overexpressed in HCC pa-
tients in the TIMER database (Fig. 6). OS analysis dem-
onstrated that the four proteins with high had a poorer
prognosis than that with a low group (P < 0.05) (Fig. 7).

Discussion
Proteomic analysis of early-stage cancers provides new
insights into changes that occur in the early stages of
tumorigenesis and represents a new resource for bio-
markers for early-stage disease. Proteome characteristics
of tumor cells distinguish them from normal cells and
are critical in the study of their growth and survival.
Proteomic analysis in signaling pathways has become
ideal targets for personalized therapeutic intervention in
cancer patients [16]. In this study, we identified novel
and effective prognostic signatures for patients with
HCC. These signatures show great potential in the prog-
nosis prediction of HCC.
In this study, we did a comprehensive analysis of proteo-

mics through CPTAC as well as downloaded proteomic
data from TCPA (level 4) which combined with clinical
data from TCGA. We first identified 422 differentially
proteins and analyzed the function of the identified differ-
entially proteins and then the PPI network construction,
we found the most contiguous nodes was CDK1. BP was
significantly enriched in acid biosynthetic process and
catabolic process, MF were mainly enriched in biological
compounds binding, CC was mainly enriched in organ-
elles and enzymes and retinol metabolism, chemical car-
cinogenesis, drug metabolism-cytochrome P450, fatty acid
degradation, arginine biosynthesis, PPAR signaling path-
way, and other metabolism pathways. A recent study
found that Simvastatin can inhibit the HIF-1α/PPAR-γ/
PKM2 axis resulting in decreased proliferation and in-
creased apoptosis in HCC cells [17]. Similarly, Wang et al
[18] confirmed that the anticancer efficacy of avicularin in
HCC was dependent on the regulation of PPAR-γ activ-
ities. Therefore, we hypothesis that the differentially
expressed proteins identified may play a critical role in
drug chemical carcinogenesis via the PPAR signaling
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pathway, however, there is a need for further studies to
confirm this hypothesis. The analysis was restricted to the
intersection between CPTAC and TCPA database
survival-related proteins and four survival-related proteins
PCNA, MSH6, CDK1, and ASNS were identified.
Proliferating cell nuclear antigen (PCNA, also known

as ATLD2), is a cofactor of DNA polymerase delta which
is ubiquitinated in response to DNA damage. A recent
study found that PCNA knockdown-HepG2 cells under
hypoxia showed the induction of more epithelial-

mesenchymal transition (EMT) process compared to the
control [19]. PCNA and EMT-related markers were
down-regulated following treatment with Wnt/β-catenin
signaling inhibitor (XAV939) and the proliferative activ-
ity of HCC cells was significantly inhibited [20]. MutS
homolog 6 (MSH6) is a member of the DNA mismatch
repair MutS family. Togni et al [21] reported a nuclear
expression of MSH6 in HCC excluding a DNA mis-
match repair defect and Ozer et al [22] studied the
methylation status of MSH6 involved in DNA repair

Fig. 3 Detailed prognostic signature information of HCC groups
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mechanisms. MSH6 is associated with an increased risk
for breast cancer and should be considered in individuals
with a family history of breast cancer [23]. Another study
evaluated metachronous colorectal cancer (CRC) inci-
dence according to the MSH6 gene in Lynch Syndrome
(LS) patients who underwent a segmental colectomy [24].
However, there is currently no comprehensive study on
the role of MSH6 in HCC and this study may provide im-
portant information for consideration in future studies.
Cyclin-dependent kinase 1 (CDK1, also known as CDC2;
CDC28A; P34CDC2), is a member of the Ser/Thr protein
kinase family which is essential for G1/S and G2/M phase
transitions of the eukaryotic cell cycle. Anti-CDK1 treat-
ment can boost sorafenib antitumor responses in HCC

patient-derived xenograft (PDX) tumor models [25]. Gao
et al [26] demonstrated that karyopherin subunit-α 2
(KPNA2) may promote tumor cell proliferation by in-
creasing the expression of CDK1. Asparagine synthetase
(ASNS, also known as TS11; ASNSD), is involved in the
synthesis of asparagine. The expression of ASNS has been
reported to be high in HCC tumor tissues and closely cor-
related with the serum AFP level, tumor size, microscopic
vascular invasion, tumor encapsulation, TNM stage, and
BCLC stage [27]. Li et al [28] found that the expressions
of ASNS decreased and also functioned as an independent
predictor of OS in HCC patients. This study’s OS analysis
demonstrated that these four proteins with high had a bad
prognosis than those with the low group.

Fig. 4 Nomogram constructed using clinical pathology data and prognosis model

Fig. 5 Representative protein expressions of PCNA, MSH6, CDK1, and ASNS explored in the HPA database
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A total of 41 proteins were identified that can serve as an in-
dependent prognostic factor for OS. Among the proteins, 8
proteins (MCM3, MCM7, PCNA, SLC39A1, SMC2, TOP2A,
UBE2C, and UHRF1) had AUC value above 0.7. The use of
the prognostic model and clinical pathology data can improve
the sensitivity and specificity of 1-, 3-, and 5-year OS predic-
tion. The 8 proteins were used to build a prognostic model
and final SLC39A1 and UBE2C choose to build the prognostic
model. Solute carrier family 39 member 1 (SLC39A1, also
known as ZIP1, ZIRTL), acts as a molecular zipper to bring
homologous chromosomes to close apposition [29]. In

prostate cancer, zinc levels have been reported to be decreased
and the ZIP1 transporter is lost [30]. Similarly, studies reveal
that hZIP1 (SLC39A1) is expressed in the zinc-
accumulating human prostate cell lines, LNCaP, and
PC-3 [31]. However, the role of SLC39A1 in HCC re-
mains unknown. Ubiquitin-conjugating enzyme E2 C
(UBE2C, also known as UBCH10; dJ447F3.2) is an enzyme
required for the destruction of mitotic cyclins and cell
cycle progression. Studies have demonstrated that knock-
down of UBE2C expression suppresses proliferation, mi-
gration, and invasion of HCC cells in vitro. Moreover, the

Fig. 6 PCNA, MSH6, CDK1, and ASNS proteins significantly overexpressed in HCC. LIHC: Liver Hepatocellular Carcinoma
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silencing of UBE2C also increases the sensitivity of HCC
cells to sorafenib [32]. This study was not without limita-
tions. The results have not been validated in clinical samples,
and they do not provide accurate clinical data due to the
relatively small number of patients used.

Conclusion
This study established a novel protein signature for HCC
prognosis prediction using data retrieved from online da-
tabases. However, the signatures need to be verified using
independent cohorts and functional experiments.
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