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Abstract

Background: Diffuse large B-cell lymphoma (DLBCL) is a spectrum of disease comprising more than 30% of non-
Hodgkin lymphomas. Although studies have identified several molecular subgroups, the heterogeneous genetic
background of DLBCL remains ambiguous. In this study we aimed to develop a novel approach and to provide a
distinctive classification system to unravel its molecular features.

Method: A cohort of 342 patient samples diagnosed with DLBCL in our hospital were retrospectively enrolled in
this study. A total of 46 genes were included in next-generation sequencing panel. Non-mutually exclusive genetic
signatures for the factorization of complex genomic patterns were generated by random forest algorithm.

Results: A total of four non-mutually exclusive signatures were generated, including those with MYC-translocation
(MYC-trans) (n = 62), with BCL2-translocation (BCL2-trans) (n = 69), with BCL6-translocation (BCL6-trans) (n = 108), and
those with MYD88 and/or CD79B mutations (MC) signatures (n = 115). Comparison analysis between our model and
traditional mutually exclusive Schmitz’s model demonstrated consistent classification pattern. And prognostic
heterogeneity existed within EZB subgroup of de novo DLBCL patients. As for prognostic impact, MYC-trans
signature was an independent unfavorable prognostic factor. Furthermore, tumors carrying three different signature
markers exhibited significantly inferior prognoses compared with their counterparts with no genetic signature.

Conclusion: Compared with traditional mutually exclusive molecular sub-classification, non-mutually exclusive
genetic fingerprint model generated from our study provided novel insight into not only the complex genetic
features, but also the prognostic heterogeneity of DLBCL patients.
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Background
Diffuse large B-cell lymphoma (DLBCL) is the most
prevalent lymphoid malignancy in adult patients, com-
prising 30–40% of non-Hodgkin lymphomas [1].

Although durable remissions can be achieved in a sub-
stantial proportion of patients after chemoimmunother-
apy with rituximab, cyclophosphamide, doxorubicin,
vincristine, and prednisone (R-CHOP), over 30% of cases
develop refractory or relapsed disease [2]. Previous stud-
ies have revealed that DLBCL is a genetically heteroge-
neous disorder with considerable gene mutations, copy
number (CN) alterations, and structural variants [3–5].
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Understanding the molecular basis of this heterogeneity
may facilitate individualized management strategies.
Researchers have focused on developing a robust algo-

rithm to discover distinct subsets and subclassify DLBCLs.
In 2000, based on gene expression profiling results, Aliza-
deh et al. identified two molecularly distinct forms of
DLBCL, germinal center B-cell-like (GCB) and activated
B-cell-like (ABC), representing different stages of B-cell
differentiation [6]. Nevertheless, according to the cell-of-
origin (COO) classification, approximately 10% ~ 20% of
DLBCLs remain unclassified, and the molecular pathogen-
esis of DLBCL remains obscure. The rapid development
of next-generation sequencing (NGS) technology has re-
vealed accumulated recurrent genetic alterations, which
have improved our understanding of the genetic landscape
of DLBCL. However, these genomic studies had largely fo-
cused on single types of alterations. In 2018, Schmitz et al.
studied tumor specimens from 574 patients with DLBCL
[4]. By developing a subclassified algorithm based on cod-
ing region mutations, CN variations, and structure varia-
tions (SVs), they further identified four distinct genetic
subtypes of DLBCL, which included BN2 (based on BCL6
fusions and NOTCH2 mutations), N1 (based on NOTCH1
mutations), MCD (based on the co-occurrence of
MYD88L265P and CD79B mutations), and EZB (based on
EZH2 mutations and BCL2 translocations). Chapuy et al.
also carried out a comprehensive genetic analysis of 304
primary DLBCLs and identified five subgroups of DLBCLs
with prominent genetic features (C1–C5), [5]. These stud-
ies provided us with a novel roadmap for an actionable
DLBCL classification for precision-medicine-based strat-
egies in DLBCL.
Although several specific subgroups, such as primary

DLBCL of the central nervous system (PCNSL), primary
mediastinal (thymic) large B-cell lymphoma (PMBL),
primary cutaneous DLBCL, leg type (PCDLBCL-LT),
high-grade B-cell lymphoma, not otherwise specified
(HGBL, NOS), and HGBL with MYC and BCL2 and/or
BCL6 translocations (HGBL-DH/TH), are all well-
defined entities, they share clinicopathologic features
and genetic alterations with DLBCL, NOS according to
previous studies [7–10]. In fact, they belong to a disease
spectrum rather than discrete entities. In 2018, Scott
et al. defined a clinically and biologically distinct sub-
group of tumors within GCB DLBCL characterized by a
gene expression signature of HGBL-DH/TH-BCL2 [11].
Simultaneously, Westhead et al. also defined a molecular
high-grade (MHG) group by applying a gene expres-
sion–based classifier [12]. Chapuy et al. also mentioned
in their study that molecular heterogeneity existed
within the C3 subgroup [5]. Their studies suggest that
beyond current definitions of double- and triple-hit
DLBCLs, more specified molecular subgroups of DLBCL
requires further exploration.

In this study, instead of mutually exclusive sub-
classification, we determined several non-mutually ex-
clusive genetic signatures for the factorization of com-
plex genomic patterns in a continuous spectrum of B-
cell lymphomas based on a random forest algorithm.
Using this model, we also presented a single-center pri-
mary site-relevant mutational pattern based on the
Chinese population. This study aims to develop a novel
approach to understand the molecular features, provide
a distinctive insight nosologically, and orient targeted
therapeutic strategies and prognostic evaluation of the
spectrum of large B-cell lymphomas.

Methods
Patients and samples
This study was approved by the institutional review
board of Tongji Hospital. From June 2008 to September
2018, a cohort of 342 patient samples diagnosed with
DLBCL in our hospital were retrospectively enrolled in
this study. All cases were reviewed by at least three ex-
perienced hematopathologists. Most samples were pre-
treatment biopsies from de novo cases (n = 298),
including DLBCL, NOS (n = 239), PMBL (n = 13), PCNS
L (n = 7), PCDLBCL-LT (n = 6), HGBL, NOS (n = 7),
and HGBL-DH/TH (n = 26). The remainder consisted of
relapsed DLBCL, NOS (n = 25) after R-CHOP or
CHOP-like chemotherapy and transformed follicular
lymphoma (tFL) samples (n = 19). All samples were ob-
tained from formalin-fixed paraffin embedded (FFPE)
tissue. Tumor content was estimated to be at least 30%
in all subjects. Genomic DNA was extracted with the
GeneRead™ DNA FFPE Kit (Qiagen) according to the
manufacturer’s instructions.
DLBCL samples were classified into GCB and non-

GCB subtypes by the IHC-based Hans algorithm [13,
14]. Translocations in MYC, BCL2, and BCL6 and CN
aberrations in TP53 were examined by performing fluor-
escent in situ hybridization (FISH). Cases were excluded
if COO subtype or FISH findings were not available.
Clinical data, including age group of onset, International
Prognostic Index (IPI), primary site of lymphomagenesis,
chemotherapy regimen, initial response to therapy, over-
all survival (OS), and progression-free survival (PFS),
were collected (Table 1) (Supplementary Table S1). We
restrictively included individuals in which biopsy tissue
was evaluated as the primary site of lymphomagenesis,
according to integrated judgment based on PET-CT
scanning, pathological findings, and clinical manifest-
ation [15]. Criteria of response assessment and definition
of OS and PFS were followed by the Lugano Classifica-
tion [16]. Only patients receiving R-CHOP or R-CHOP-
like regimens were included in the prognostic analyses.
Multivariable Cox proportional hazard regression
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models were used to evaluate proposed prognostic
factors.

Targeted high-throughput sequencing
A total of 46 genes were selected in this study (Supple-
mentary Table S2). Most genes were frequently altered
in DLBCL according to data from several previously
published large-scale DLBCL cohort studies [3–5]. Add-
itionally, several infrequently mutated genes were also
included because they are specifically related to several
DLBCL subtypes. In detail, ID3, TCF3, DDX3X are re-
lated with double-hit lymphoma [17]/Burkitt lymphoma
[18]; XPO1 is related with primary mediastinal large B-
cell lymphoma [8]; RRAGC, POU2AF1 are related with
Follicular lymphoma [19]; KLF2 is related with marginal
zone lymphoma [20]. Besides, in our panel we also se-
lected genes functioning in signaling pathways which are
crucial for DLBCL pathogenesis (e.g. FBXW7 for
NOTCH pathway; NRAS, KRAS, MAP 2 K1 for MAPK
pathway). Using genome build hg19/GRCh37 as a refer-
ence, a sequencing panel covering the coding sequences
(CDS) within 5 intronic base pairs around exons in 46
genes was designed online (Designstudio Sequencing,

Illumina, San Diego, USA). Sequencing libraries were
prepared with AmpliSeq™ Library PLUS for Illumina,
using 20 ng of input genomic DNA per sample. Library
sequencing was performed to 2000× coverage on a Next-
Seq™ 550 system using an Illumina NextSeq™ 500/550
High Output v2 Kit (Illumina, San Diego, USA). The
alignment and variant calling were performed using a
DNA Amplicon workflow with default parameters on
BaseSpace Sequence Hub (Illumina). Generated variants
were further annotated using Annovar [21].
Variant filtering was performed by the following cas-

cade of steps: 1) select exon nonsynonymous or splice
donor/acceptor site variants; 2) exclude variants with
population frequency > 0.0001 in the gnomAD database
unless variant is included as a somatic variant of lymph-
oid neoplasm in the COSMIC database; 3) exclude vari-
ants present in an in-house curated blacklist. The
formation of our variant screening blacklist was based
on the idea described previously by Schmitz et al. [4] As
these false positive variants were presumed to be arti-
facts generated either by the high throughput sequen-
cing platform itself or due to errors in alignment or
annotation of the sequencing reads by the analytical

Table 1 Baseline features of 342 cases included in this study

Parameters De novo cases (n = 298) Relapsed cases Transformed
cases

DLBCL, NOS
(n = 239)

PMBCL
(n = 13)

PCNSL
(n = 7)

PCDLBCL-LT
(n = 6)

HGBL, NOS
(n = 7)

HGBL-DH/TH
(n = 26)

DLBCL, NOS
(n = 25)

tFL (n = 19)

Gender

Male 131 6 6 2 5 9 16 15

Female 108 7 1 4 2 17 9 4

Age of onset

Median (years) 52 32 59 68 60 50 56 48

COO subtype

GCB 95 6 0 2 4 23 12 14

Non-GCB 144 7 7 4 3 3 13 5

Type of biopsy tissue

Nodal 122 0 0 0 5 19 14 15

Extranodal 117 13 7 6 2 7 11 4

IPI at first diagnosis

0 ~ 1 56 3 1 0 2 5 3 N/A

2 ~ 3 134 8 5 4 2 15 17 N/A

4 ~ 5 49 2 1 2 3 6 5 N/A

First chemotherapy regimen

R-CHOP or R-
CHOP-like

228 13 0 6 7 26 25 9

Other or N/A 11 0 7 0 0 0 0 10

Abbreviations: DLBCL, NOS Diffuse Large B cell Lymphoma, Not Otherwise Specified, PMBCL Primary Mediastinal B-cell Lymphoma, PCNSL Primary Central Nervous
System Lymphoma, PCDLBCL-LT Primary Cutaneous Diffuse Large B Cell Lymphoma, Leg Type, HGBL, NOS High Grade B-Cell Lymphoma, Not Otherwise Specified,
HGBL-DH/TH High-Grade B-cell Lymphomas harboring rearrangements of MYC and BCL2 and/or BCL6, tFL Transformed Follicular Lymphoma, GCB Germinal Center
B-cell-like, IPI International Prognostic Index, R-CHOP Rituximab plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone;
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pipeline. Typically, these variants were abnormally
prevalent, identified exclusively in specific sequencing
platform, and are not recurrent variants included in the
major public cancer somatic mutation database (COS-
MIC database, https://cancer.sanger.ac.uk/cosmic).
Therefore, as such variants were unique in our center
and there were no universal criteria for identification,
the blacklist was built for future rapid and accurate vari-
ants’ screening. Detailed variants information included
in the blacklist were listed in Supplementary Table S7;
4) exclude variants found in regions with poor coverage;
and 5) exclude variants with quality less than 30 or read
depth less than 20. For activation-induced cytidine de-
aminase (AID) somatic hypermutation (SHM) analysis,
we additionally selected synonymous variants and vari-
ants in intron/UTR regions, and each variant also
needed to fulfill the aforementioned criteria from step 2
to step 5 [22].
Sanger sequencing in matched normal DNA was per-

formed if it was available for each missense mutation
that passed all preceding filters and met the following
conditions: 1) variant allele frequency (VAF) more than
0.40 and less than 0.60; 2) variant was not included in
the COSMIC database; 3) variant was included in the
gnomAD database. Confirmed germline mutations were
excluded in further analyses.

Fluorescent in-situ hybridization analysis
Interphase fluorescence in situ hybridization (FISH)
studies were performed using commercially available
probes (Abbott Molecular, Downers, Grove, IL, USA).
The LSI IGH/IGHV (14q32), and LSI MYC (8q24) Dual
Color, Break Apart Rearrangement Probes were used to
detect the rearrangement of BCL2, BCL6 and c-Myc re-
spectively. A 17p13.1 (P53) probe (Vysis, Downers,
Grove, IL) was used to detect 17p deletion. Sample prep-
arations and hybridizations were conducted following
the manufacturer’s recommendations and 200 cells were
analyzed for each probe.

Bioinformatic algorithm
Artificial Intelligence (AI) is the intelligence manifested
by a human-made machine. It usually refers to the abil-
ity of a computer to simulate human thought processes
in order to mimic human abilities or behaviors. AI not
only deals with problems under pre-set rules, but also
develops capabilities to generate judgements under new
situations through feature identification. The perform-
ance of these feature-driven algorithms can improve as
they are exposed to more data over time, which is simi-
lar to the human learning process. Therefore, such algo-
rithms are named machine learning. Among existing
learning methods, random forests are an ensemble learn-
ing method for classification or regression that operate

by constructing a multitude of decision trees at training
time and outputting the classification or regression of
the individual trees. In this study, our model was trained
using the R package ‘randomForest’. The number of
trees was set to 100; all other hyperparameters were set
to their default values. Detailed information on the algo-
rithm was described in Supplementary Appendix.

Statistical analysis
All statistical analyses were evaluated by R v3.5.1. Differ-
ences were analyzed using Fisher’s exact test for categor-
ical variables. The significance of the co-occurrence or
mutual exclusivity was calculated using a Fisher exact
test, for numerous tests, p values were FDR - adjusted
using Bonferroni method. The Kaplan-Meier method
and log-rank test were used for survival analysis. Unless
otherwise specified, a two-sided P-value < 0.05 was con-
sidered statistically significant for all analyses.

Results
Mutational profile through next-generation sequencing
analysis
A total of 1240 candidate variants were identified in 46
genes (Supplementary Table S3). Of 342 cases, 330
(96.5%) harbored at least one mutation. Firstly, as for de
novo DLBCL, NOS patients, the most frequently mu-
tated genes were TP53 (28.9%), PIM1 (27.2%), KMT2D
(25.9%), MYD88 (23.0%), and CD79B (22.6%) (Supple-
mentary Fig. S1), and variant frequency of MYD88 was
significantly more frequent compared with relapse
DLBCL cases (P = 0.014). As for relapse DLBCL cases,
KMT2D and KRAS mutations were significantly more
frequent compared with those in de novo cases (P =
0.031; P = 0.012). Secondly, as for gene functional
groups, mutations in genes associated with chromatin
remodeling, including KMT2D and CREBBP, and genes
associated with apoptosis resistance, including BCL2,
were significantly enriched in cases of transformed fol-
licular lymphoma (tFL) in comparison with de novo
cases (P = 2.20 × 10− 4; P = 3.51 × 10− 4; P = 1.93 × 10− 5).
While immune evasion-related genes, including B2M,
CD58, and CD70, were frequently detected in de novo
cases (16.3, 12.1, 9.6%) but not in tFL in our cohort (P =
0.039; P = 0.095; P = 0.158). Thirdly, through compari-
son of mutation gene pattern differences among GCB
and non-GCB DLBCL subgroups in all de novo, re-
lapsed, and transformed cases, we determined that the
BCL2 translocation; the MYC translocation; and the
CREBBP, TNFRSR14, BCL2, EZH2, SGK1, and ID3 mu-
tations were significantly more frequent in GCB DLBCL
(P < 0.001), whereas CD79B mutations, the MYD88L265P

mutation, and the BCL6 translocation were more com-
mon in non-GCB DLBCL (P < 0.001) (Fig. 1a).
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In addition, in this study we specifically focused on the
analysis of CD79B mutation pattern. In general, the vari-
ant frequency of CD79B was relative higher compared
with recent related studies [3–5, 23, 24]. In detail, for
the typical hotspot variant CD79BY196, we found the top

co-occurrent mutation with CD79BY196 was MYD88L265P

(n = 37) (adjusted P value 1.09 × 10− 9) in our de novo
DLBCL, NOS cases, which was mainly identified in non-
GCB subtype (4.5% of GCB cases vs. 22.6% of non-GCB
cases, P = 5.87 × 10− 7) (Fig. 1b). Meanwhile, we found

Fig. 1 Overview of the genetic features in 342 cases. a Frequency of genetic alterations that distinguish the GCB and non-GCB subtypes of 342
cases, sorted by log10P value for the difference between the two subgroups. b The correlation among different types of MYD88 and CD79B
mutations. c Circos plot depicting the correlation among different types of CD79B mutations (Y196 missense, truncating, and non-Y196 missense
mutations). d Positions and types of somatic mutations encoded in CCND3 (NP_001751.1) and CD79B (NP_000617.1). e The sequence of CD79B
(chr:62007140–62,006,802, GRCh37/hg19). The black arrow denotes the splice acceptor site mutation c.550-1G > A (NM_000626.4). The red arrow
denotes two exposed potential splice acceptor sites. Coding sequences are highlighted by black frames. f Genetic alterations that are most
related to the MYC-trans signature, BCL2-trans signature, BCL6-trans signature, and MC signature. Recurrent altered genes in GCB and non-GCB
cases without our set of genetic signatures were also shown. g Venn diagrams describing the difference between cases exhibited initially defined
signatures, and cases exhibited extended genetic signatures obtained from a convergence predicted by an iterative random forest algorithm
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that CD79B non-Y196 codon mutations accounted for
41% (33/80) of all CD79B mutations. Moreover, through
validation Sanger sequencing of tumor and paired nor-
mal tissue DNA, we determined several novel hotspot
intron splice site mutations, including c.550-1G > A,
c.550-1G > C, c.550-3_552del, c.549 + 1G > A, c.549 +
1G > C, and c.540_549 + 1del (Fig. 1d). Focusing on the
molecular impact of c.550-1G > A mutation, we subse-
quently performed RNA sequencing and revealed that
this mutation resulted in exposing two novel potential
splice acceptor sites, thereby synthesizing two truncating
proteins (Fig. 1e). Furthermore, we also found that
CD79B truncating mutations were mutually exclusive
with CD79BY196 (adjusted P value 0.011). Similar ten-
dency was witnessed for CD79B truncating mutations
with MYD88L265P, while without statistical significance
(adjusted P value 0.14) (Fig. 1b, Fig. 1c).

Identification of genetic signatures via iterative random
forest (RF) algorithm
In this study, based on targeted sequencing results and
FISH findings, we attempted to identify several non-
mutually exclusive representative genetic signatures in-
stead of categorizing subjects into several mutually ex-
clusive distinct subgroups. Therefore, we decided to seed
our analysis from 5 genetic alterations which partici-
pated in the most important cellular signaling pathways
in DLBCL pathogenesis, i.e. cellular proliferation (MYC
translocation), apoptosis resistance (BCL2 translocation),
immune cell differentiation abruption (BCL6 transloca-
tion) and activation of inflammation pathway (CD79B
Y196 and MYD88 L265P). Moreover, all five genetic alter-
ations were specifically enriched in either GCB or non-
GCB subtype DLBCL patients (> 20% positive in GCB or
non-GCB DLBCL patients). In addition, these alterations
exhibited most distinctive frequencies between GCB and
non-GCB DLBCL subtypes by Fisher’s test (Fig. 1a).
Thus, using the five main features above, we initially de-
fined four non-mutually exclusive genetic signatures: 1)
the MYC-trans signature, with MYC translocation (n =
54); 2) the BCL2-trans signature, with BCL2 transloca-
tion (n = 59); 3) the BCL6-trans signature, with BCL6
translocation (n = 91); and 4) the MC signature, with
MYD88L265P and/or CD79BY196 mutations (n = 72)
(Fig. 1f).
Among the above-mentioned four signatures, MC sig-

nature combined CD79B Y196 and MYD88 L265P variants
as they not only presented as hotspot mutations in
DLBCL patients, but also exhibited statistically signifi-
cant tendency for co-occurrence (adjusted P value
1.09 × 10− 9). In addition, previous researches also re-
vealed that both variants resulted in constitutive activa-
tion of NF-κB signaling pathway [5]. Inspired by the
study conducted by R. Schmitz et al., we aimed to evolve

and maximize each genetic signature with our set of
genetic features while appropriately maintaining the pat-
tern suggested by the initial genetic signature. To allevi-
ate such semisupervised problems, we developed an
iterative random forest (RF) algorithm (Supplementary
Appendix). The label of each genetic signature among
cases gradually propagated and obtained convergence
(Supplementary Table S4; Fig. 1g). Additionally, 8
(14.8%), 10 (16.9%), 17 (18.7%), and 43 (59.7%) cases
were predicted to exhibit the MYC-trans, BCL2-trans,
BCL6-trans, and MC signatures, respectively, suggesting
that the initial definition of the MC signature might be
conservative. As a result, 252 out of 342 cases (73.7%)
were finally confirmed to be associated with at least one
genetic signature.
Next, we investigated other genetic mutations statisti-

cally associated with one of these genetic signatures. As
illustrated in Fig. 2, genetic mutations of each case were
combined and clustered within different genetic signa-
tures, and were shown in factorized mutational heatmap.
Firstly, MYC and ID3 mutations were associated with
the MYC-trans signature (P < 0.001), and 40% (8/20) of
cases with isolated MYC-trans signatures harbored mu-
tations in the ID3-TCF3-CCND3 pathway. We also rec-
ognized that all MYC hypermutations were identified in
cases with MYC-trans signatures (20/20, 100%), while
MYC non-hypermutations were common in cases with
either MYC-trans signatures (10/25, 40%) or BCL6-trans
signatures (15/25, 60%). Secondly, BCL2, EZH2,
CREBBP, STAT6, and KMT2D mutations were signifi-
cantly related to the BCL2-trans signature (P < 0.001).
Although the BCL2 mutation was associated with the
BCL2-trans signature, cases harboring the BCL2 hyper-
mutation usually implied that they had a combined
MYC-trans and BCL2-trans signature (6/6, 100%). For
chromatin modification-associated genes such as
KMT2D and CREBBP, cases harboring co-occurring mu-
tations in KMT2D and CREBBP generally indicated a
BCL2-trans signature (21/24, 87.5%). Thirdly, for the
BCL6-trans signature, the CD70, KLF2, NOTCH2, and
RRAGC mutations were specifically identified (P <
0.001). Although the CCND3 mutation was more specif-
ically associated with the MYC-trans signature (P =
0.001), it was also frequent in cases with the BCL6-trans
signature (16/108, 14.8%). A vast majority of KLF2 zinc
finger mutations (15/22, 68.2%) were identified in cases
with BCL6 translocation (or BCL6-tran signature, 21/22,
95.5%), which had not been previously reported. Finally,
for the MC signature, in addition to the CD79BY196 and
MYD88L265P mutations, other types of mutations, such
as PIM1 and PRDM1, were also significantly related to
the MC signature (P < 0.001). XPO1 E571K, a hotspot
mutation in chronic lymphocytic leukemia (CLL) and
PMBL, was also frequently identified in cases with MC
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signatures and was usually accompanied by the BCL6-
trans signature [25, 26].

Model comparison with classical DLBCL subtype classifier
and its prognostic significance
In order to validate our genetic classification algorithm,
we compared our model with the classical DLBCL gen-
etic classifier built from Schimtz et al. [4] for 239 de
novo DLBCL NOS cases in our study cohort. As illus-
trated from Fig. 3a, 65% of all cases (n = 155) were suc-
cessfully classified into four genetic subtypes (MCD n =
66, BN2 n = 55, EZB n = 30, N1 n = 4). In comparison,
75% of all cases (n = 175) could be classified in at least
one signature subtype. COO classification also demon-
strated similar type distribution (GCB and non-GCB) be-
tween two models (Fig. 3b). As for each genetic subtype
of Schimtz et al. (Fig. 3c), the majority of cases within
MCD subtype could be grouped in MC-trans signature
(63 of 66, 95.4%), and the consistent result was seen in
BCL6-trans signature within BN2 subtype (54 of 55,
98.2%) and BCL2-trans signature within EZB subtype
(29 of 30, 96.7%). However, in addition to the
consistency between two models mentioned above, we
did find that a portion of the DLBCL cases within each
subtype of Schimtz’s model carried 2 or more signatures.

In detail, within MCD and BN2 subtypes, 15 out of 66
(22.7%) and 19 out of 55 (34.5%) patients carried both
MC-trans and BCL6-trans signatures, respectively. While
in EZB subtypes, 6 out of 30 (20.0%) patients carried
both BCL2-trans and BCL6-trans signatures.
To evaluate the prognostic value of our genetic sub-

type model, we selected all de novo patients with large
B-cell lymphoma who received R-CHOP or R-CHOP-
like chemotherapy (n = 280, maximum follow-up 60
months, median follow-up 26months). We next con-
structed a multivariate Cox proportional hazard regres-
sion model considering both genetic signatures and IPI
scores as variables. The MYC-trans signature was the
most unfavorable genetic signature, and the MYC-trans
signature had a hazard ratio (HR) of 2.00 compared with
the absented MYC-trans signature (OS: P = 0.006) (Sup-
plementary Table S5). Those who presented a BCL2-
trans signature had a relatively favorable 5-year PFS,
with a borderline significance (P = 0.087). According to
the non-mutually exclusive nature of our set of four gen-
etic signatures and several latest research achievements
[3, 5, 11, 12, 27], we aimed to explore the differences in
prognostic impact for de novo DLBCL cases with vari-
ous genetic signature numbers. Firstly, in order to ex-
clude the potential influences of confounding factors,

Fig. 2 Schematic of the association between genetic alterations and genetic signatures. All 342 cases were clustered and arranged according to
the absent/present status of four genetic signatures. We determined the prevalence of each genetic alteration in the following six subsets: 1)
cases presented isolated MYC-trans signatures, 2) cases presented isolated BCL2-trans signatures, 3) cases presented isolated BCL6-trans signatures,
4) cases presented isolated MC signatures, 5) GCB cases without any genetic signatures, and 6) non-GCB cases without any genetic signatures.
Genetic alterations were thus clustered into six corresponding classes depending on their maximum prevalence among the six subsets. Genetic
alterations in the same cluster were ranked by the significance between cases with isolated corresponding genetic signatures and cases without
corresponding genetic signatures (or “other GCB”/“non-GCB” vs. the remaining), with log10P value depicted to the right of the factorized
heatmap. Color code of genetic alteration types: missense mutation or in-frame deletion/insertion (blue), truncating mutation, splice donor/
acceptor site mutation, or copy number loss in TP53 (red), SHM (yellow), translocation (orange), and nondetected (gray). COO classification was
also indicated above the factorized heatmap

Zhang et al. BMC Cancer          (2020) 20:714 Page 7 of 12



especially IPI score, we examined the statistical differ-
ences of IPI score group distribution (low 0–1, inter-
mediate 2–3, high 4–5) between groups of patients with
varying number of genetic signatures (0-sig, 1-sig, 2-sig,
3-sig). As a result, no statistical differences of IPI level
distribution were identified between 0-.
Sig, 1-sig, 2-sig and 3-sig patient groups (p > 0.05, Chi-

square and Fisher Exact test with Bonferroni adjust-
ment). As reflected by the 5-year OS and PFS time
(Fig. 4a-b), we found that individuals carrying three sig-
natures had much worse prognosis than individuals
without any genetic signature (OS: P = 0.0084; PFS: P =
0.3274), while patients with only one genetic signature
exhibited no significant difference in prognosis com-
pared with those without any signature (Fig. 4c-d). In
addition, further subgroup survival analysis indicated
that within EZB subtypes of Schmitz model, patients
carrying BCL2-trans plus BCL6-trans or MC-trans sig-
natures exhibited significantly inferior prognosis,

compared with patients carrying BCL2-trans signature
only (OS: P = 0.002; PFS: P = 0.039) (Fig. 4e-f). However,
no prognostic differences were identified in patients car-
rying different number of signatures within MCD, BN2
or N1 subgroups. The above findings provided evidence
that these non-mutually exclusive genetic signatures ex-
hibited cumulative prognostic influences, and patient
heterogeneity still existed in traditional mutually exclu-
sive classification model for DLBCL patients in our co-
hort, which requires further confirmation in larger
multi-center cohort studies.

Discussion
In this study we retrospectively analyzed NGS sequen-
cing results of DLBCL cohort. Among all panel genes se-
quenced, we focused on the variant pattern of CD79B.
In general, variant frequency of CD79B was relative
higher comparing with reports from other centers, which
could be possibly explained with ethnical difference and

Fig. 3 Comparison analysis with mutually exclusive classification model (Schmitz’s model). a Patient number and percentage of each subtype
classified by traditional mutually exclusive method using Schmitz model (upper) and non-mutually exclusive method using RF algorithm (lower).
b COO classification of De Novo DLBCL, NOS patients (n = 239) grouped by traditional mutually exclusive method using Schmitz model (upper
panel) and non-mutually exclusive method using RF algorithm. c Classification of De Novo DLBCL, NOS patients (n = 239) by traditional mutually
exclusive method using Schmitz model and signatures carried by each patient were identified by RF algorithm and shown in upper panel
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limited sample number. As has been described in previ-
ous reports, the majority of CD79B variants including
hotspot Y196 clustered in ITAM domain, which were re-
lated with NF-κB pathway activation. Our result was
consistent with the above findings as the majority of
cases bearing CD79B mutations were classified into non-
GCB subtype. Moreover, it was worth mentioning that
in our study we reported for the first time that a series
of intron splice-site were identified as recurrent variants
in DLBCL patients (e.g. c.550-1G > A, c.550-1G > C,
c.550-3_552del, etc.). Our results further indicated that
such splice-site variants probably result in CD79B pro-
tein truncating, causing CD79B dysfunction in a unique
way compared with CD79BY196 variant. Furthermore,
co-mutation analysis indicated significantly difference
compared with classical CD79B Y196 variant in terms of
variant co-occurrence with MYD88L265P. COO classifica-
tion also demonstrated differences in DLBCL patients
carrying CD79B splice-site variants, in comparison of
those with CD79B Y196 variant.

In summary, our results provided evidences that such
obviously different mutation pattern of CD79B splice-
site variants suggested differential impact on DLBCL
pathogenesis. However, the exact impact of CD79B trun-
cating protein on the physiological signal transduction
of NF-κB pathway and DLBCL pathogenesis calls for
further functional study.
Until now, comprehensive studies have revealed that

the genetic landscape of DLBCL is heterogeneous, which
aids in our understanding of oncogenic mechanisms and
provides novel insight into exploring better treatment
strategies. To date, Schmitz et al. and Chapuy et al.
showed that most DLBCL cases could be subcategorized
into several distinct subsets, each of which had unique
clinical, molecular and transcriptional characteristics.
However, there is still inevitable heterogeneity within
each group in their models. Nevertheless, if all expand-
ing factors were taken into consideration, the system
would gradually become too complicated to apply in
routine clinical scenario. Therefore, in this study, instead

Fig. 4 survival analyses of de novo cases that received R-CHOP or CHOP-like chemotherapy. a-b Kaplan-Meier plot for 5-year OS and PFS,
respectively, according to the signature numbers carried by each case (3 signatures or 0 signature). c-d Kaplan-Meier plot for 5-year OS and PFS,
respectively. Each case carried a single or no signature. Cases were grouped according to the signature type (MYC-trans, BCL2-trans, BCL6-trans or
MC-trans). e-f Kaplan-Meier plot for 5-year OS and PFS, respectively. Patients grouped in EZB subtype were classified by signature type (BCL2-trans
only or BCL2-trans plus BCL6-trans or MC-trans)
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of mutually exclusive classification, we aimed to define
several non-mutually exclusive genetic signatures to de-
scribe and understand the complex molecular features of
DLBCL, based on molecular information that was feas-
ible to obtain including MYC/BCL2/BCL6 translocations
as well as mutation data from a limited panel of genes.
In this study, based on previous research methods and
results, we preliminarily determined four genetic signa-
tures using a machine learning-based algorithm. In
addition, through analysis of prognostic data based on
their signature types, we demonstrated unique cumula-
tive prognostic impact based on the number of signa-
tures each patient carry. Therefore, this model is
applicable for target-oriented in therapeutic decision
making and prognostic evaluation.
Notably, in this study, some of cases with single gen-

etic signature also carry mutations commonly identified
in other B cell malignancies. For those carrying single
MYC-trans signatures, 8 of 20 cases were affected by
ID3-TCF3-CCND3 pathway mutations, which were
prevalent in Burkitt lymphoma (BL) [27–29]. For cases
with single BCL2-trans signature, a significant propor-
tion (21/23, 91.3%) of cases harbor gene mutations in
chromatin modification, including KMT2D, CREBBP,
EP300, and EZH2, and several other signaling pathways
(STAT6, SOCS1, TNFRSF14) which were similar to the
genetic feature described in follicular lymphoma [30]. In
addition, for cases with single BCL6-trans signature, the
mutations in several genes were also frequently deter-
mined in marginal zone lymphoma [31–33], including
NOTCH2 (14.6%, 6/41), KLF2 (34.1%, 14/41), TNFAIP3
(19.5%, 8/41), and FAS (17.1%, 7/41) mutations.
It should be noted that, limited by gene panel and

sample size, the genetic signatures of certain cases might
be mislabeled by a RF prediction algorithm, and some
other important genetic signatures might remain undis-
covered in our study. Several other genetic alterations
have already been revealed to be of potential importance
in understanding the mechanism of pathogenesis, classi-
fication, therapeutic guidance, and prognosis evaluation
but were not included in our set of genetic features
(Supplementary Table S6). Additionally, due to the
single-center nature of our high-throughput sequencing
study, current study lack external data to further support
our theories. However, we did aim to validate our model
in an expanded-scale multi-centered study in future ex-
ploration. Considering the DLBCL genetic diversities
among different human races, we believed that future re-
search including multiple populations would provide
more consolidated evidences. Our future work will focus
on undertaking a multiplatform analysis of genetic fea-
tures on expanding-scale cohort, so as to promoting the
lymphoma signature landscape description and to facili-
tate the precise determination of genetic signature.

Conclusion
Unlike mutually exclusive molecular sub-classification,
our observations supported novel insight into under-
standing complex genetic features by identifying the sta-
tus of several non-mutually exclusive clustered genetic
fingerprints. The identification of genetic signatures was
also helpful for disease classification, but it was also ex-
pected to reveal actionable targets for novel therapy de-
velopment and precise prognostic evaluation.
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