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Abstract

Background: Differential DNA methylation panel derived from peripheral blood could serve as biomarkers of CRC
susceptibility. However, most of the previous studies utilized post-diagnostic blood DNA which may be markers of
disease rather than susceptibility. In addition, only a few studies have evaluated the predictive potential of
differential DNA methylation in CRC in a prospective cohort and on a genome-wide basis. The aim of this study
was to identify a potential panel of DNA methylation biomarkers in peripheral blood that is associated with CRC risk
and therefore serve as epigenetic biomarkers of disease susceptibility.

Methods: DNA methylation profile of a nested case-control study with 166 CRC and 424 healthy normal subjects
were obtained from the Gene Expression Omnibus (GEO) database. The differentially methylated markers were
identified by moderated t-statistics. The DNA methylation panel was constructed by stepwise logistic regression
and the least absolute shrinkage and selection operator in the training dataset. A methylation risk score (MRS)
model was constructed and the association between MRS and CRC risk assessed.

Results: We identified 48 differentially methylated CpGs sites, of which 33 were hypomethylated. Of these, sixteen-
CpG based MRS that was associated with CRC risk (OR = 2.68, 95% CI: 2.13, 3.38, P < 0.0001) was constructed. This
association is confirmed in the testing dataset (OR = 2.02, 95% CI: 1.48, 2.74, P < 0.0001) and persisted in both males
and females, younger and older subjects, short and long time-to-diagnosis. The MRS also predicted CRC with AUC
0.82 (95% CI: 0.76, 0.88), indicating high accuracy.

Conclusions: Our study has identified a novel DNA methylation panel that is associated with CRC and could, if
validated be useful for the prediction of CRC risk in the future.
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Background
Colorectal cancer (CRC) poses a great public health con-
cern globally. It is the third most common cancer diag-
nosed among men and the second most common
among women and was responsible for an estimated 1.8

million new cases and 881,000 deaths in 2018 [1]. In the
United States of America, CRC is the third most com-
mon cancer diagnosed with about 140,250 new cases
and 50,630 deaths in 2017 [2]. In addition to environ-
mental factors, there is proven evidence that CRC results
from the accumulation of genetic and epigenetic
changes, which changes colonic epithelial cells into
adenocarcinoma cells [3].
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Epigenetic alterations such as DNA methylation has
been associated with many human diseases including
cancer and have also been reported to occur early in the
development of colorectal tumors [3] by playing a role
in gene expression and genomic stability. DNA methyla-
tion markers show great potential in the detection and
diagnosis of cancer [4] and a panel of differential DNA
methylation could be a possible biomarker of CRC
susceptibility.
Peripheral blood is an easily accessible source of gen-

omic DNA that can be used to estimate DNA methyla-
tion profiles and could serve as useful non-invasive and
informative biomarkers for cancer risk [5]. Several stud-
ies have investigated peripheral blood DNA methylation
biomarkers in different cancer types including head and
neck, urothelial, breast, lung, bladder, gastric cancer,
prostate, and ovarian cancers [6–16]. Some epidemio-
logic studies have assessed peripheral blood DNA
methylation biomarkers in CRC. However, most of the
studies used post-diagnostic blood DNA which may
imply that DNA methylation alterations could be an
early response of the hematologic system to the presence
of CRC cells [17, 18]. The few studies that utilized pre-
diagnostic DNA focused on genomic methylation of
leukocyte DNA [19, 20] while other studies involved
candidate genes [21–23] and methylation at repetitive
elements [24]. There are few genome-wide DNA methy-
lation studies that have evaluated the association of pre-
diagnostic peripheral blood DNA with CRC risk.
In order to identify a potential panel of DNA methyla-

tion biomarkers in peripheral blood that are associated
with CRC risk and therefore serve as epigenetic bio-
markers of disease susceptibility, we performed an
epigenome-wide analysis of a nested case-control study
using peripheral blood Illumina HumanMethylation450
bead-array DNA methylation data. We repurposed data
previously analysed by Cordero et al who focused on
probes associated with genes encoding for miRNAs [25].
We analysed the data using two methods including
epigenome-wide methylation profiling to identify differ-
entially methylated CpGs as well as a machine learning
algorithm to construct a sixteen-CpG based methylation
risk score predictive of CRC risk.

Methods
Data source
The Illumina Human Methylation 450 Beadchip data of
the Italian arm of the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC-Italy) were ob-
tained from Gene Expression Omnibus (GEO) with the
accession number GSE51032. The EPIC is a multicenter
prospective study aimed at investigating the complex re-
lationships between nutrition and various lifestyle factors
and the etiology of cancer and other chronic diseases

[26]. The EPIC-Italy cohort that was produced in Turin,
Italy, is a sub-cohort that comprised of 46,857 volun-
teers, recruited from five different centers within Italy
(Varese, Turin, Florence, Naples and Ragusa) with stan-
dardized lifestyle and personal history questionnaires,
anthropometric data as well as blood samples collected
for DNA extraction. At the last follow-up (2010), 424
participants remained cancer-free, 166 had developed
primary colorectal cancer. We extracted the data con-
taining the DNA methylation status of 485,512 CpG
sites in the 166 participants who had developed primary
colorectal cancer and the 424 matched cancer-free
participants.

DNA methylation profiling in CRC and healthy normal
subjects
The differential methylation analysis was conducted
using the workflow by Maksimovic et al. [27]. Briefly, we
pre-processed and normalized the data using R package
minfi [28]. The quality control, pre-filtering were con-
ducted with the minfi package and the Functional
Normalization (FunNorm) function was used for
normalization [28, 29]. Quality control was performed
and probes with detection P-value > 0.01 in at least one
sample were filtered out. After normalization, all probes
containing single nucleotide polymorphism (SNPs) and
probes mapped to sex chromosomes were filtered out to
prevent bias due to unknown genetic background and
mixed gender of samples, respectively. Cross-reactive
probes, which refer to probes that have shown to map to
several positions in the genome [30] were also filtered
out. After normalization and quality control, the probes
yielded were used for further analysis.

Hierarchical clustering
We conducted Hierarchical clustering using complete
linkage with a Euclidian distance in the R package pheat-
map [31].

Functional analysis
In order to examine main biological functions that were
controlled by DNA methylation, we used DMPs (differ-
entially methylated positions) for Gene ontology (GO)
analyses and Kyoto Encyclopedia of Genes and Genomes
(KEGG) based on the gometh function in the R package
missMethyl [32].

Selection of differentially methylated markers for risk
model
The methylation level of all the probes was indicated as
beta (β) values, which is the proportion of the methyl-
ated probe intensity to the total probe intensity (sum of
methylated and unmethylated probe intensities plus con-
stant α, where α = 100). The beta values for CRC and
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healthy normal subjects were log-transformed to obtain
the M-values and used for further analysis, with the beta
values used for visualization while the M-values were
used for statistical analysis which is in conformity with
Du et al. [33]. The linear models for microarray data
(LIMMA) package was used to identify differentially
methylated genes between CRC cases and healthy nor-
mal subjects [34]. Moderated t-test and mean methyla-
tion value differences (delta (Δ) beta) were generated
and we corrected P values of individual probe for mul-
tiple testing using the Benjamini-Hochberg method. A
CpG site between CRC and healthy normal subjects was
considered significant with a false discovery rate (FDR) <
0.05 and Δβ ≥ 5% and DMPs.
In addition, DMPs were used to build a risk score

model. The entire sample of 590 was randomly split into
70% training and 30% testing sets using stratified ran-
dom sampling by case-control status. The stratification
was to guarantee an equal distribution of CRC and
healthy normal subjects between sets, prevent overfitting
the data, and allow for validation of the model. The step-
wise logistic regression and least absolute shrinkage and
selection operator (LASSO) [35] methods were then ap-
plied on the training set to select the best markers for
CRC prediction using R packages MASS and glmnet re-
spectively [36, 37]. For the LASSO selection analysis, we
used 10-fold cross-validation to identify the tuning par-
ameter and chose the minimum lambda, which is the
value of lambda with the smallest mean cross-validated
error. Nineteen CpGs were identified by using the step-
wise regression method and twenty-two CpGs were
identified by using the LASSO analysis. In these two ap-
proaches, sixteen overlapping markers were identified
between the two methods.

Construction of methylation risk score
Logistics regression models were fitted on the training
dataset using these sixteen markers and MRS for each
patient was calculated. The calculation was carried out
by multiplying the methylation level for each CpG site
with the corresponding regression coefficient and
summed over all CpG sites as follows:

MRS ¼ β1x1 þ β2x2 þ β3x3 þ…………:þ βkxk

Where β represents the estimated regression coeffi-
cient of the CpG site k derived from the logistic regres-
sion analysis, and x represents the methylation level of
the CpG site k.
Furthermore, we determined whether our findings

could be validated in the testing dataset. The MRS was
constructed on the training set and validated on the test-
ing set by fitting a logistic regression model to determine

the association of the MRS with CRC, with the MRS
added into the model as a continuous variable.

Subgroup analyses
To assess the robustness of our findings, we determined
whether the association between MRS and CRC risk dif-
fered by gender, age, and time-to-diagnosis by conduct-
ing subgroup analyses according to these variables both
in the training and testing datasets. We took advantage
of the prospective design of this study and explored the
effect of time-to-diagnosis. We categorized the CRC
subjects into short (less than 6 years) and long (above 6
years) time-to-diagnosis using the median as a cut-off.
In addition, we conducted a case-only analysis and
assessed whether methylation levels of the CpGs were
correlated with time-to-diagnosis (the time interval be-
tween blood draw and diagnosis of CRC).

External validation in TCGA tissues
In order to validate the predictive performance of the
sixteen-CpG panel MRS in an independent dataset, we
analysed the CRC data in TCGA (The Cancer Genome
Atlas) dataset. The level 3 DNA methylation data de-
tected by HumanMethylation450 in colon cancer and
rectal cancer were downloaded from UCSC Xena
(https://xena.ucsc.edu/). We constructed a univariate lo-
gistic regression model using the 13-CpGs differentially
methylated in TCGA.

Statistical analysis
The distribution of the demographic characteristics in
the study group was compared between CRC and
healthy normal subjects using Chi-square and Kruskal–
Wallis tests for categorical and continuous data respect-
ively. To estimate the difference in methylation level
between CRC and healthy normal, two-sample t-tests
(moderated t-tests) with Bonferroni correction was per-
formed for each CpG. Univariate and multivariate logis-
tic regression were used to estimate odds ratios (ORs)
and corresponding 95% confidence intervals (CI) for
DNA methylation and MRS between CRC and healthy
normal subjects, as well as subgroup analysis. The ROC
curves were plotted with R package pROC version 1.16.1
[38], to estimate the discriminatory power of the MRS.
The area under the ROC curve (AUC) was calculated
and the DeLong method was used to calculate the 95%
confident interval (CI) for AUC. The Correlation was
performed using Pearson’s method. The significance
level used for all tests was two-tailed P < 0.05. All statis-
tical analyses were carried out using R language software
version 3.5.1 (https://cran.r-project.org/bin/windows/
base/old/3.5.1/).
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Results
Identification of differentially methylated markers
The workflow showing the step-by-step procedure for
this analysis and the demographic characteristics of par-
ticipants are presented in Fig. 1 and Table 1 respectively.
We analysed the microarray methylation profile of 166
(87 males and 79 females) CRC and 424 (84 males and
340 females) healthy normal subjects. The average age of
CRC subjects was 55 years old whereas, the normal sub-
jects had a mean age of 53. CRC and healthy normal
subjects were statistically significantly different with re-
spect to gender but did not differ with respect to age.
We adjusted for age and gender in our models. The
average time-to-diagnosis for cases was 6.2 years
(range = 0–14.3). The Illumina Human Methylation 450
Beadchip contained the DNA methylation status of 485,
512 CpG sites. Pre-processing and quality control were
performed and the poor performing probes were filtered
out. A total of 399,934 CpG sites (Additional file 1:
Figure S1) were yielded, and their methylation data were
used for further analysis. A total of 49,299 CpGs (corre-
sponding with 11, 786 unique genes) were differentially
methylated (FDR < 0.05) between the CRC and healthy
normal subjects.
Gene Ontology (GO) terms and KEGG pathway en-

richment analysis for genes associated with the 49,299

differentially methylated CpGs were performed. The GO
analysis showed the molecular functions, cellular com-
ponents, and biological functions of differentially meth-
ylated genes under the criterion FDR < 0.05
(Additional file 2: Table S1). In the KEGG pathway
genes showed enrichments in the metabolic pathway
(FDR = 1.19e-03), cancer- pathways (FDR = 6.58e-03),
human papillomavirus infection (FDR = 1.61e-02), Rap1
signaling pathway (FDR = 4.36e-04) and Axon guidance
(FDR = 2.12e-03) (Additional file 3: Table S2).
Of the 49,299 CpGs differentially methylated, 48 CpGs

(corresponding with 29 unique genes) which had abso-
lute mean β-value difference (|Δβ| ≥ 0.05) were selected
and denoted DMPs (Additional file 4: Table S3). Among
the DMPs, a total of 15 CpGs (corresponding with 8
unique genes) were hypermethylated and 33 CpGs (cor-
responding with 21 unique genes) were hypomethylated.
Hierarchical clustering was implemented to determine
whether the identified DMPs could distinguish CRC
from healthy normal subjects. The results showed a sig-
nificant difference in methylation between CRC and
healthy normal subjects (Fig. 2).

Methylation risk score construction
The entire sample of 590 was randomly split into train-
ing (117 CRC subjects and 297 healthy normal subjects)

Fig. 1 Overall workflow of the step-by-step analyses process of this study

Onwuka et al. BMC Cancer          (2020) 20:692 Page 4 of 11



and testing (49 CRC subjects and 127 healthy normal sub-
jects) sets (Table 1). Differentially methylated markers as-
sociated with CRC risk were screened on the training
dataset using LASSO selection and stepwise logistic re-
gression analysis. The sixteen markers mapped to nine
genes including LGR6, PTPN12, PPFIA3, LOC399959,
PCDHGA1, RNF39, ESYT3, MRGPRG, and ATHL1 over-
lapping between the two methods were selected (Add-
itional file 5: Figure S2). The associations of the sixteen
individual markers with CRC by univariate and multivari-
ate logistic regression analysis are presented in Add-
itional file 6: Table S4 and Table 2 respectively.
Furthermore, using the sixteen-CpG panel we calcu-

lated a methylation risk score (MRS) for each subject on
the training dataset using the formula:

MRS ¼ − 0:4100�cg06551493ð Þ
þ 0:4332�cg01419670ð Þ
þ 0:2895�cg16530981ð Þ
þ − 0:5172�cg18022036ð Þ
þ − 0:3915�cg12691488ð Þ
þ − 0:3246�cg17292758ð Þ
þ − 0:2886�cg16170495ð Þ
þ 0:2451�cg11240062ð Þ
þ − 0:5651�cg21585512ð Þ
þ 0:3615�cg24702253ð Þ
þ − 0:2445�cg17187762ð Þ
þ − 0:3951�cg05983326ð Þ
þ − 0:5089�cg06825163ð Þ
þ − 0:2504�cg11885357ð Þ
þ − 0:2357�cg08829299ð Þ
þ − 0:3607�cg07044115ð Þ:

The methylation levels of 4 CpG (cg01419670,
cg16530981, cg11240062, cg24702253) sites were

hypermethylated, and 12 CpG (cg06551493, cg18022036,
cg12691488, cg17292758, cg16170495, cg21585512,
cg17187762, cg05983326, cg06825163, cg11885357,
cg08829299, cg07044115) sites were hypomethylated.
The MRS (range, − 5.59 to 4.35) was significantly

higher for CRC subjects than in healthy normal subjects
(P < 0.000), with a median MRS of 1.68 (IQR, 1.43) in
CRC subjects and − 0.430 (IQR, 2.89) in healthy normal
subjects (Additional file 7: Figure S3a) in the training
dataset. The MRS was associated with a 2.68-fold in-
creased risk of CRC (OR = 2.68, 95% CI: 2.13, 3.38,
P < 0.0001) Table 2. The MRS showed a good predictive
ability for discriminating between CRC and healthy nor-
mal subjects (AUC, 0.85; 95% CI: 0.81, 0.89) Fig. 3a.

Validation of the sixteen-CpG panel MRS for CRC
prediction in the testing dataset
In order to validate the predictive performance of the
sixteen-CpG panel MRS for the prediction of CRC risk,
the predictive model was applied to the testing dataset.
The MRS (range, − 5.73 to 3.89) was also significantly
higher for CRC subjects than in healthy normal subjects
(P < 0.0001), with median MRS of 1.83 (IQR, 1.80) in
CRC subjects and − 0.45 (IQR, 2.64) in healthy normal
subjects (Additional file 7: Figure S3b). Consistent with
the training dataset, the MRS was associated with a
2.02-fold increased risk of CRC (OR = 2.02, 95% CI: 1.48,
2.74, P < 0.0001) Table 2. Similar to the training dataset,
the MRS showed a good predictive ability for discrimin-
ating between CRC and healthy normal subjects (AUC,
0.82; 95% C: 0.76, 0.88) Fig. 3b.

Subgroup analysis for the association between MRS and
CRC risk
When the study subjects were stratified according
to gender, age and time-to-diagnosis, the MRS still

Table 1 Characteristics of Training and Testing Dataset of Nested Case Control Study Based on EPIC-Italy Cohort

Characteristics Entire Dataset Training Dataset Testing Dataset

Cases Control Cases Control Cases Control

Total 166 424 117 297 49 127

Age, Mean (SD) 55.07 (6.73) 53.23 (7.19) 55.94 (6.73) 53.08 (7.20) 55.25 (6.62) 53.56 (7.20)

< 60 128 (26.9) 348 (73.1) 89 (26.4) 245 (73.4) 10 (27.5) 103 (72.5)

≥ 60 38 (33.3) 76 (66.7) 28 (35.0) 52 (65.0) 39 (29.4) 24 (70.6)

Gender

Male 87 (52.4) 84 (19.8) 55 (47.4) 61 (52.6) 32 (58.2) 23 (41.8)

Female 79 (47.6) 340 (80.2) 62 (20.8) 236 (79.2) 17 (14.0) 104 (86.2)

Time-to-diagnosis (years)

< 6 80 (48.2) NA 56 (47.9) NA 24 (49.0) NA

≥ 6 86 (51.8) NA 61 (52.1) NA 25 (51.0) NA

Abbreviations: NA Not applicable, SD Standard deviation
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demonstrated an increased risk of CRC among
both male and female subjects, younger (< 60 years)
and the older (≥ 60 years) subjects as well as short
and long time to diagnosis in the training and test-
ing datasets (Table 3). Also, the case-only analysis
demonstrated no correlation between methylation
levels time-to-diagnosis, with only one CpG show-
ing small negative correlation (Additional file 8:
Table S5).

Independent validation of the sixteen-CpG panel MRS for
CRC prediction in TCGA dataset
We used TCGA dataset of 391 CRC and 45 controls for
independent validation of our sixteen-CpG panel MRS.
Only thirteen CpGs of the panel were differentially
methylated in the TCGA dataset. The beta values of the
thirteen CpGs were extracted and univariate logistic re-
gression models were constructed (Additional file 9:
Table S6). We identified nine CpGs (cg06551493,

Fig. 2 The heatmap showing the methylation levels of 48 CpG sites differentially methylated in the entire dataset. Row represents specific
markers (N = 48). Column represents samples (N = 590)
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cg12691488, cg17292758, cg16170495, cg21585512,
cg24702253, cg17187762, cg05983326, cg11885357) that
were associated with CRC, and the MRS for each sample
was calculated. The MRS (range, − 4.05 to 2.92) was sig-
nificantly higher for CRC subjects than in controls sub-
jects (P < 0.0001), with a median MRS of 0.16 (IQR,
1.59) in CRC subjects and − 0.712 (IQR, 0.95) in controls
(Additional file 10: Figure S4). The MRS was associated
1.96-fold increased risk in CRC (OR = 2.06, 95% CI: 1.55,
2.78, P < 1.08e-06) (Additional file 9: Table S6). The

MRS showed a good predictive ability for discriminating
between CRC and control subjects (AUC, 0.73; 95% CI:
0.66–0.79) Additional file 11: Figure S5.

Discussion
In this study, we repurposed a microarray peripheral
blood DNA methylation data of CRC and healthy nor-
mal subjects obtained from the GEO database. First, we
identified differentially methylated CpGs between CRC
and healthy normal subjects for CRC-specific

Fig. 3 Classification performance of methylation risk score (MRS) for CRC risk (a) Receiver operating characteristic (ROC) curve for methylation risk
score (MRS) prediction of CRC, with area-under the curve (AUC) of 0.85 (95% CI: 0.82–0.88) on training dataset. b Receiver operating characteristic
(ROC) curve for methylation risk score (MRS) prediction of CRC, with area-under the curve (AUC) 0.82 (95% CI: 0.76–0.88) on testing dataset

Table 2 Multivariate Analysis on the Associations of DNA Methylation Marker, MRS and Risk of CRC of Nested Case Control Study
Based on EPIC-Italy Cohort

CpG ID Gene
Name

Entire Dataset Training Dataset Testing Dataset

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

cg06551493 PTPN12 0.62 0.49, 0.78 6.58e-05 0.71 0.54, 0.91 0.009 0.42 0.25, 0.68 7.18e-04

cg01419670 NA 2.12 1.62, 2.85 1.47e-07 2.36 1.71, 3.36 6.16e-07 1.62 1.00, 2.82 0.06

cg16530981 NA 1.96 1.52, 2.57 5.01e-07 2.15 1.60, 2.98 1.29e-06 1.53 0.99, 2.57 0.08

cg18022036 NA 0.56 0.45, 0.70 5.47e-07 0.54 0.41, 0.69 3.97e-06 0.67 0.43, 1.03 0.07

cg12691488 NA 0.73 0.47, 1.10 0.14 0.67 0.40, 1.08 0.11 0.84 0.34, 1.95 0.70

cg17292758 PPFIA3 0.79 0.64, 0.98 0.04 0.79 0.61, 1.02 0.07 0.79 0.51, 1.20 0.27

cg16170495 RNF39 0.66 0.54, 0.80 3.17e-05 0.68 0.54, 0.85 0.001 0.62 0.41, 0.90 0.01

cg11240062 NA 1.25 1.00, 1.57 0.06 1.30 1.00, 1.69 0.05 1.11 0.70, 1.78 0.67

cg21585512 LOC399959 0.68 0.55, 0.83 1.61e-04 0.58 0.45, 0.74 1.64e-05 0.94 0.64, 1.38 0.75

cg24702253 MRGPRG 1.74 1.28, 2.58 0.002 1.78 1.24, 2.81 0.005 0.74 1.01, 4.58 0.11

cg17187762 NA 0.76 0.63, 0.93 0.006 0.78 0.62, 0.97 0.03 0.66 0.44, 0.98 0.04

cg05983326 PCDHGA1 0.69 0.57, 0.84 2.68e-04 0.73 0.57, 0.91 0.007 0.57 0.38, 0.84 0.006

cg06825163 LGR6 0.70 0.57, 0.86 5.47e-04 0.67 0.52, 0.84 8.11e-04 0.82 0.56, 1.21 0.34

cg11885357 ESYT3 0.89 0.73, 1.08 0.23 0.83 0.65, 1.04 0.11 1.07 0.72, 1.59 0.74

cg08829299 ATHL1 0.86 0.70, 1.04 0.13 0.84 0.66, 1.05 0.13 0.93 0.63, 1.37 0.69

cg07044115 NA 0.77 0.63, 0.93 0.008 0.82 0.66, 1.03 0.07 0.60 0.40, 0.89 0.01

Abbreviations: CI Confidence interval, CRC Colorectal cancer, MRS Methylation risk score, ORs Adjusted for age and gender, P values < 0.05 are in bold
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methylation panel. Second, we divided the data into two
sets and identified a panel of sixteen CpGs associated
with CRC by logistic regression in the training dataset.
Third, we constructed a predictive model- MRS, to pre-
dict the risk of CRC based on the linear combination of
methylation levels of the sixteen CpGs. The MRS was
tested first on the training dataset and was associated
with the risk of CRC, the prediction evaluation when
conducted by ROC analysis attained an AUC of 0.85.
Subgroup analyses demonstrated that these significant
associations persisted in both males and females, youn-
ger and older subjects as well as long and short time-to-
diagnosis. The MRS, when validated on the testing data-
set attained an AUC of 0.82 indicating that the risk pre-
dictive value of the MRS panel is replicable for
predicting CRC risk. Our findings show a panel of per-
ipheral blood DNA methylation that is a potential bio-
marker for CRC susceptibility.
Previous studies have developed multiple gene

methylation-based panels to predict an individual’s sus-
ceptibility to CRC. For example, Liu et al. and Luo et al.
both reported DNA methylation-based panels in blood
leukocyte that were associated with 6.51-fold (95% CI,
3.77–11.27) and 1.54-fold (95% CI: 1.15–2.05) increased
risk of CRC respectively and this is similar to our result.
However, since both studies involved post-diagnostic
DNA samples based on case-control studies, the associ-
ation detected may have resulted from a response to
CRC cells rather than CRC susceptibility.
Although the mechanisms underlying the aberrations

in the methylation of peripheral blood DNA among indi-
viduals who are susceptible to CRC are not clear, our
analysis used pre-diagnostic peripheral blood DNA,
which indicates that methylation aberrations in periph-
eral blood DNA could possibly be a long-term CRC pre-
disposition risk markers or a far early response to CRC
cells before cancer could be detected by techniques used

before now such as endoscopy and cytology. In addition,
there was no correlation between DNA methylation and
time-to-diagnosis in case-only analysis, which also sup-
ports the suggestion that peripheral blood DNA could
be a long-term event.
Contrary to our result, the previous studies that utilized

pre-diagnostic blood DNA found no association between
pre-diagnostic genomic DNA methylation status and CRC
risk [19, 20]. This difference might be because of the het-
erogeneous methodology and assays. The two studies eval-
uated leukocyte genomic DNA methylation levels by
liquid chromatography/tandem mass spectrometry, which
only considers DNA hypomethylation and not regional
hypermethylation that can also contribute to increased
risk of CRC.
The presence of specific single nucleotide polymor-

phisms (SNPs) has also been used to evaluate an in-
dividual’s risk for CRC both by the candidate and
multiple genes (by a method called a genetic risk
score (GRS)) as well as genome-wide association
study (GWAS). Similar to the associations we found
between MRS and CRC risk, GRS based on SNPs
have been associated with CRC risk. For example,
Cho et al. [39], reported a higher GRS that was asso-
ciated with CRC (OR, 2.57; 95% CI, 1.89, 3.49) using
thirteen SNPs. In addition, Jung et al. [40] in a case-
cohort study, demonstrated that participants in the
highest quartiles of the genetic risk score had an in-
creased risk of CRC (hazard ratio, 2.65; 95% CI, 1.43
to 4.91) compared with those in the lowest quartile
using seven SNPs. Furthermore, a GWAS study
found a SNPs developed polygenic risk score (PRS)
that was associated with about 2-fold increased risk
of CRC [41].
In the present study, the methylation-based markers

for CRC included LGR6, PTPN12, PPFIA3, LOC399959,
PCDHGA1, RNF39, ESYT3, MRGPRG and ATHL1, all of

Table 3 Associations of MRS and Risk of CRC According to Age, Gender and Time-To-Diagnosis of Nested Case Control Study Based
on EPIC-Italy Cohort

Characteristics Entire Dataset Training Dataset Testing Dataset

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

Age

< 60 2.35 1.95, 2.90 < 0.0001 2.62 2.06, 3.44 < 0.0001 1.97 1.44, 2.84 < 0.0001

≥ 60 2.60 1.77, 4.17 < 0.0001 2.87 1.77, 5.35 0.0002 2.28 1.20, 5.51 0.03

Gender

Male 1.97 1.47, 2.71 < 0.0001 2.10 1.44, 3.21 0.0002 1.91 1.20, 3.37 0.02

Female 2.64 2.12, 3.37 < 0.0001 2.96 2.26, 4.08 < 0.0001 2.08 1.46, 3.20 0.0002

Time-diagnosis

< 6 years 2.21 1.80, 2.77 < 0.0001 2.40 1.86, 3.20 < 0.0001 1.99 1.40, 3.02 0.0004

≥ 6 years 2.51 2.01, 3.23 < 0.0001 2.88 2.17, 4.01 < 0.0001 1.97 1.36, 3.05 0.0008

Abbreviations: CI Confidence interval, CRC Colorectal cancer, MRS Methylation risk score, OR Odds ratios adjusted for age and gender, P values < 0.05 are in bold
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which were located in the promoter regions or first in-
trons of nearby genes. There are limited epidemiological
reports on the association between these markers and
CRC risk. One of the genes, LGR6 (Leucine-Rich Repeat
Containing G Protein-Coupled Receptor 6) regulates the
phosphoinositide 3-kinase/AKT signaling pathway and
plays a tumor-promoting role in CRC development indi-
cating that it might be a potential diagnostic and prog-
nostic biomarker for CRC [42]. Protein tyrosine
phosphatase non-receptor type 12 (PTPN12) are signal-
ing molecules that regulate a variety of cellular processes
and has been found to be epigenetically regulated in
triple-negative breast cancer [43]. They are known to
play an important role in cell growth, proliferation, and
motility [44] and have been found to function as a sup-
pressor of epithelial cell motility in CRC cells [45]. A
study on whole-exome sequencing identified that
PTPN12 variant is associated with CRC susceptibility
[46]. In addition, the methylation of PTPRF-interacting
protein alpha 3(PPFIA3) in serum has shown a potential
for the detection of gastric cancer [47].
The pathway analysis demonstrated that metabolic

pathways, cancer pathways, human papillomavirus in-
fection, Rap1 signaling pathway, and Axon guidance
were associated with CRC. The biological processes
involve cellular component organization or biogenesis,
and cellular localization. The Rap1 signaling pathway
has been implicated in the previous genome-wide
profile of colorectal cancer [48] and has been known
to play several important roles in tumor cell invasion
and metastasis [49]. The pathway and biological pro-
cesses put together demonstrate that multiple path-
ways, which were affected by aberrant methylation
were involved in CRC tumorigenesis.
In order to validate the MRS, we conducted an inde-

pendent validation analysis of our results using TCGA
dataset for CRC risk prediction. Despite the fact that
only 9 CpGs from 16-CpG MRS panel was available in
TCGA datasets for calculation of MRS, the MRS was
still higher for CRC subjects then controls. It is note-
worthy that PTPN12, RNF39, LOC399959, PCDHGA1,
and LGR6 are also significantly hypomethylated in CRC
tissue compared to normal tissue in the TCGA dataset,
suggesting that the changes observed in DNA methyla-
tion levels may be clinically important.
To our knowledge, our analysis is the first to assess

the potential link between genome-wide DNA methyla-
tion in peripheral blood and future risk of CRC. Our
analysis has revealed that there is potential in the use of
peripheral blood-based DNA methylation profiling for
CRC risk prediction. We have shown, with a ROC indi-
cating good performance, an MRS model consisting of
sixteen CpG panel that has the ability to differentiate
CRC from healthy normal subjects.

One important strength of our study was its pro-
spective design. The utilization of blood samples col-
lected before diagnosis which indicated that the DNA
methylation preceded the development of CRC by up
to 6 years, enabled us to assess genome-wide mea-
sures of DNA methylation as potential biomarkers of
risk as compared to measures of DNA methylation in
retrospective designs which may have resulted from
molecular changes due to carcinogenesis and
medication.
A limitation of our study is its lack of replication.

To the best of our knowledge, there are currently no
other pre-diagnostic blood DNA Illumina Human
Methylation 450 data for CRC studies available. How-
ever, we used TCGA dataset for external validation
and recommend that other prospective cohort studies
assess associations between genome-wide DNA
methylation and CRC risk.

Conclusion
Our study has identified a novel DNA methylation panel
based on genome-wide analysis that is associated with
CRC and suggests that differential peripheral blood
DNA methylation panel may be an easily available bio-
marker for prediction of CRC risk in the future if vali-
dated in a prospective cohort. Further studies with
larger cohort data will be needed to confirm this pattern.
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