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Abstract

Background: We assessed the mechanism of hematopoietic stem cell (HSC) mobilization using etoposide with
granulocyte-colony stimulating factor (G-CSF), and determined how this mechanism differs from that induced by
cyclophosphamide with G-CSF or G-CSF alone.

Methods: We compared the clinical features of 173 non-Hodgkin's lymphoma patients who underwent autologous
peripheral blood stem cell transplantation (auto-PBSCT). Additionally, we performed in vitro experiments to assess the
changes in human bone marrow stromal cells (hBMSCs), which support the HSCs in the bone marrow (BM) niche,
following cyclophosphamide or etoposide exposure. We also performed animal studies under standardized conditions
to ensure the following: exclude confounding factors, mimic the conditions in clinical practice, and identify the
changes in the BM niche caused by etoposide-induced chemo-mobilization or other mobilization methods.

Results: Retrospective analysis of the clinical data revealed that the etoposide with G-CSF mobilization group showed
the highest yield of CD34+ cells and the lowest change in white blood cell counts during mobilization. In in vitro
experiments, etoposide triggered interleukin (IL)-8 secretion from the BMSCs and caused long-term BMSC toxicity. To
investigate the manner in which the hBMSC-released IL-8 affects hHSCs in the BM niche, we cultured hHSCs with or
without IL-8, and found that the number of total, CD34+, and CD34+/CD45- cells in IL-8-treated cells was significantly
higher than the respective number in hHSCs cultured without IL-8 (p = 0.014, 0.020, and 0.039, respectively).
Additionally, the relative expression of CXCR2 (an IL-8 receptor), and mTOR and ¢-MYC (components of IL-8-related
signaling pathways) increased 1 h after IL-8 treatment. In animal studies, the etoposide with G-CSF mobilization group
presented higher IL-8-related cytokine and MMP9 expression and lower SDF-1 expression in the BM, compared to the
groups not treated with etoposide.
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chemo-mobilization strategies.

Conclusion: Collectively, the unique mechanism of etoposide with G-CSF-induced mobilization is associated with 1L.-8
secretion from the BMSCs, which is responsible for the enhanced proliferation and mobilization of HSCs in the bone
marrow; this was not observed with mobilization using cyclophosphamide with G-CSF or G-CSF alone. However, the
long-term toxicity of etoposide toward BMSCs emphasizes the need for the development of more efficient and safe
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Background

Successful autologous peripheral blood stem cell trans-
plantation (auto-PBSCT) for hematological malignancies
requires harvesting a sufficient number of human
hematopoietic stem cells (hHSCs) mobilized from the
bone marrow (BM) to the peripheral blood (PB). In clin-
ical practice, the mobilization protocols generally include
chemotherapy and granulocyte colony-stimulating factor
(G-CSF) (chemo-mobilization), as restricting the cancer
burden during mobilization is crucial. Since the first
clinical application of G-CSF by Diihrsen et al. in 1988
[1], cyclophosphamide chemo-mobilization has been
commonly used for chemo-mobilization [2, 3]. Cyclo-
phosphamide induces the release of stress signals that
cause inflammation, thereby activating the host immune
system, which may increase hHSC mobilization [4, 5].
However, this protocol has some disadvantages, includ-
ing—primarily—the unpredictability of the number of
hHSCs that can be collected from the PB and the possi-
bility of mobilization-related toxicities, such as febrile
neutropenia [5-7]. Reiser et al. had first reported the use
of etoposide as an alternative to cyclophosphamide to
effectively mobilize PBSCs in patients in whom
cyclophosphamide-induced chemo-mobilization had
failed [8]; this led to studies on etoposide-induced
chemo-mobilization (Supplementary Material 1: Table
S1) [9-13]. However, concerns regarding the use of
etoposide include its inhibition of topoisomerase 2,
which damages DNA. Cancer patients undergoing
chemotherapy regimens that include etoposide, have
been reported to experience secondary hematological
malignancies [14, 15]. Moreover, Gibson et al. demon-
strated that etoposide could damage human bone marrow
stromal cells (hBMSCs) [16]. These findings suggest that
etoposide may influence the BM niche by not only enhan-
cing hHSC mobilization but also by inducing BM damage.
Therefore, the mechanism underlying etoposide-induced
mobilization may differ from that of G-CSF- or
cyclophosphamide-induced mobilization, which proceeds
through the demargination of HSCs from the BM to PB
due to systemic inflammation [17]. However, to date, this
topic appears to have received little attention. Further-
more, verification of the mobilization mechanisms may be
difficult due to the interference of complex physical

conditions in patients, which could confound the inter-
pretation of the associated clinical findings. To over-
come these barriers, we designed a three-step study
involving the following: 1) analysis of clinical data asso-
ciated with auto-PBSCT in patients with non-Hodgkin’s
lymphoma (NHL); 2) in vitro experiments to assess the
changes in hBMSCs, which support HSCs in the BM
niche, after exposure to cyclophosphamide or etopo-
side; and 3) in vivo animal studies under standardized
conditions to exclude confounding factors, mimic condi-
tions of clinical practice, and identify changes in the BM
niche caused by etoposide-induced chemo-mobilization or
other mobilization protocols.

Methods

Clinical data

The clinical data of patients with Non-Hodgkin Lymph-
oma (NHL) who underwent PB stem cell collection
(PBSCC) at the Korea University Anam Hospital and the
Samsung Medical Center, from 2005 to 2019, was retro-
spectively analyzed, and a retrospective chart review was
conducted. Both these studies were approved by an in-
ternal board of the Korea University Anam Hospital
(IRB No. 2019AN0386) and the Samsung Medical Cen-
ter (2019-09-085-001).

Primary hBMSC culture

The internal review board of the Korea University Anam
Hospital (IRB No. 2015AN0267) approved all the proce-
dures. Written informed consent was obtained from all
subjects. The subjects were healthy individuals who do-
nated BM via BM harvesting. A total of 20 mL BM was
collected from each subject. Mononuclear cells (MNCs)
were separated using Ficoll-Paque™ Plus medium (GE
Healthcare Life Sciences, Seoul, South Korea); the
remaining cells were cultured in mesenchymal stem cell
growth medium (Lonza, Walkersville, MD, USA). In
this study, we used isolated hBMSCs within five pas-
sages from the start of the subculture and routinely
tested to confirm the absence of mycoplasma by the e-
Myco™ VALID mycoplasma PCR detection kit (iN-
tRON, Burlington, MA, USA).
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Flow cytometry

Antibodies against anti-human CD73-PE, CD90-PE,
CD105-PE, CD34-FITC, and CD45-PE (Becton Dickinson,
San Jose, CA, USA) were used at 1:100 dilution. Cells were
analyzed using FACSCalibur™ (Becton Dickinson).

Chemotherapeutic agents and cytotoxicity assay

Commercially available preparations of cyclophospha-
mide (Endoxan injection, 500 mg; Boxter Inc., Seoul,
South Korea) and etoposide (Lastet injection, 100 mg/5
mL; Dong-A Inc., Seoul, South Korea) were used. Cell
Counting Kit-8 (CCK-8 assay, Dojindo Laboratories,
Japan) was used for the cytotoxicity assays, according to
the manufacturer’s instructions. Absorbance was mea-
sured at 450 nm using a SpectraMax Plus 384 spectro-
photometer (Molecular Devices Corporation, CA, USA).

Human and mouse cytokine arrays

The Human Cytokine Antibody Array C1000 and Mouse
Cytokine Antibody Array C1000 (both from Ray Biotech,
GA, USA) were used, according to the manufacturer’s
instructions. Images were acquired using a ChemiDoc™
Touch Imaging System (Bio-Rad, Hercules, CA, USA)
and quantified using Image] (National Institutes of
Health, MD, USA). Signal was normalized using the in-
ternal positive controls and the background with the
RayBio® Antibody Array Analysis Tool (Ray Biotech).

Apoptosis and cell cycle analysis

Apoptosis analysis was performed using the EzWay
Annexin V-FITC Apoptosis Detection Kit (Koma Biotech
Inc.,, Seoul, South Korea). Cell-cycle distribution analysis
was performed using propidium iodide at 50 mg/mL
(Sigma-Aldrich, catalog no. P4170). Both assays were per-
formed according to the manufacturers’ instructions.

HSC culture and IL-8 treatment

Human BM CD34+ HSCs were purchased from Lonza
(catalog no. 2M-101) and cultured in Stemline® II
Hematopoietic Stem Cell Expansion Medium (Sigma-
Aldrich, catalog no. S0192) containing 100 ng/mL
stem cell factor, thrombopoietin, and G-CSF (all ob-
tained from R&D Systems, Inc.,, Minneapolis, MN,
USA). Recombinant human IL-8/CXCL8 protein was
acquired from R&D Systems (catalog no. 208-IL).

Quantitative reverse transcription-polymerase chain
reaction (qRT-PCR)

Total RNA was isolated from cells using the Qiagen
RNeasy kit (Qiagen, Hilden, Germany) and quantified
using a NanoDrop spectrophotometer (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). cDNA was synthe-
sized using 2 pg total RNA as a template in a 20-pL reac-
tion mixture containing oligos, primers, and Superscript II
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reverse transcriptase (Thermo Fisher Scientific, Inc.),
according to the manufacturer’s instructions. Synthe-
sized cDNA was amplified using the iQ SYBR Green
qPCR Master Mix (Bio-Rad) on a Bio-Rad iCycler iQ
(Bio-Rad). Comparative threshold cycle values were
normalized to those of glyceraldehyde-3-phosphate de-
hydrogenase. The primers used are described in Sup-
plementary Material 2: Table S2. To compare the
difference in mRNA expression, relative quantification
was performed using the delta-delta Ct method [18]. In
brief, the ACt value was obtained after normalization
based on the internal control (GAPDH), and the AACt
value was obtained based on the control group. We
then used 22" to calculate the fold change.

Mice

All experimental procedures using animals complied
with the guidelines of the Laboratory Animal Research
Center of the Korea University College of Medicine (IRB
No. KOREA-2017-0176). A total of 87 C57BL/6 N mice
were purchased from Orient Bio (Seongnam, South
Korea). Mice, 8 weeks of age and with a body weight of
20 g, were maintained in polypropylene cages under spe-
cific pathogen-free conditions, with light/dark 12-hcy-
cles, at 21+2°C, and had ad libitum access to a
maintenance diet. Sample sizes were calculated using a
pilot study and the G*Power program (http://www.gpo-
wer.hhu.de/). All analyses were conducted blindly to
minimize the effects of subjective bias.

Protocol for HSC mobilization in mice

The mouse model of HSC mobilization was designed
based on protocol used in human patients (Fig. 4a—b). A
previously reported model of cyclophosphamide chemo-
mobilization was used in this study [19]. Due to the ap-
parent lack of a related animal model, we developed a
new model of etoposide chemo-mobilization. Mice were
injected intraperitoneally with 4 mg cyclophosphamide
(= 200 mg/kg) on day 1 (D1) or with 0.8 mg etoposide (=
40 mg/kg) on days 1 and 2 (D1, D2). Subsequently, 5 ug
human G-CSF (250 pg/kg per day; Leucostim prefilled
syringe INJ, Dong-A Inc.) was administered daily as a
single subcutaneous injection, on each successive day
from day 3, for a total of 4 days. All mice were eutha-
nized on D7 by cardiac puncture and cervical disloca-
tion under anesthesia. On day 7 (D7), we isolated
hematopoietic progenitor cells (HPCs) using an Easy-
Sep™ Mouse Hematopoietic Progenitor Cell Isolation
Kit and performed colony-forming unit (CFU) assays
using MethoCult™ GF M3434 medium (both from
Stem Cell Technologies, Vancouver, BC, Canada), ac-
cording to the manufacturer’s instructions.


http://www.gpower.hhu.de/
http://www.gpower.hhu.de/

Kang et al. BMC Cancer (2020) 20:619

Enzyme-linked immunosorbent assay (ELISA)

Plasma levels of stromal cell-derived factor-1 (SDF-1),
matrix metalloproteinase-2 (MMP2), and matrix
metalloprotease-9 (MMP9) in mice were measured using
the Magnetic Luminex® Screening Assay (R&D Systems),
according to the manufacturer’s instructions.

Immunohistochemistry of BM sections
Immunohistochemistry (IHC) was performed on 3-pm
formalin-fixed, paraffin-embedded sections from the
BM. The following primary antibodies were used: anti-
keratinocyte-derived cytokine (KC) (Cloud-Clone Corp.,
Houston, TX, USA; catalog no. PAA041Mu01; 1:50),
anti-macrophage inflammatory protein 2 (MIP-2)
(Cloud-Clone Corp.; catalog no. PAB603Mu01; 1:100),
anti-lipopolysaccharide-inducible CXC chemokine (LIX)
(Cloud-Clone Corp.; catalog no. PAA860Mu01; 1:100),
anti-MMP2 (Abcam; catalog no. ab37150; 1:200), anti-
MMP9 (Abcam; catalog no. ab38898; 1:200), and anti-
SDE-1 (Abcam; catalog no. ab9797; 1:500). In the case of
anti-KC, anti-MIP-2, anti-LIX, anti-MMP9, and anti-
SDEF-1, antigen retrieval was performed using a citrate
buffer. All slides were scanned using a virtual micros-
copy scanner (Axio Scan Z1 scanner; Carl Zeiss, Jena,
Germany); positive contributions were calculated by
summing the highly positive, positive, and low-positive
fractions for each staining using the IHC profiler Plugin
of Image]J [20].

Table 1 Baseline characteristics
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Statistical analysis

Patient demographics and baseline characteristics were
compared using Kruskal-Wallis H and Chi-square tests.
Multivariate analysis using the Cox proportional hazards
method was performed. Mann—Whitney U, Student’s ¢-
tests, and analysis of variance were used to analyze dif-
ferences in data from the in vitro and in vivo experi-
ments, based on the variables involved. A post hoc
analysis with Bonferroni correction was performed when
statistical differences were identified among the three
groups. Data analysis was performed using IBM SPSS
Statistics for Windows, version 25.0 (IBM Corp., NY,
USA). Significant differences are denoted by p-values <
0.05.

Results

Etoposide-induced chemo-mobilization is highly effective
and exhibits different clinical features, compared to the
other mobilization methods

We analyzed data from 173 patients with NHL who
underwent PBSCC in the presence of the following che-
motherapeutic agents: G-CSF only, n=33; cyclophos-
phamide + G-CSF, n = 24; and etoposide + G-CSF, n =
116. The baseline characteristics of the patients are sum-
marized in Table 1. The highest yield of CD34+ cells
was observed for etoposide + G-CSF (Fig. 1a), a result
that remained significant even after adjusting for baseline
characteristics (Supplementary Material 3: Table S3). The

Baseline characteristics G-CSF only CY+G-CSF ETO+G-CSF p-value
(n= 33) (n=24) (n=116)
Median age (in years) (range) 430 (17.0-67.0) 46.5 (20.0-62.0) 52 (21.0-65.0) 0.003
Male:female ratio 2.00 243 1.23 0.243
Histology, n (%) 0.139
Hodgkin lymphoma 3(9.) 4 (16.7) 5(43)
Non-Hodgkin lymphoma
B cell 15 (45.5) 14 (58.3) 65 (56.0)
T cell 15 (45.5) 6 (25.0) 46 (39.7)
Disease stage, n (%) 0.342
Limited stage (Stage I-11) 8 (24.2) 3(125) 31 (26.7)
Advanced stage (Stage IlI-IV) 25 (75.8) 21 (87.5) 85 (73.3)
Bone marrow involvement at dagnosis, n (%) 5(15.2) 6 (25.0) 30 (27.5) 0472
Number of previous chemotherapy treatments (range) 2 (1-3) 2 (1-3) 1(1-5) 0.139
Disease status before mobilization, n (%) 0.080
Complete remission 12 (36.4) 10 (41.7) 52 (44.8)
Partial remission 19 (57.6) 12 (50.0) 47 (40.5)
Dose, total (mg/mz) (range) — 3,000 (1,000-3,000) 750 (375-750) —
Time from diagnosis to start of mobilization (months) (range) 76 (3.7-63.3) 16.6 (0.7-59.9) 6.2 (1.5-148.0) 0.003
Median follow-up duration after mobilization (months) (range) 12.2 (0.1-96.0) 37.8 (0.1-92.6) 13.0 (1.4-76.8) —_
Transplantation done, n (%) 29 (90.6) 16 (72.7) 112 (96.6) —
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Fig. 1 Yield of CD34+ cells and changes in white blood cell counts based on the mobilization method. a Data from 173 patients diagnosed with
lymphoma who underwent peripheral blood stem cell collection (G-CSF only, n = 33; cyclophosphamide + G-CSF, n = 24; etoposide + G-CSF, n=
116) were analyzed. The highest yield of CD34+ cells was observed for etoposide + G-CSF [(1st day: G-CSF only: 1.36 (0.01-14.60);
cyclophosphamide + G-CSF, 0.81 (0.05-18.70); etoposide + G-CSF, 4.32 (0.03-32.77), 2nd day: G-CSF-only, 0.96 (0.09-7.25); cyclophosphamide + G-
CSF, 0.70 (0.06-13.20); etoposide + G-CSF, 3.37 (0.14-32.60), Total: G-CSF only, 3.13 (0.01-14.60); cyclophosphamide + G-CSF, 2.05 (0.12-31.9);
etoposide + G-CSF, 7.22 (0.18-59.20)]. b The change in white blood cell (WBC) counts at the nadir and at the time of collection during
mobilization was the lowest for the etoposide + G-CSF group among the three groups (AWBC: G-CSF only, 15,305 (— 1412-574,000);
cyclophosphamide + G-CSF, 10,320 (916-70,884); etoposide + G-CSF, 3770 (254-120,780)). Note: ‘At the nadir’ refers to the lowest WBC value
during chemotherapy before peripheral blood stem cell collection. ’AWBC' refers to the increase in WBC counts from the nadir to the time of
peripheral blood stem cell collection. Note: *** p < 0.001 after Bonferroni correction; ** p < 0.01 after Bonferroni correction. Note: Values are
reported as the median with range. Abbreviations: G-CSF, granulocyte colony-stimulating factor; CY, cyclophosphamide; ETO, etoposide
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increase in white blood cell (WBC) count (from the nadir
to the time of PBSCC) was modest for etoposide + G-CSF,
compared with that for G-CSF only and cyclophospha-
mide + G-CSF (Fig. 1b). In etoposide + G-CSF, WBC
counts at the nadir (cyclophosphamide + G-CSF, 41 (9-
3258); etoposide + G-CSF, 262 (1-3160)) were higher, and
those at the time of PBSCC (cyclophosphamide + G-CSF,
10,350 (1000—-70,900); etoposide + G-CSF, 4380 (500-122,
150)) were lower than the WBC counts in cyclophospha-
mide + G-CSF (p = 0.056 and 0.005, respectively). Previous
studies have reported a positive correlation between the
degree of WBC count increase during mobilization and
the increase in CD34+ cell yield [21-23]. In the present
study, etoposide-induced chemo-mobilization led to the
highest CD34+ cell yield, despite the fact that the differ-
ences in WBC counts between the nadir and the time of
PBSCC were the lowest. Therefore, we suspected that the
mechanism underlying HSC mobilization by etoposide
might differ from that of G-CSF only and cyclophospha-
mide. However, our hypothesis must be confirmed be-
cause there was heterogeneity among patients in each
group and because of the presence of other confounding
factors.

Etoposide increases IL-8 secretion from BMSCs and
causes long-term MBSC toxicity
hBMSCs, which constitute the major cell component of
the BM niche [24], were isolated from BM (Fig. 2a-b)
and treated with various concentrations of cyclophos-
phamide (0-12.5mg/mL) or etoposide (0-2.0 mg/mL)
for 24h. Drug concentrations sufficient to cause the
death of 10, 25, and 50% of the viable hBMSCs were de-
fined as cytotoxic concentration (CC) 10, CC 25, and
CC 50, respectively (Fig. 2c). Data regarding the blood
concentrations of the two drugs from patients receiving
high-dose cyclophosphamide or etoposide treatment was
compiled from the literature. For high-dose cyclophos-
phamide treatment (1850-7000 mg/m?), the maximum
reported serum concentration (Cp,,) was 2.664 mg/mL
[25, 26]. For high-dose etoposide treatment (1480-1665
mg/mz), the reported C,,, was 0.1 mg/mL [27, 28].
Based on this information, the CC10 was selected as the
drug concentration for further experiments.

hBMSCs were cultured in a medium containing nor-
mal saline (control group, n=4), cyclophosphamide
(dose of CC10, n =5), or etoposide (dose of CC10, n =5)
for 24h; subsequently, human cytokine analysis was
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Fig. 2 (See legend on next page.)




Kang et al. BMC Cancer (2020) 20:619 Page 7 of 15

(See figure on previous page.)

Fig. 2 Primary culture of human bone marrow stromal cells and results of the cytotoxicity assays, cytokine arrays, and apoptosis and cell cycle
analyses. a Mononuclear cells were collected from a healthy donor during bone marrow harvest. After 1-2 weeks of primary culture, adherent cells
showed spindle-shaped morphology and reached 65-70% confluence. b Flow cytometry indicated that these cells were positive for the human bone
marrow stromal cell (hBMSC) markers CD73, CD90, and CD105 and negative for the hematopoietic stem cell markers CD34 and CD45. These results
indicate that hBMSCs were properly isolated. ¢ Cytotoxic concentration (CC) 10, CC 25, and CC 50, defined as the concentrations sufficient to cause the
death of 10, 25, and 50% of viable hBMSCs, were calculated for various concentrations of cyclophosphamide and etoposide. d hBMSCs were cultured
in normal saline (control group, n = 4), cyclophosphamide (dose of CC10, n =5), or etoposide (dose of CC10, n=5) for 24 h. Human cytokine analysis
was performed with the conditioned media. The level of IL-8, a mobilization-associated cytokine, was significantly higher in the etoposide-treated
group than that in the cyclophosphamide-treated group (p = 0.021 after Bonferroni correction). f Expansion of etoposide-treated hBMSCs was
significantly lower than that of cyclophosphamide-treated hBMSCs in both P1 and P2 (control, n=7; cyclophosphamide, n = 7; etoposide, n = 7; both,
p <0001 after Bonferroni correction). g No differences in the numbers of early apoptotic and necrotic cells or late apoptotic cells were observed
among the groups (control, n = 4; cyclophosphamide, n = 7; etoposide, n=7). As a negative control, hBMSCs treated only with normal saline were
used. The values within the figures represent the mean + standard error in repeated experiments. All experimental data of representative figures are
presented as Supplementary Material 6: Fig. S3. h Etoposide-treated hBMSCs showed a higher proportion of cells arrested in the GO/G1 phase of the
cell-cycle than the cyclophosphamide-treated and untreated hBMSCs (control, n = 3; cyclophosphamide, n = 3; etoposide, n=3; p=0.03 and p =001

after Bonferroni correction, respectively). Note: * p < 0.05 after Bonferroni correction. Note: Values are reported as the mean + standard error of the
mean (SEM). Abbreviations: P1, passage 1; P2, passage 2; CC, cytotoxic concentration

performed using the conditioned media. The level of IL-
8, a mobilization-associated cytokine [29, 30], was sig-
nificantly higher in the etoposide-treated group than in
the cyclophosphamide-treated group (p=0.021 after
Bonferroni correction) (Fig. 2d—e). Other mobilization-
associated cytokines showed no significant differences
among the groups.

The degree of expansion of etoposide-treated hBMSCs
was significantly lower than that of cyclophosphamide-
treated hBMSCs for all passages (p < 0.001 after Bonfer-
roni correction for both) (Fig. 2f). No significant differ-
ences in apoptosis were observed among the groups
(Fig. 2g). However, cell-cycle analysis revealed a signifi-
cantly higher proportion of etoposide-treated hBMSCs
arrested in the GO/G1 phase than cyclophosphamide-
treated and untreated hBMSCs (p=0.03 and p=0.01
after Bonferroni correction, respectively; Fig. 2h).

IL-8 enhances HSC expansion and is associated with
CXCR2, mTOR, and c-MYC activation

We observed significantly increased IL-8 secretion from
hBMSCs treated with etoposide, compared to that from
hBMSCs treated with cyclophosphamide. To investigate
the manner in which the hBMSC-released IL-8 affects
hHSCs in the BM niche, we cultured 2.5 x 10° hHSCs with
100 ng/mL IL-8 (1 = 12) or without IL-8 (n = 12) for 24 h in
a conditioned medium collected from 24-h cultures of
healthy hBMSCs grown in mesenchymal stem-cell growth
medium. Previous experiments had determined the distri-
bution of human cytokines in this conditioned medium
(Fig. 2d, control group) and had identified the relatively low
IL-8 expression in this medium (Fig. 2e, control group).
The numbers of total, CD34+, and CD34+/CD45- cells de-
termined using a hemocytometer and flow cytometric ana-
lysis of CD34+ cells cultured with IL-8 were significantly
higher than those of cells cultured without IL-8 (p = 0.014,
0.020, and 0.039, respectively) (Fig. 3a). To identify the

mechanism underlying the effect of IL-8 on hHSCs, the
expression of CXCR2 (an IL-8 receptor) and mTOR and c-
MYC (components of IL-8-related signaling pathways) was
measured by qRT-PCR. The relative expression of CXCR2,
mTOR, and c-MYC increased at 1h after IL-8 treatment
(Fig. 3b). The expression of CXCR2 returned to normal 6 h
after IL-8 treatment, and the expression of mTOR gradually
decreased at 6 and 24 h after IL-8 treatment. In the case of
¢-MYC, the increased expression lasted up to 24 h.

Etoposide-induced chemo-mobilization increases IL-8-
associated cytokine levels, especially in the BM
We developed mouse models for PB HSC mobilization
based on the actual mobilization protocol used in human
patients (G-CSF only, n =8; cyclophosphamide + G-CSF,
n=38; etoposide + G-CSF, n=38; Fig. 4a—b). Changes in
WBC counts at the nadir and at the time of collection (D7)
showed patterns similar to those observed in clinical set-
tings (Figs. 1b and 4c). On D7, HPCs were isolated from
the PB, and CFUs (CFU-granulocytes, erythrocytes, mono-
cytes, and megakaryocytes; CFU-granulocytes, macro-
phages; and burst forming unit-erythroids) were counted
(Fig. 4d). The cyclophosphamide-treated (total 200 mg/kg)
and etoposide-treated (total 80 mg/kg) groups showed a
higher number of CFUs than the G-CSF only group (p =
0.021 and 0.003 after Bonferroni correction, respectively).
No significant differences in the total number of CFUs were
observed between the cyclophosphamide-treated (total
200 mg/kg) and etoposide-treated (total 80 mg/kg)
groups (G-CSF only, n=5; cyclophosphamide + G-
CSE, n=5; etoposide + G-CSF, n=>5; Fig. 4e). Thus,
this condition might be appropriate to investigate the dif-
ferences in the mechanisms underlying etoposide-induced
and other compound-induced chemo-mobilization.
Plasma cytokine levels in whole blood collected from
mice on D7 were analyzed. The levels of KC, MIP-2, and
LIX, which are IL-8 homologs in mice [31-33], were
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measured (G-CSF only, n=9; cyclophosphamide + G- differences among the etoposide-treated and G-CSF-

CSF, n=9; etoposide + G-CSF, n=9). The level of KC
was significantly increased in the etoposide-treated
group, compared with that in the cyclophosphamide-
treated group (p=0.001 after Bonferroni correction).
The levels of the other IL-8 homologs, MIP-2 and LIX,
were also increased in the etoposide-treated group, com-
pared with those in the cyclophosphamide-treated
group; however, the differences were not significant.
None of the three homologs showed significant

only groups (Fig. 5a—b). To confirm that the changes in
the plasma levels of KC, MIP-2, and LIX reflected simi-
lar changes in the BM, we quantified the IHC images of
BM sections using the IHC profiler Plugin of Image] (G-
CSF only, n =7; cyclophosphamide + G-CSF, n =7; eto-
poside + G-CSF, n=7). The levels of KC, MIP-2, and
LIX were all significantly increased in the BM sections
from the etoposide-treated group, compared with those
from the G-CSF-only and cyclophosphamide-treated
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groups (p <0.001 and p < 0.001; p =0.004 and p < 0.001;
»<0.001 and p <0.001 after Bonferroni correction, re-
spectively; Fig. 5c—e).

Etoposide-induced chemo-mobilization is associated with
increased MMP9 and decreased SDF-1 levels in the BM

The cytokine network was comprehensively analyzed to
identify the potential mechanisms underlying etoposide-
induced HSC mobilization. Cytokines exhibiting a signifi-
cant (p <0.05) increase in response to etoposide-induced
chemo-mobilization, compared to that in response to
G-CSF-only- or cyclophosphamide-induced chemo-
mobilization, in mouse cytokine assays were analyzed
by Ingenuity Pathway Analysis (Qiagen, Redwood City,
CA, USA; Supplementary Material 4 and 5: Fig. S1 and
S2). Network analysis showed that cytokines exhibiting in-
creased levels in response to etoposide-induced chemo-
mobilization were associated with the activation of matrix
metalloproteinases (MMPs), which affect the CXCR4/
SDF-1 axis, and are known to be involved in HSC
mobilization [34, 35]. Therefore, the expression of MMPs
related to HSC mobilization, i.e, MMP2 and MMP9, was
assessed. In the PB, the expression of MMP2, MMP9, and
SDEF-1 did not differ significantly among groups (G-CSE-
only, # =4; cyclophosphamide chemo-mobilization, #n = 4;
etoposide chemo-mobilization, # =4). However, in the
BM, MMP9 expression was significantly increased and
SDF-1 expression was significantly decreased in the
etoposide-induced chemo-mobilization group, compared
to that in the other groups (G-CSF-only, n = 7; cyclophos-
phamide + G-CSF, n = 7; etoposide + G-CSF, n = 7; Fig. 6).

Discussion

Our retrospective analysis of clinical data showed that
etoposide-induced chemo-mobilization results in the
highest yield of CD34+ cells among all three groups ana-
lyzed, despite relatively modest changes in PB WBC
counts. To our knowledge, this is the first analysis of
clinical data pertaining to etoposide-induced chemo-
mobilization. This study suggests the possibility of a dif-
ferent mechanism for chemo-mobilization by etoposide.
Our in vitro experiments showed that etoposide signifi-
cantly increased the secretion of IL-8 by hBMSCs,
whereas cyclophosphamide did not. IL-8 is a part of the
senescence-associated secretory phenotype; therefore,
this finding might be associated with the specific influ-
ence of etoposide on hBMSC subcultures, which was not
observed upon treatment with cyclophosphamide. This
finding might provide a clue to explain the higher effi-
ciency of etoposide at inducing chemo-mobilization
compared to that of cyclophosphamide. Studies by Pelus
et al. and Fukuda et al. support this hypothesis by show-
ing that the CXCR2 ligand GRO- rapidly mobilizes
HSCs and enhances engraftment, although the
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underlying mechanism has not yet been elucidated [36].
Moreover, we had previously reported that CXCR2 (an
IL-8 receptor) stimulation is crucial for maintaining the
proliferation of human pluripotent stem cells (hPSCs)
[34, 35]. Therefore, we hypothesized that IL-8 activates
the proliferation of hHSCs in a manner similar to that of
hPSCs, resulting in more efficient mobilization. To con-
firm this hypothesis, we performed an in vitro experi-
ment to determine the effect of IL-8 on hHSCs in a
simulated BM environment using conditioned medium
from healthy hBMSCs; we observed an expansion of
CD34+ and CD34+/CD45- cells. We also observed the
concomitant significant enhancement in CXCR2, mTOR,
and ¢-MYC expression in CD34+ cells following IL-8
stimulation.

Our finding that IL-8 stimulated CXCR2 and mTOR
expression is consistent with the results of our studies
on hPSCs [37], and with the observation that mTOR ac-
tivates c-MYC [38]. With respect to the role of c-MYC
in hematopoiesis, Wilson et al. reported that c-MYC
controls the balance between stem cell self-renewal and
differentiation, presumably by regulating the interaction
between HSCs and their niche [39]. Laurenti et al. dem-
onstrated that the loss of c-MYC alone resulted in the
inability of HSCs to differentiate into progenitors; fur-
thermore, the majority of the early and late progenitors
stopped proliferating, resulting in HSC accumulation in
the BM niche [40]. A study by Ehninger et al. showed
that although HSCs express low levels of the ¢c-MYC
protein, its expression increases steadily during progeni-
tor differentiation [41]. In a recent study, it was reported
that IL-8 activates mTOR and increases endogenous c-
MYC production, thereby inducing PDL1 expression in
gastric cancer [42]. In the present study, IL-8 signifi-
cantly increased not only the number of CD34+ cells but
also that of CD34+/CD45- cells. The results of our pre-
vious studies that demonstrated the role of CXCR2 in
supporting hPSC proliferation [34, 35], suggest that the
activation of CXCR2 by IL-8 may have enhanced hHSC
proliferation; however, further studies are necessary to
confirm this hypothesis. Therefore, etoposide may in-
duce IL-8 secretion from hBMSCs, which stimulates
CXCR?2 in HSCs, thereby activating mTOR and ¢-MYC
and leading to HSCs proliferation and progenitor cell
differentiation. To our knowledge, this is the first HSC
mobilization study to report such a mechanism. Further-
more, this mechanism may also explain the excellent
yield at PBSCC during chemo-mobilization induced
using etoposide that was also associated with a modest
change in WBC count in the PB.

In clinical practice, it is difficult to observe changes in
the BM niche in patients undergoing PBSCC. Moreover,
cytokine measurements in the PB do not always accurately
reflect levels in the BM niche due to systemic confounding
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factors. To overcome these obstacles, we established stan-
dardized animal mobilization models that excluded such
confounding factors. We were able to simulate the cyclo-
phosphamide and etoposide mobilization patterns observed
in clinical practice in two distinct mouse models. Using
these models, we confirmed the significantly increased ex-
pression of IL-8 homologs and MMP9 and decreased ex-
pression of SDF-1 in the BM during etoposide-induced
chemo-mobilization, compared to that during G-CSF only-
and cyclophosphamide-induced chemo-mobilization. The
levels of IL-8 homologs in the PB during G-CSF-induced
mobilization were comparable to those during etoposide-
induced chemo-mobilization. Watanabe et al. had previ-
ously reported that G-CSF increased the WBC counts and
IL-8 levels during mobilization. Increased IL-8 levels were
correlated with higher numbers of CD34+ cells in the PB
[43]. G-CSF was associated with polymorphonuclear neu-
trophils, which leads to increased IL-8 levels, and poten-
tially, mobilization [44—46]. Moschella et al. had reported
that cyclophosphamide induced the transcriptional modula-
tion of PB MNCs and IFN-1-related sterile inflammatory
responses. In that study, the levels of IL-8, an IFN-1-
induced proinflammatory mediator in the PB [47], also in-
creased significantly. Thus, inflammatory response could be
the reason underlying the increase in IL-8 levels in the PB
after etoposide treatment; however, few studies have ad-
dressed this issue [48, 49]. Previous studies have reported
that IL-8 is produced by phagocytes and mesenchymal cells
exposed to inflammatory stimuli [50], and that etoposide
affects the BMSCs [16, 51]. Therefore, increased IL-8 levels
in the PB may be due to inflammatory responses as well as
hBMSCs. Additionally, IL-8 may enhance MMP9 produc-
tion [52], leading to SDF-1 degradation and subsequent
mobilization [34, 53, 54]. The results of our animal study
revealed that etoposide increases the expression of IL-8 ho-
mologs (KC, MIP-2, and LIX) and MMP9 and decreases
SDE-1 expression in the BM, although the levels of these
molecules in the PB were similar in all the groups. These
findings suggested that the origin of IL-8 in the PB during
etoposide-induced chemo-mobilization was predominantly
the BM niche rather than systemic inflammation.
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Synthetically, etoposide stimulated hBMSCs to secrete IL-8,
which activated CXCR2, mTOR, and ¢-MYC in the HSCs,
resulting in their proliferation. Moreover, MMP9 levels in-
creased and SDF-1 decreased in the BM niche, resulting in
HSC mobilization.

The results of this study demonstrate that etoposide
causes long-term hBMSC toxicity associated with cell-
cycle arrest at the GO/G1 phase. Hare et al. had reported
that exposure of hBMSCs to sub-lethal doses of etopo-
side resulted in an increased proportion of cells arrested
at the GO/G1 phase [55]. Moreover, BMSCs could not
activate non-homologous end-joining repair following
etoposide-induced stress after successive passages [55].
Clinical data also suggest that the toxicity of etoposide
in the BM niche is higher and lasts longer than that of
cyclophosphamide [9, 10]. However, currently no defini-
tive data are available regarding the adverse effects of
etoposide on engraftment or survival. Studies on this
topic need to be conducted in future.

Our present study has several limitations, the first of
which is the absence of plerixafor + G-CSF, which can
induce adequate of the HSCs mobilization with less tox-
icity. There are two reasons for proceeding without in-
cluding plerixafor + G-CSF, ie., (1) plerixafor is often
difficult to use clinically in some countries at it is expen-
sive, and (2) the mechanism of action of plerixafor is
relatively well-known. For these reasons, we focused on
comparing three chemo-mobilization methods (G-CSF
only, cyclophosphamide + G-CSF, or etoposide + G-
CSF) that have been used in clinical practice but whose
mechanisms of action are unclear. Second, this study fo-
cused predominantly on cytokine or enzyme changes in
the BM niche rather than systemic inflammation be-
cause previous studies have generally assessed the role
of systemic inflammation in mobilization; moreover, we
suspected that the effect of etoposide on the BM niche
might be the main mechanism underlying HSC
mobilization. To this end, we used healthy hBMSC-
conditioned medium that reflects the environment of
the normal BM niche, for culturing the CD34+ hHSCs.
A study design investigating both the aspects of
mobilization would be very complex. Nevertheless, to
our knowledge, this is the first study on the mechanism
of etoposide-induced chemo-mobilization that focuses
on the BM niche. Additionally, this study describes the
establishment of the first mouse model of etoposide-
induced chemo-mobilization that reflects the conditions
encountered in clinical practice.

Conclusion

In conclusion, etoposide-induced chemo-mobilization is
highly effective for harvesting HSCs from the PB. The
mechanism of action of etoposide is associated with in-
creased IL-8 secretion by hBMSCs, which induces the
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expansion of HSCs in a manner dependent on CXCR2,
mTOR, and c-MYC activation as well as increase and
decrease of MMP9 and SDEF-1 levels, respectively in the
BM niche. Finally, our results suggest that etoposide
exposure should be minimized before and after PBSCT
because of its long-term toxicity to hBMSCs. These find-
ings emphasize the need for further studies to develop
more efficient and safe chemo-mobilization strategies.
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