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Abstract

Background: Bone metastasis is the most frequent complication in prostate cancer patients and associated outcome
remains fatal. Radium223 (Rad223), a bone targeting radioisotope improves overall survival in patients (3.6 months vs.
placebo). However, clinical response is often followed by relapse and disease progression, and associated mechanisms
of efficacy and resistance are poorly understood.
Research efforts to overcome this gap require a substantial investment of time and resources. Computational models,
integrated with experimental data, can overcome this limitation and drive research in a more effective fashion.

Methods: Accordingly, we developed a predictive agent-based model of prostate cancer bone metastasis progression
and response to Rad223 as an agile platform to maximize its efficacy. The driving coefficients were calibrated on ad
hoc experimental observations retrieved from intravital microscopy and the outcome further validated, in vivo.

Results: In this work we offered a detailed description of our data-integrated computational infrastructure, tested its
accuracy and robustness, quantified the uncertainty of its driving coefficients, and showed the role of tumor size and
distance from bone on Rad223 efficacy. In silico tumor growth, which is strongly driven by its mitotic character as
identified by sensitivity analysis, matched in vivo trend with 98.3% confidence. Tumor size determined efficacy of
Rad223, with larger lesions insensitive to therapy, while medium- and micro-sized tumors displayed up to 5.02 and
152.28-fold size decrease compared to control-treated tumors, respectively. Eradication events occurred in 65 ± 2% of
cases in micro-tumors only. In addition, Rad223 lost any therapeutic effect, also on micro-tumors, for distances bigger
than 400 μm from the bone interface.

Conclusions: This model has the potential to be further developed to test additional bone targeting agents such as
other radiopharmaceuticals or bisphosphonates.

Keywords: In silico model, Radium 223, Prostate cancer bone metastasis, Tumor growth, Therapy response, Therapy
optimization
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Background
Prostate Cancer (PCa) is among the most common can-
cers in American men, second only to skin cancer, and
represents 9.9% of all new cases and 7.1% of the total
male cancer deaths [1]. Despite a 5-year survival rate
close to 100% for localized tumors [2], disease often pro-
gresses towards a metastatic stage, with survival at 5
years dropping to ~ 30%. PCa has high propensity to
generate bone metastases (84% of patients) [3], which
are associated with shortened survival, deteriorated qual-
ity of life [4], and resistance to conventional and
molecular-targeted therapies [5].
Radium223 (Rad223), a rare earth metal radioisotope,

recently emerged as a promising bone-targeting radi-
ation therapy [6] that prolongs overall survival of pa-
tients with metastatic prostate cancer by 3.6 months
compared to placebo-treated group [7–9]. Rad223 be-
comes enriched in bone after administration and the low
tissue penetrance of alpha-particles (< 100 μm) generates
negligible toxicity both systematically and to the bone
marrow compared with beta particles-emitting isotopes
[8, 10]. However, a promising initial response is often
followed by tumor relapse and subsequent progression.
Whether Rad223 effects are indirect, based on microen-
vironmental reprogramming and tumor growth delay, or
direct, through cytotoxicity and elimination of tumor
cells, remains mostly unsolved [8, 11–13] because of a
poor understanding of Rad223 function and underlying
mechanisms of action.
This matter is being investigated in vivo. Mouse

models of cancer, however, are limited in addressing the
multi-parameter complexity of therapy response in a
time-cost effective manner (e.g. dose scheduling, number
of combinations and observation time). Mathematical
models, supported by computational simulations, are
powerful tools that can potentially bridge this gap being
able to explore an unlimited number of experimental
combinations also avoiding time and resource consump-
tion. In silico systems, integrated with biological data,
proved effective to gain a deeper knowledge on several
diseases’ mechanisms, serve as interrogation tools for cli-
nicians and biologists to test specific hypotheses, and
predict the efficacy of putative therapeutic agents and
interventional techniques across heterogeneous fields of
research [14]. Accordingly, they are suitable to optimally
direct preclinical and clinical applications.
Recent in silico models of PCa bone metastasis [15–

17] display an accurate cell phenotype and signaling and
replicate both pathophysiological events and therapy re-
sponse on a portion of bone of arbitrary dimensions, ap-
proximated as a passive uniform continuum. Although
providing an elegant platform to test the therapeutic re-
sponse to bisphosphonates and TGF-β inhibition [15,
17], they are not optimal to test agents whose action

depends on spatial topology (a key aspect of Rad223-
based therapies).
In a previous work, we hypothesized that low tissue

penetrance affects the efficacy of Rad223 on tumor cells
in bone, with maximum effects towards micro-lesions,
and developed a predictive in silico model of pre-
established PCa osteolytic bone metastasis to test this
hypothesis [13]. Since Rad223 effect is distance-
dependent [8], we opted for an Agent-Based Model
(ABM), driven by cellular automata (CA), where the
agents’ (metastatic cells) dynamic and the effect of
Rad223 were calibrated from in vivo-derived data ob-
tained from in house murine experiments.
In the proposed work, we provided a detailed descrip-

tion of the modeling techniques implemented, studied
the model’s accuracy and robustness, and quantified the
uncertainty of its driving coefficients. We re-calibrated
our model on a new set of data to prove its flexibility
and verified our previous findings [13] on a different
dataset. Finally, we showed that tumor location respect
to bone interface (the site where Rad223 accumulates)
also affects therapeutic efficacy.

Methods
In vivo experimental setup
All the animal studies were approved by the Institutional
Animal Care and Use Committee of The University of
Texas, MD Anderson Cancer Center, which is accredited
by the Association for Assessment and Accreditation of
Laboratory Animal Care, and performed according to
the institutional guidelines for animal care and handling.
8-weeks old athymic nude male mice (20 g) were pur-
chased from the Department of Experimental Radiation
Oncology, M.D. Anderson Cancer Center. Mice were
housed with a maximum of 5 animals per cage in a
state-of-the-art, air-conditioned, with a 12-h light/12-h
dark cycle and food ad libitum, specific-pathogen–free
animal facility and all procedures were performed in ac-
cordance with the NIH Policy on Humane Care and Use
of Laboratory Animals. Surgical procedures were per-
formed with mice under general anesthesia (isoflurane),
and analgesia was provided at the end of each procedure
(buprenorphine, 0.05 mg/kg, one dose immediately be-
fore the start of the surgery, a subsequent dose postoper-
atively within 24 h). Tumor-bearing and control animals
were observed daily and examined by a veterinarian 5
days/week for signs of morbidity (e.g. matted fur, weight
loss, limited ambulation, and respiratory difficulty). In
case of discomfort, the animals were euthanized by iso-
flurane inhalation followed by cervical dislocation, con-
sistent with the recommendations of the Panel on
Euthanasia of the American Veterinary Medical Associ-
ation. At the end of the study, mice were euthanized as
described above.
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Tumor growth monitoring in the mouse tibia
PC3 human prostate cancer cells (from ATCC, CRL-
1435) expressing luciferase were injected in the
mouse tibia, as previously described [13]. Mice were
anesthetized with isoflurane, a small cut was per-
formed on the internal side of the thigh to expose
the tibia, tumor cells (0.25 × 106 for validation of in
silico tumor growth, n = 8; 0.1, 0.25, 1, 1.5 × 106 for
studying the role of tumor dimension on Rad223 re-
sponse, n = 50, as previously described [13]) injected,
the wound clipped, and mice provided with analgesia
(buprenorphine). Mice were analyzed by macroscopic
bioluminescence using an IVIS 200 imaging system
(Perkin Elmer, Waltham, MA). They were anesthe-
tized using isoflurane, injected retro-orbitally with
3.75 mg/ml D-Luciferin (Goldbio, St. Louis, MO), and
the photon flux emitted by tumor-bearing tibiae was
recorded.

Intravital imaging studies
These experiments have been performed and de-
scribed in [13]. Briefly, a tissue-engineered bone con-
struct (TEBC) was generated underneath the skin of
the back of immunodeficient mice by implanting a

polycaprolactone scaffold embedded with bone mor-
phogenetic protein 7. After its maturation, the TEBC
was injected with PC3 dual color cells, which express
a green fluorochrome in the nucleus (H2B/eGFP) and
a red fluorochrome in the cytoplasm (DsRed2). Then,
tumor-bearing mice (n = 4) were treated with Rad223
or diluent (0.9% NaCl) and the therapeutic response
monitored by intravital multiphoton microscopy
through a window system implanted on the back of
the mouse (Fig. 1a). The bone was identified by sec-
ond harmonic generation signal, while cancer cells by
green and red fluorescence. PC3 cells induce osteoly-
sis, an imbalanced bone remodeling process skewed
towards an increased bone digestion mediated by os-
teoclasts, which can induce massive bone resorption
with formation of osteolytic lesions in calcified tissue
[18, 19]. To test which zone of the tumor preferen-
tially responded to Rad223, three-dimensional (3D)
reconstructions of the osteolytic lesion were seg-
mented within 100, 200, 300, or greater than 300 μm
equidistance from the bone interface, and the number
of mitotic and apoptotic nuclei quantified in each
zone at day 4, 7, and 11 post-treatment (Fig. 1b).
Four days after Rad223 administration, the zone

Fig. 1 In vivo monitoring of Rad223 response by PCa cell in bone. (a) Schematic representation of intravital microscopy workflow: a tissue-
engineered bone construct (TEBC) is generated under the skin of the back of a mouse. Upon bone maturation, fluorescent cancer cells are
injected in the TEBC, mice treated with Rad223 and monitored by intravital multiphoton microscopy through a window system. (b)
Exemplificative picture of a tumor lesion in bone, its segmentation every 100 μm and representation of the nuclear status (apopt, apotosis; mit,
mitosis; IP, interphase). (c) Number of mitotic and apoptotic cells (represented as percent of the total number of cells) at different distances from
bone in Rad223-treated and control mice. (d) Ratio between mitotic and apoptotic cells at different distances from bone at day 4, 7, and 11 post-
Rad-223 treatment. P value by one-way ANOVA followed by Tukey’s HSD post-hoc test. Figure reproduced, with permission, from (Dondossola
et al., 2019)© Oxford Academic (2019)
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closest to bone (up to 100 μm) displayed an almost
quadrupled increase in apoptosis and negligible mi-
totic frequency compared with farther zones. The
amount of apoptotic and mitotic cells in the more
distant core reached levels comparable to control-
treated tumors, which did not exhibit any zonal
distribution. The ratio of mitosis to apoptosis within
0–100 μm near the bone decreased over time to the
level of control mice 11 days post-treatment (Fig. 1c,
d). These data were implemented with a bottom-up
approach to simulate the zonal therapy effects rela-
tive to the tumor-bone interface in the ABM de-
scribed below.

In silico modeling
The model and its sub-routines were implemented in
Matlab® (v. 2018a, MathWorks, Natick, MA, USA). A
stochastic character was chosen to replicate the level
of noise of in vivo experiments. Accordingly, an ABM
driven by CA simulated the growth of a tumor lesion
in bone constituted of single cells endowed with indi-
vidual probabilities of mitosis, apoptosis, or nondivid-
ing state, which together determine tumor regression,
persistence or progression in response to Rad223.

We simulated a pre-established metastatic lesion of
given dimensions and longitudinally tracked tumor
size (expressed as number of cells) in Control (un-
treated) or Rad223 (treated) conditions. The flow-
chart in Fig. 2 outlines step-by-step the skeleton of
the generic simulation (independently on the simula-
tion regimen), which will be described in detail
below.
At the beginning of the routine, the model is ini-

tialized to replicate the geometry of a metastatic PCa
lesion to bone. A first decisional step arrests the
simulation if the desired follow-up time has been
reached. The algorithm then scans each agent, de-
fines which cell undergoes mitosis, apoptosis, or re-
mains in a quiescent state, and finally executes the
outlined cellular events. The probabilities that define
the cellular states are specific for the condition sim-
ulated (e.g., Control vs. Rad223). To avoid any com-
putational bias leading to the development of a
preferred growing direction, a redistribution sub-
routine is implemented at the edge of the lesion.
The simulation stops if the tumor has been eradi-
cated, otherwise it re-performs the described cycle
up to reaching the desired follow-up time, being T =
15 days.

Fig. 2 Integrated model flowchart: the yellow circles represent the start and the end of the algorithm, the green portion refers to the integrating
in vivo data (Control and Rad), and the blue portion refers to the computational framework, where rectangles correspond to subroutines and
rhombi to decisional steps
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Initialization
The model is implemented on a regular hexagonal grid,
which fundamental unit is reported in Fig. S1 (Online Re-
source 1) [20]. Each agent occupies one site and is sur-
rounded by six neighbors. Regular hexagon is the closest
shape to a circle among uniform tessellation opportun-
ities and deriving grids are characterized by the lowest
perimeter/area ratio of any other else, which minimizes
edge effect. In addition, all neighbors are identical op-
posed to square tessellation that sees two classes of
neighbors: the ones in cardinal direction (shared edges),
and in diagonal direction (shared vertexes), which conse-
quently do not have the same distance from the site
centroids.
At the beginning of the simulation, the model is

initialized to replicate the geometry of an osteolytic
bone metastatic lesion that induces bone resorption,
represented as a hole in the bone. The overall lesion
(Fig. 3a) includes: (i) the tumor, as an ensemble of
metastatic PCa cells (orange circles with a green dot,
from now on simply referred as cells); (ii) a cell-free
tumor-bone margin (in grey) that surrounds the hole;
and (iii) a portion of bone (in cyan) as a uniform
continuum that is interrupted to form an elliptic hole
in correspondence with the tumor. The computational
replica approximates the lesion as a 3-domain space
(Fig. 3b), where each site of the grid is entirely occu-
pied by its corresponding agent (1 pixel = 1 agent).
The tumor is reported in yellow, the margin in green,
and the bone in blue. We defined a constant scaling
factor (δ) to translate the pixels-based dimension of

the ABM into a conventional unit of measure for
length (μm). From in house data [13], we observed
that a space of 500 μm is occupied by 24 aligned
tumor cells, which led to:

δ ¼ 500μm
24

¼ 20:83 μm: ð1Þ

Our observation is in line with other published works,
which shown an average radius for a single tumor cell of
~ 10 μm [16].

(i) Tumor lesion: The tumor is initialized as an
elliptical shape, where atumor and btumor, both
expressed in number of pixels/agents are
respectively the horizontal and vertical axis, so
that the notation [atumor x btumor] uniquely
identifies a specific tumor. We tested Rad223
effect on tumors with increasing initial size,
specifically [2 × 1], [8 × 7] (micro-tumors), [64 ×
53], [128 × 106] (medium-sized tumors), [256 ×
213], and [500 × 416] (macro-tumors).

(ii) Cell-free tumor-bone margin: The cell-free
tumor-bone margin (simply referred as margin)
has initial thickness of 1 pixel and represents the
portion of bone virtually occupied by the osteo-
clasts, the bone resorbing cells. The margin ex-
pands with the growth of the tumor lesion,
which translates into the digestion of all sur-
rounding bone sites. The margin dynamic is out-
lined in Fig. S2 (Online Resource 2), where the

Fig. 3 PCa bone metastasis: (a) idealized geometry with tumor cells represented by orange circles with green dots, cell-free tumor-bone margin
in grey and bone as a uniform continuum in cyan. atumor and btumor are respectively the horizontal and vertical tumor’s axes. (b) computational
model initialization with tumor in yellow, margin in green and bone in dark blue. Nx and Ny are the dimensions of the horizontal and vertical
grid’s axes
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initial condition (Fig. S2a) represents a generic
portion of bone, which is homed by a tumor
cell (Fig. S2b) that induced digestion of the clos-
est bone site (Fig. S2c). With the evolution of
the tumor, the first step of which is represented
in Fig. S2d where the cell has divided, the mar-
gin evolves accordingly (Fig. S2e), and the
tumor is always separated from the bone by at
least one site belonging to the margin. Finally,
in case of cell apoptosis, the site left vacant can-
not be re-occupied by bone and remains part of
the margin (Fig. S2f). As a note, Fig. S2 only
represents a generic example for a better
reader’s understanding and does not correspond
to any specific situation recorded in vivo or in
silico.

(iii)Bone: The bone is represented as a unique
compartment, in which its cellular components
are not made explicit, and occupies the sites of
the grids that surround the osteolytic hole
where the tumor lesion is accommodated
(excluding the cell-free tumor-bone margin). Nx

and Ny define respectively the horizontal and
vertical dimension of the grid the ABM lays on,
which are equal for simplicity (Nx =Ny =N). The
value of N, detailed case-by-case in Table 1, is pro-
portional to the initial size of tumor. The grid needs
to be large enough to allow the tumor to grow and
the osteolytic lesion in the bone to expand without
the mass touching the edge of the grid, causing the
simulation arrest. However, choosing by default a
very large grid is not an optimal choice since some
sub-routines require to scan every site of the grid,
dramatically increasing the computational burden if
the latter is very large. Thus, we defined specific grids
for each tumor size simulated.

The model is driven by cellular mitosis and apop-
tosis, as detailed below, which potentially occur with
a cadence determined by the regular cellular cycle
timespan, assumed to be Tcell = 24 hours. This implies

that a mitotic or an apoptotic event can occur every
24 h, while, during the intermediate time, the cell re-
mains in interphase state. Accordingly, an internal
clock is defined so that a random number t̂i∈½1;Tcell�
is initially associated to the i-th cell. The clock is up-
dated at every time step of the simulation (dt = 1 hour)
and is reset to zero when t̂i ¼ 24 to allow the cell to
re-start its cycle. The initialization of the clock is ran-
domized to ensure the stochastic nature of the
simulation.

Cellular dynamics
As shown in Fig. 2, the Cellular Dynamics module is
composed by event assessment (where, with a Monte
Carlo simulation, the algorithm defines the status of
each tumor cell, e.g. mitotic, apoptotic or quiescent),
and event execution (where the algorithm modifies
the grid occupancy according to the cellular events
scheme outlined by the event assessment module).

Event assessment
Seen the stochastic nature of the model, the mitotic
and apoptotic character of each agents was described
as a probability density, which driving coefficients
were heuristically calibrated from experimental data
[13]. For the Control, the probability of mitosis and
apoptosis were defined as uniform across the whole
lesion, making it every agent to be invested by the
same probability density, defined as follows:

pmit ¼ α1 ¼ 0:4; ð2Þ

and

papop ¼ α2 ¼ 0:1 ð3Þ

On the contrary, for Rad223, the bone is turned into a
reservoir of this drug. The probability density of each
agent depends now both on (i) the distance between site
and bone (where Rad223 resides) and (ii) the time, since
Rad223 effect decays with a half-life time of 11 days [7].
This modifies Eq. (2) and Eq. (3) in:

Table 1 Grid dimensions associated with the initial tumor sizes investigated.

[atumor x btumor] N

Small Tumors [2x1] 120

[8x7] 180

Medium-sized Tumors [64x53] 300

[128x106]

Large Tumors [256x213] 500

[500x416] 800
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pmit ¼
α1

1þ α1
φmit dminð Þ−1

� �
�ζ tð Þ

ð4Þ

papop ¼
α2

1− 1−
α2

φapop dminð Þ

" #
�ζ tð Þ

ð5Þ

where dmin is the minimum distance from the gen-
eric tumor agent and the bone, t is the time,
φmit(dmin) and φmit(dmin) account for the distance-
dependent effect of Rad223 respectively on mitosis
and apoptosis, and ζ(t) modulates the time-
dependent effect of Rad223, which does not vary
between mitosis and apoptosis. From the analysis of
the experimental data, a logistic function was the
most suitable to replicate the distance-dependent
effect of Rad223 on both mitosis and apoptosis. The
general form writes:

φ
0
dð Þ ¼ rφ dð Þ 1−

φ dð Þ
K

� �
; ð6Þ

where K individuates the asymptote, r the growth rate,
and the initial condition corresponds to the initial value
φ(0) = φ(d = 0). We quantitatively calibrated φ(d) by fit-
ting Eq. (6) onto the experimental data derived for mi-
tosis and apoptosis. To do that, we used a genetic
algorithm (pre-built function ga from Matlab®
Optimization Toolbox) that minimizes the distance be-
tween the function φ(d) parameterized in K and r and
the data. Said distance is defined as the Root Mean
Square Deviation (RMSD) between the function and the
data and writes

RMSD ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

φ ið Þ−φ̂ ið Þð Þ2
r

ð7Þ

where N is the number of data points collected, φ̂ðiÞ the
i-th experimental sample, and φ(i) the i-th value interpo-
lated from Eq. (6). The results of the fittings are reported
in Fig. 4a where experimental data are represented with
a dashed line and fitted data with a solid one; mitosis-
related data are reported in black, while apoptosis-
related data are in red. Figure 4a shows how a logistic
trend is suitable to fit both the trends accounting for a
percentile error < 2% for both cases.
Finally, the decay of Rad223 activity over time was

modeled with an exponential function, writing:

ζ tð Þ ¼ R0e
−t
τ ð8Þ

with R0 being the initial value, which is also the max-
imum activity level of Rad223, imposed to be R0 = 1. The
activity decay acts indeed as a modulating mask for
Rad223 ranging from 1 to 0 (from 100 to 0% in percent-
ile). In addition, τ = − 0.06 is the decay constant, which
value was quantitatively retrieved by fitting Eq. (8) on
the correspondent experimental data with same mo-
dalities used to fit Eq. (6), i.e. minimization of the
RMS via genetic algorithm. The results of the fitting
are shown in Fig. 4b which offers a proof of how the
time-dependent trend of Rad223 is replicated with
negligible error.
Once outlined the densities of probability for both

the events in both regimens, driven by a Monte Carlo
simulation, the algorithm defines the status of each
tumor agent by comparing its event probability with a
number randomly generated by the CPU, labeled as
test. If the agent is in its potential active state (every
24 h), determined by the internal clock status, and the
event probability is higher than test, than the event
occurs. If one condition fails, then the event does not
occur, and the agent will be re-evaluated within the
next cycle. In summary, the Monte Carlo simulation

Fig. 4 Rad223 coefficients’ calibration: (a) distance-dependent effect of Rad223 on mitosis (black dashed – in vivo; black solid – in silico) and
apoptosis (red dashed – in vivo; red solid – in silico). (b) time-dependent effect’s decay of Rad223 (black solid – in vivo; red solid – in silico)
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draws a mask that defines which cells are about to
divide, which ones are about to die, and which ones
remain in a quiescent state.

Event execution
Mitosis and apoptosis are executed differently whether
the active cell is located at the edge of the tumor or
within its body. We individuated four distinct cases
which will be described separately:

� Mitosis at the edge
� Mitosis within the body
� Apoptosis at the edge
� Apoptosis within the body

Mitosis at the edge

The steps performed by the algorithm are outlined
in Fig. 5. The initial condition (Fig. 5a) sees for sim-
plicity only a portion of the geometry shown in Fig.
3, with tumor cells represented in yellow with a
black circle in the middle, the margin in light green
and the bone in light blue. Once a cell enters in its
mitotic state, represented as a green site in Fig. 5b,
it replicates and can deploy the daughter cell in any
of the non-tumor adjacent sites, with no preferential
target, which is so chosen randomly by the

algorithm. In Fig. 5b, the black arrows point to the
sites that can potentially receive the daughter with
the actual site of reception pointed by a solid arrow,
while the other is pointed with a dashed one. Once
the reception site has been chosen, it receives the
daughter (Fig. 5c), and finally the newly placed cell
induces digestion of the remaining bone area around
it, re-establishing the 1-pixel minimum thickness of
the margin (Fig. 5d).

Mitosis within the body
The initial condition (Fig. 6a) is alike to the one
shown in Fig. 5a, as well as Fig. 6b being alike to Fig.
5b, where the cell in its mitotic state is still identified
with a green site. However, while in Fig. 5 the receiv-
ing site was at hand, in the current case the structure
needs to be re-arranged for the mother cell to have
room to place the daughter in one of the six adjacent
sites. Figure 6c shows how the algorithm defines a
Minimum Distance Path (MDP) between the mother
cell and the site belonging to the bone that has the
minimum distance from it. The concept underneath
this procedure is aligned with the tendency of any
biological system to work in the conditions that re-
quire the minimum level of energy expenditure
among at least two available choices. Following the
MDP shown in Fig. 6c, all the sites shift of one entity

Fig. 5 Mitosis at the edge: starting from an arbitrary condition (a), one tumor cell switches to active mitotic status (b), generates a new tumor
cell (c), which digests the bone sites around it (d), re-establishing the margin
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Fig. 6 Mitosis within the tumor’s body: starting from an arbitrary condition (a), a tumor cell switches to active mitotic status (b). The algorithm defines the
closest bone site to the active cell by drawing a Minimum Distance Path (MDP) (c). Cells on the path are shifted of one position to make room for the
newborn cell, which is placed next to the generating one (d). Finally, the newborn cell re-establishes the margin by digesting the surrounding sites (e)

Fig. 7 Apoptosis at the edge: starting from an arbitrary condition (a), a tumor cell enters its active apoptotic state (b) and vacates the site that
becomes part of the margin (c)

Casarin and Dondossola BMC Cancer          (2020) 20:605 Page 9 of 19



along said path making room for the daughter cell
and expanding the structure towards the outside,
where there is now an additional tumor cell (Fig. 6d).
Finally, similarly to Fig. 5d, the cell now at the edge
induces digestion of the interfacing bone sites and the
margin is re-established.

Apoptosis at the edge
Being conceptually the easiest case, Fig. 7a shows the
initial condition (still alike to the one seen for both
mitosis case). As soon as the algorithm has targeted a
cell in its apoptotic state, shown as a red site in Fig.
7b, the apoptosis is executed through the cell vacating
the site, which becomes now part of the margin (Fig.
7c) and no additional steps are required. As antici-
pated (Fig. S2f), in case of apoptosis, the now vacant
site becomes part of the digested portion and the
bone is not allowed to re-grow within it. It is ex-
pected that, in presence of tumor regression, the mar-
gin grows inward in thickness.

Apoptosis within the body
As seen for the mitosis, Fig. 8a and b represent the
same conditions of Fig. 7a and b respectively, where
the apoptotic cell is still individuated by a red site.
Since the apoptotic cell needs to vacate the occupied
site, the structure needs to shrink of one position in

order not to leave any hole inside the body of the
tumor mass. In this sense, the algorithm operates
similarly to what done for the mitosis and individu-
ates a MDP between the apoptotic cell and the clos-
est non-tumor site, which belongs to the margin (Fig.
8c). Consequently, the structure shifts of one position
inward along the MDP with result shown in Fig. 8d,
where the tumor has retracted of one site and a por-
tion of margin has encroached the tumor mass of one
position.

Redistribution
To maintain an ellipse-like shape of the tumor for its
whole dynamic and consequently avoid the occur-
rence of any preferential growth direction, we devel-
oped an edge smoothing sub-routine by redistributing
the tumor cells interfacing with the margin with the
rationale shown in Fig. 9.
The origin of a shape disruption was identified by a

tumor cell surrounded by more than three non-tumor
sites (which can be referred as empty, for simplicity
Fig. 9a. A situation alike is highlighted in Fig. 9b,
where the bold purple boxed site has a total of four
empty neighbors and is individuated as the swapping
cell. Once a cell with such characteristic is identified
(labeled as cell j in Fig. S3 (Online Resource 3) for
the sake of the example), the algorithm individuates a

Fig. 8 Apoptosis within the tumor’s body: starting from an arbitrary condition (a), a tumor cell enter its apoptotic state (b). The algorithm selects
the closest bone site to the active cell by defining a Minimum Distance Path (MDP) (c). The apoptotic cell vacates the site and the cells on the
path are shifted of one position inward (d)
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site to be swapped with j to preserve the elliptical
shape and guarantee the mass conservation at the
same time. Fig. S3, which represents the detail around
the swapping cell of Fig. 9b, assists in the under-
standing of the individuation of the target cell for the
swapping, which is done through three sequential
steps:

1. The algorithm explores each neighbor of j, labeled
as ni with i = 1, …, 6, and keeps track of which
neighbors are occupied by tumor and which are
not.

2. For each ni, it counts the number of its empty
neighbors.

3. The target cell for the swapping is individuated
among the empty neighbors, specifically the one
that has the least number of empty neighbors itself.
In the table of Fig. S3, n4 and n5 (shaded in grey)
are ruled out not being empty, while n6 (shaded in
red) results being the target cell for the swapping.
In case of equal number of empty neighbors
between two distinct ni, the target cell will be the
one with the lowest distance from the center of the
tumor.

Finally, the target cell (boxed in bold red in Fig. 9b)
is swapped and the margin is adjusted to keep its

thickness equal to 1 pixel in absence of any apoptotic
event (Fig. 9c).

Analysis of the model
ABMs are intrinsically affected by a certain amount of
subjectivity and degrees of freedom [21], which conse-
quently requires an exploration of the model’s behavior.
Given the low complexity of the current model, we ad-
dressed it by studying the variance of its outputs (i.e. its
stability) and how it impacts the model’s design (e.g.
number of simulations) and the state of sensitivity to a
variation of its driving coefficients.

Variance of the outputs
The output of the presented ABM was evaluated as
the mean of a certain number (M) of independent
simulations (each of them labeled as Si with i = 1, …,
M) and each of them virtually corresponding to a sin-
gle experimental specimen. The choice of M inevit-
ably impacts the time needed to run a complete
analysis. Table 2 summarizes the average CPU time
(minute-approximated) to run a single simulation for
each tumor (64-bit single Processor Intel(R) Xeon(R),
2.30GHz, RAM 80.0GB), also differentiated between
Control and Rad223 regime, which makes clear how
M should be chosen by compromising between accur-
acy and computational feasibility. The optimal choice
of M, according to Lee et al. [21] should be driven by

Fig. 9 Edge smoothing subroutine: starting from an arbitrary condition (a), a cell with > 3 non-tumor neighbors is labelled as swapping
cell and following the dynamics of Fig. S3 a target cell is identified (b). Finally, the two cells are swapped, and the margin
re-established (c)
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the pursue of the minimum number of samples that
guarantees the stabilization of the coefficient of vari-
ation (CV) vs. M over a lower asymptote tending to
zero, where CV is defined as

CV ¼ 1
M

XM
i¼1

σSi
μ

: ð9Þ

σSi is the standard deviation evaluated for each inde-
pendent simulation (Si), and μ is the mean trend of the
M simulations. We investigated the percentile value of
CV for each M ∈ [10; 100] with a step dM = 10. We also
hypothesized that the initial tumor dimension influ-
ences the choice of M and to validate such hypoth-
esis, we conducted the analysis for small and
medium-sized lesions. We excluded large tumors
from the analysis as we expected a saturation around
a stable M after a certain dimension. In addition, the
required time to run the analysis for large tumors
would have been unsustainable without arrangements
that fall outside the scope of the current work. Large
tumors will be included in the analysis for verification
purposes upon optimization of the CPU time required
for a single simulation.
Figure 10, showing the CV vs. M plot for each le-

sion ([2 × 1] red; [8 × 7] yellow; [64 × 53] green;
[128 × 106] blue), reports how a reasonable
stabilization of CV is reached with M = 70 for [2 × 1],
M = 50 for [8 × 7] and macro-tumors. First, the re-
sults confirmed our hypothesis on the stabilization
of M beyond a certain initial dimension ([8 × 7]). It
is right to assume that M does not change from
medium-sized to large lesions, setting for the latter
M = 50. Second, the larger the initial tumor size, the
less simulations are required, prospecting a noisier
system while dealing with micro-tumors. Third, des-
pite the minimalistic nature of the model (driven by
only two coefficients), a high M is required. For the
reasons advanced on the compromise between
accuracy and computational feasibility, we chose a
less restrictive rationale, by allowing a percentile CV

not higher than 2%. This changed our initial consid-
erations into M = 20 for [2 × 1], [8 × 7], and [64 ×
53], while for [128 × 106] M = 10 already suffices.
Finally, the same assumption for macro-tumors is
still valid.

Sensitivity analysis
The output of the ABM is intrinsically affected by the
heuristic character of its driving coefficients setup,
specifically α1 and α2. We performed a sensitivity ana-
lysis to (i) quantify the oscillations of the model’s
output due to uncertainty on the setup and (ii) to
identify which coefficient predominantly drives the
model’s dynamic.
For this purpose, a mono-parametric linear sensitivity

analysis was carried out on the [8 × 7] lesion. We as-
sumed that the initial size does not affect the output
of the analysis. We defined {α1, α2} as the vector of co-
efficients under investigation and for each of them a
range (Ri with i = 1, 2) of perturbation was defined in

Fig. 10 Percentile coefficient of variation (CV) vs. number of
independent in silico simulations (M) for [2 × 1] (red), [8 × 7] (yellow),
[64 × 53] (green), and [128 × 106] (blue) metastasis

Table 2 CPU running time for a single simulation (Control vs. Rad).

Tumor
Size

CPU Time

Control Rad

[2x1] 1m < 1m

[8x7] 5m 1m

[64x53] 8m 6m

[128x106] 16m 25m

[256x213] 44m 1h05m

[500x416] 1h32m 4h13m
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the −/+ 50% of variation neighborhood of the chosen
value such as

Ri ¼ αi−0:5�αi; αi þ 0:5�αi½ � ð10Þ
The range defined with [10] was discretized with a

10% of αi step, so that a vector of αi values ( R
!

i with i =
1, 2) was defined with following Eq. (11) and its values
outlined distinctly for α1 and α2 in Table 3:

R
!

i ¼ αi−0:5�αi; αi−0:4�αi;…; αi;…; αi þ 0:4�αi; αi þ 0:5�αi½ �:
ð11Þ

One coefficient at the time is varied while keeping
the other one at its default value. For each combin-
ation of coefficients, the ABM was run M = 20 times
independently (see the methodology outlined above
on the choice of M) and the mean value of the final
tumor’s size was recorded and normalized on the out-
put of the simulation performed with α1 = 0.4 and
α2 = 0.1.

Results
Model validation
To validate the output of the ABM, we compared in
silico and in vivo tumor growth curves at the
baseline.
The growth of 8 PC3 tumors (0.25 × 106 cells/tibia),

in vivo, was tracked over time and their trend is reported
in Fig. 11a. The average growth (black bold line in
Fig. 11a along with its standard deviation) was used as
reference for model validation.
Since mouse tumors were analyzed at specific time

points (0, 2, 5, 9, 12, and 15 days), while the model is
investigated with a time step of 1 h, we sampled xM(t)
in correspondence of said time points. Finally, to be
comparable, both discrete trends were normalized on
their initial value (corresponding to the initial tumor
size). To quantitatively evaluate the distance between
our model and preclinical reality, we calculated the
Normalized Root Mean Square Error (NRMSE) that
writes:

NRMSE ¼ 1

xM tð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
r¼1

xrM−x
r
D

� �2
L

;

vuuut
ð12Þ

where L = 6 is the number of experimental time points.

The temporal dynamics of a [8 × 7] in silico tumor
(xM(t)) was obtained as the average of M independent

simulations such as xMðtÞ ¼

XM
j¼1

x j
MðtÞ

M .
Figure 11b shows in black the in vivo trend (corre-

sponding to the black bold curve in Fig. 11a) along
with its standard deviation, and in red the in silico
trend along with its M independent simulations’ dy-
namics reported in light grey. We obtained a high
level of confidence with a percentile NRMSE = 1.7%
and with the in silico trend fully matching the in vivo
within its standard deviation range. For further simu-
lations, we assumed that the value of the calibrated
coefficients does not change for lesions of different
initial size, so α1 = 0.4 and α2 = 0.1 were maintained
constant without having to re-calibrate the model for
each tumor size.

Sensitivity analysis
Figure 12 shows separate results for α1 (Fig. 12a) and
α2 (Fig. 12b), along with a comparison between the
two trends on the same scale (Fig. 12c). Not surpris-
ingly, the model is almost uniquely driven by its mi-
totic character, the oscillations of which strongly
affect the output of the model. An increase of α1 of
10% from its baseline generates a final tumor size 13
times bigger. On the contrary, the current model is
almost insensitive to apoptosis, for which the normal-
ized variation from the baseline does not exceed 0.4
unit. Seen the limited number of coefficients, a
mono-parametric analysis is sufficient for the current
analysis.

In silico predictions
Post validation, we challenged the ABM to test the
role of tumor’s size and location. In silico experimen-
tal setup was performed by following the rationale de-
tailed in Section 2. For each of the initial tumor size
listed in Section 2.2.1, we compared the normalized
output in Control (xM, C(t)) and Rad223 (xM, R(t))
regimens (Fig. 13) and quantified the difference re-
corded on the last day of follow-up (day 15). Add-
itionally, for small and medium-sized tumors, we
evaluated the percentage of tumor eradication, while
we did not expect any eradication event for large tu-
mors. For this analysis, we incremented the number
of independent simulations to 1000 for a better

Table 3 Mono-parametric sensitivity analysis perturbation vectors.

α1 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48 0.52 0.56 0.6

α2 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
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robustness of the computational samples. The analysis
confirmed our hypothesis that the tumor’s size drives
the long-term efficacy of Rad223. From Fig. 13 (quali-
tative temporal dynamics comparison) and Fig. 14
(quantification of the normalized tumor size differ-
ence at day 15), the gap between final untreated and
treated lesion size becomes progressively smaller
when increasing tumor’s size. Micro-lesions ([2 × 1]
and [8 × 7]) show a normalized difference of 67.50
and 58.83 units respectively, corresponding to a
152.29 and 102.25-fold size decrease compared to
control-treated tumors. Medium-sized lesions ([64 ×
53] and [128 × 106]) display a normalized difference
of 55.78 and 46.11 units respectively, which correlate
to a 5.02 and 3.33-fold decrease. The trends almost
overlap in the largest lesions studied ([256 × 213] and
[500 × 416] in Fig. 13f) with a normalized difference
of 20.89 and 6.42 units, and a 1.66 and 1.23-fold de-
crease, respectively. Finally, we only identified eradica-
tion events for the smallest lesion ([2 × 1], Fig. 13a),
with a percentage of 65 ± 2% over 1000 independent
simulations. Thus, the in silico analysis predicts that
Rad223-based therapy is most suitable to treat micro-
tumors.
These results were further confirmed in vivo, as

previously published (Fig. 15 [13];). Mice were im-
planted with an increasing number of luciferase-
expressing PC3 tumor cells in bone (0.1, 0.25, 1,
1.5 × 106 cells/tibia), treated with Rad223 and the re-
sponse longitudinally recorded. Rad223 significantly
reduced the growth of lesions generated with a lower
amount of tumor cells (up to 0.25 × 106), whereas tu-
mors beyond 1 × 106 cells kept on growing at a simi-
lar extent of Control-treated mice (Fig. 15a-c). These

results were further confirmed by histological analysis,
showing small nodular lesions in micro-tumors
treated with Rad223, and almost total bone marrow
replacement in control tumors or Rad223-treated
macro-tumors (Fig. 15d).
Then, we broke up the incidence of size and loca-

tion on the therapeutic efficacy with a two-faced
analysis.
First, we tested the response of [2 × 1] lesion in

terms of eradication for increasing distances (in mi-
crons) from Rad223: d < 100 (simulation labeled as
R1), 100 ≤ d < 200 (R2), 200 ≤ d < 300 (R3), 300 ≤ d <
400 (R4), and d ≥ 400 (R5), expecting the percentage
of eradication to decrease while increasing the dis-
tance. Specifically, we investigated a distance of 1, 5,
10, 15 and 20 pixels (Fig. 16a).
Second, we repeated the same analysis reported in

Fig. 13b for the [8 × 7] lesion by additionally investi-
gating the effect of an increasing distance from
Rad223, progressively augmenting the cell-free
tumor-bone margin thickness ranging from simula-
tion R1 to R5. To confirm our speculation, we ex-
pect the gap between Control (C) and Rad223 (Ri,
with i = 1,…5) to get smaller while increasing the dis-
tance from the margin.
From Fig. 16b, the [2 × 1] percentage of eradication

decreases as the distance from Rad223 increases.
Furthermore, Rad223 loses any therapeutic effect be-
yond 400 μm, where the chances of eradication are
completely abated. As additional evidence, Fig. 16c
shows how the benefit of Rad223, already appreci-
ated with Fig. 13b and here re-represented with R1
curve, are progressively nullified as the distance in-
creases. Ultimately, R5 overlaps the Control and

Fig. 11 Model validation: (a) growth of 8 PC3 tumors (colored lines) in vivo over time and mean temporal trend with standard deviation (black
bold). (b) in vivo data with standard deviation (black bold) are compared to in silico model output (i-th independent run – light grey; average
trend – red bold)
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shows a normalized tumor size difference of just
1.69 units compared to the original 58.83 (R1). On
the base of these evidences, we can speculate that
the therapeutic effect of Rad223 is maximum near
the bone interface.
In summary, the in silico analysis predicts that cyto-

toxicity induced by Rad223 targets micro-tumors located

near the bone interface, being the site of Rad223 accu-
mulation, with particular efficacy.

Discussion
By integrating computational techniques and experi-
mental data, we developed a predictive in silico model
of pre-established PCa bone metastasis growth and
response to Rad223. This system was able to identify
micro-lesions close to bone interface as the best tar-
get for Rad223-based therapies in terms of regres-
sion/eradication, suggesting that patients at initial
stages of metastatic progression would benefit more
of this treatment. This model has been currently ap-
plied to investigate local topological determinants of
response upon single administration of Rad223
within 15 days of tumor evolution. As future per-
spective, such in silico predictions can be applied to
simulate longer experimental time, to be matched
with survival studies, and different schedules of
treatment, including repeated injections and therapy
withdrawal.
Besides Rad223, such integrated system represents a

suitable tool to pre-test therapeutic approaches that
affect bone remodeling, such as other radiopharma-
ceuticals or bisphosphonates. As a limitation, how-
ever, lack of stromal cell detailing prevents testing
molecular agents that modulate the biology of specific
bone cells (e.g., osteoblasts, osteoclasts), such as kin-
ase or RANKL inhibitors [22, 23].
Thus, a higher model complexity could be imple-

mented, which implies a higher number of independ-
ent coefficients and an increased model uncertainty.
To cope with it, it will be crucial to clearly differenti-
ate the leading coefficients from the negligible ones,
by applying a modular approach, as previously pub-
lished [24]. With an escalating complexity, we will as-
sist to an increased computational burden that will
translate in a dilation of the time needed for a single
simulation. To shorten the required computational
time, the Matlab® code will be translated in an exe-
cutable C-code (via Matlab® “coder” Toolbox) and
parallel computing techniques will be applied as pre-
viously reported [25].

Conclusions
Clinical response to Rad223 administration is often
characterized by relapse and disease progression.
This failure is to be ascribed to an insufficient un-
derstanding of mechanisms of therapy response and
resistance that, due to the multiscale nature of the
disease, should be investigated by a conspicuous
number of preclinical experiments, implying ex-
tended time and vast resource consumption. With
this work, we proposed a computational model,

Fig. 12 Sensitivity analysis: tumor size variation (normalized) over α1
(a) and α2 (b) perturbation, with trends compared over the same
space scale (c)
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integrated with experimental evidences, to overcome
this limitation and drive the research in a more ef-
fective fashion.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-07084-w.

Additional file 1 Fig. S1 Agent-based model fundamental unit (Garbey
et al., 2015). Fig. S2 Cell-free tumor-bone margin dynamics: an arbitrary
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rounding neighbors (c). In case of cell mitosis (d), the newborn cell di-
gests the surrounding bone cells (e). In case of apoptosis (f), the cell
vacates the site that remains part of the margin. Fig. S3 Identification of
the target cell for edge smoothing subroutine.
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