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Abstract

Background: P53 pathway inactivation plays an important role in the process of breast cancer tumorigenesis. Post-
translational protein modification abnormalities have been confirmed to be an important mechanism underlying
inactivation of p53. Numerous deubiquitinating enzymes are aberrantly expressed in breast cancer, and a few
deubiquitination enzymes can deubiquitinate and stabilize p53. Here, we report that ovarian tumor (OTU)
deubiquitinase 3 (OTUD3) is a deubiquitylase of p53 in breast carcinoma (BC).

Methods: Correlations between the mRNA expression levels of OTUD3, TP53 and PTEN and the prognosis of BC
were assessed with the Kaplan-Meier Plotter tool. OTUD3 protein expression in 80 pairs of specimens in our cohort
was examined by immunohistochemistry and western blotting. The relationship among OTUD3, p53, and p21
proteins was analyzed. Half-life analysis and ubiquitylation assay were performed to elucidate the molecular
mechanism by which OTUD3 stabilizes p53. The interaction between OTUD3 and p53 in BC cells was verified by a
co-immunoprecipitation assay and GST pulldown experiments. MTS assay for proliferation detection, detection of
apoptosis induced by cisplatin and colony formation assay were employed to investigate the functional effects of
OTUD3 on breast cancer cells.

Results: OTUD3 downregulation is correlated with a poor prognosis in BC patients. OTUD3 expression is decreased
in breast cancer tissues and not associated with the histological grade. OTUD3 also inhibits cell proliferation and
clone formation and increases the sensitivity of BC cells to apoptosis induced by chemotherapy drugs. Reduced
OTUD3 expression accompanied by decreased p53 abundance is correlated with human breast cancer progression.
Ectopic expression of wild-type OTUD3, but not its catalytically inactive mutant, stabilizes and activates p53.
Mechanistically, OTUD3 interacts directly with p53 through the amino-terminal OTU region. Finally, OTUD3 protects
p53 from murine double minute 2 (Mdm2)-mediated ubiquitination and degradation, enabling the deubiquitination
of p53 in BC cells.
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Conclusions: In summary, we found that OTUD3 may be a potential therapeutic target for restoring p53 function
in breast cancer cells and suggest that the OTUD3-p53 signaling axis may play a critical role in tumor suppression.

Keywords: OTUD3, p53, Deubiquitinating enzymes, Invasive breast carcinoma

Background

Invasive breast carcinoma (BC) is the leading cause of all
new cancer diagnoses in women [1]. Tumor protein p53
pathway inactivation plays an important role in the
process of BC tumor genesis. Wild-type p53 is present
in approximately 70% of BC cases [2], and the p53 path-
way is partially abrogated through inactivation of various
signals or effector elements [3]. Accordingly, the role of
p53 signaling in BC tumorigenesis has attracted consid-
erable attention [4]. In addition to point mutations and
gene deletions, post-translational protein modification
abnormalities have been confirmed to be an important
mechanism underlying inactivation of p53. Among these
abnormalities, ubiquitination is more complex than
phosphorylation and acetylation [5]. Most research
focuses on the regulatory effect of ubiquitin ligase on
the ubiquitination of p53 [6]; such research includes the
well-known ubiquitination enzyme murine double mi-
nute 2 (Mdm2) [7, 8]. Recently, the N-terminal p53
TAD and Mdm2 pBD regions were studied to discover
anticancer drug molecules [4]. However, limited success
was achieved due to tumor recurrence [9] or TP53 gene
mutations [10]. The intriguing nature of the regulation
of p53 signaling and its role in tumorigenesis are cer-
tainly perplexing due to the complexity involved [4].
Therefore, identifying more strategies to stabilize p53 is
particularly important.

The ubiquitination of many proteins has been well
documented to be reversed by deubiquitinating enzymes
(DUBs), which belong to a superfamily of cysteine prote-
ases and metalloproteases that cleave ubiquitin-protein
bonds. The human genome encodes approximately 100
DUBs [11] that can be classified into the following six
families: ubiquitin-specific proteases (USPs), ubiquitin
car boxy-terminal hydrolases (UCHs), ovarian tumor
(OTUs) proteases, Machado-Joseph disease protein do-
main proteases (MJDs), JAMM/MPN domain-associated
metallopeptidases (JAMMs), and monocyte chemotactic
protein-induced proteins (MCPIPs).

In BC, numerous DUBs [11], including breast cancer-
promoting DUBs and cancer-suppressing DUBs, are ab-
errantly expressed. However, only two deubiquitination
enzymes can deubiquitinate and stabilize p53 [11],and
USP7 (HAUSP) might represent the first example [12].
However, TSPYL5 can bind USP7 and suppress its abil-
ity to deubiquitinate and stabilize p53 [13]. In addition,
an interesting feedback loop exists in p53 regulation

because USP7 also binds, deubiquitinates and stabilizes
Mdm?2 more potently under physiologic conditions [14,
15] and stabilizes p53 under genotoxic stress conditions
[16, 17]. USP10 can deubiquitinate cytoplasmic p53 and
inhibit MDM2-mediated p53 nuclear export and degrad-
ation. USP10 can also shuttle into the nucleus and
stabilize p53 when DNA damage occurs [18]. However,
USP10 may stabilize both wild-type p53 and mutant p53
[19] and is more highly expressed in breast cancer tissue
than in adjacent normal tissue [20]. Unsurprisingly, such
an important tumor suppressor is controlled by multiple
DUBs. However, few DUBs have been found in breast
cancer, and the mechanisms regulating p53 deubiquiti-
nation remain enigmatic.

Our previous study found that OTU deubiquitinase 3
(OTUD3) can deubiquitinate and stabilizes PTEN [21].
In the current study, we found that the expression of
OTUD3 was decreased in BC and proved for the first
time that OTUD3 is an enzyme related to the deubiqui-
tination of p53. Compared with PTEN, high expression
levels of OTUD3 and p53 are more indicative of a better
prognosis in BC. This study further elucidated the influ-
ence of OTUD3 on BC cell biological function and its
molecular mechanism and suggests that OTUD3 should
be explored as a therapeutic target in breast cancer.

Methods

Kaplan-Meier plotter

Correlations between the mRNA expression levels of
OTUD3, TP53 and PTEN and the prognosis of BC were
assessed with the Kaplan-Meier Plotter tool [22, 23]
(http://kmplot.com/analysis/index). BC patients were di-
vided into two groups according to median expression
levels (high expression vs. low expression). A Kaplan-
Meier survival chart was used in the analysis to evaluate
the relapse-free survival (RFS) of the patients, and the
risk ratio (HR) and its 95% confidence interval (CI) and
the log- rank test were used to calculate the p-value.

Cells and tumor tissues

Two human breast cancer cell lines, MCF-7 and
DU4475, were obtained from the American Type Cul-
ture Collection (ATCC, Manassas, VA, USA). The
MCEF?7 cells were cultured at 37 °C in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10%
FBS (HyClone, USA) under a 5% CO, atmosphere. The
DU4475 cells were cultured in RPMI-1640 medium
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supplemented with 10% FBS. This study was approved
by the Human Ethics Review Committee of Qilu Hos-
pital (Qingdao) of Shandong University. The use of
eighty paired breast cancer tissues and matched adjacent
normal tissues was approved by the Department of Path-
ology of Qilu Hospital (Qingdao) of Shandong Univer-
sity. All patients underwent surgical resection at Qilu
Hospital (Qingdao) of Shandong University. Informed
consent was obtained from all subjects or their relatives.

Antibodies and reagents

An anti-OTUD3 antibody (HPA028544) for immunohis-
tochemistry (IHC) and the proteasome inhibitor MG132
were purchased from Sigma-Aldrich, USA. An anti-
OTUD3 antibody (ab107646), wild-type anti-p53 anti-
body (ab131442), and anti-p21 antibody (ab109520) for
western blotting were purchased from Abcam, United
Kingdom. An anti-glyceraldehyde 3-phosphate dehydro-
genase antibody (anti-GAPDH) and secondary anti-
bodies were purchased from Santa Cruz Biotechnology,
Inc., USA. Anti-Myc and anti-Flag antibodies were ob-
tained from MBL, BEIJING B&M BIO TECH CO.,LTD,
Beijing, China.

Immunohistochemistry

IHC was performed by using the avidin-biotin complex
method, including heat-induced antigen-retrieval proce-
dures. Incubation with an antibody against OTUD3 (1:
100 dilution; HPA028544) was carried out at 4 °C for 18
h. All staining was assessed by a quantitative imaging
method (inForm, PerkinElmer) utilizing continuous
measurement and pathologists blinded to the sample or-
igins and subject outcomes. The widely accepted Ger-
man semi-quantitative scoring system based on the
staining intensity and area was used. Each specimen was
assigned a score according to the intensity of nuclear,
cytoplasmic, and/or membrane staining (no staining = 0;
weak staining =1, moderate staining=2, and strong
staining = 3) and the extent of stained cells (0% =0, 1-
24% =1, 25=49% =2, 50-74% =3, and 75-100% = 4).
The final immunoreactive score was determined by
multiplying the intensity score by the extent score and
ranged from 0 (minimum) to 12 (maximum).

Lentivirus infection

Lentiviruses carrying shRNA targeting human OTUD3
lentiviral vectors (GV112) were obtained from Gene-
Chem. We constructed lentiviruses carrying overexpres-
sion lentiviral vectors. The viruses were used to infect
cells in the presence of polybrene. After forty-eight
hours, MCF7 or DU4475 cells were cultured in medium
containing puromycin for the selection of stable clones.
The clones with stable OTUD3 knockdown were identi-
fied and verified by western blotting. The shRNA
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sequences were as follows: OTUD3 no. 1: 5'-TGGAAA
TCAGGGCTTAAAT-3'; no. 2, 5'-GAGTTACACATCG
CATATC-3’; no. 3, 5'-CGTCTGCCATCGCATATTA-
3’; and non-targeting control, 5'-TTCTCCGAACGTGT
CACGT-3".

Western blot (WB) analysis

The cells and tissue specimens were lysed using RIPA
buffer (Sigma-Aldrich, St. Louis, MO, USA). The protein
samples were separated using 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred onto PVDF membranes (Millipore). The
membranes were blocked with 5% non-fat milk at room
temperature for 2h and incubated overnight with pri-
mary antibodies at 4 °C. After washing with TBST three
times for 15 min each, the membranes were incubated
with the appropriate horseradish peroxidase-conjugated
secondary antibodies for 2h at room temperature with
slight shaking. GAPDH was used as the loading control.
The immunoreactive bands were visualized using Super-
Signal West Pico Chemiluminescent Substrates (Thermo
Fisher Scientific, USA).

Protein half-life assay

For the p53 half-life assay, the MCF7 and DU4475 cells
were grown in 2-cm plates to approximately 60% conflu-
ence, and then the cells were transfected with OTUD3
shRNAs. After twenty-four hours, the cells were treated
with the protein synthesis inhibitor cycloheximide
(CHX, Sigma, 10 pg ml-1) for the indicated durations be-
fore collection.

Immunoprecipitation

The cultured cells were lysed with HEPES lysis buffer
(20mM HEPES, pH 7.2, 50mM NaCl, 0.5% Triton X-
100, 1 mM NaF and 1 mM dithiothreitol) supplemented
with Protease Inhibitor Cocktail Tablets (Roche). The
immunoprecipitations were performed using the indi-
cated primary antibody and protein A/G agarose beads
(Santa Cruz) at 4 °C. Then, the immunocomplexes were
washed with HEPES lysis buffer four times. Both the
lysates and immunoprecipitates were examined using
the indicated primary antibodies, followed by incubation
with the appropriate secondary antibody and Super-
Signal West Pico Chemiluminescent Substrate (Thermo
Fisher Scientific).

GST pulldown assays

Bacterial-expressed GST and GST-p53 bound to
glutathione-Sepharose 4B beads (from GE) were incu-
bated with Myc-OTUD3-expressing MCF7 cells for 2h
at 4°C. Then, the beads were washed with GST binding
buffer (100 mM NaCl, 10 mM Tris,50 mM NaF, 2 mM
EDTA, 0.5 mM Na3VO, and 1% Nonidet P40) four
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times, and the proteins were eluted and subjected to
western blotting.

Ubiquitylation assay

The cells were treated with 20 mM MG132 proteasome
inhibitor for 8 h. Then, the cells were washed with PBS
and lysed in 0.5ml of HEPES buffer (20 mM HEPES,
pH7.2, 50mM NaCl, 1mM NaF, and 0.5% Triton X
100) supplemented with 0.1% SDS and a protease inhibi-
tor cocktail (Roche, Germany). The lysates were centri-
fuged to obtain the cytosolic proteins. Briefly, the
individual samples were incubated with primary anti-
bodies for 3 h, followed by incubation with protein A/G
agarose beads (Santa Cruz) for another 8 h at 4°C. The
beads were washed three times with HEPES buffer. The
proteins were released from the beads by boiling in 40
ml of 26SDS-PAGE sample buffer for 10 min. The sam-
ples were subjected to a WB analysis.

Proliferation assay

The cells were plated in 96-well plates (100-ul cell suspen-
sions, 1*10* cells ml™') and assayed for MTS (3-(4, 5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sul-
phophenyl)-2H-tetrazolium, inner salt, Sigma) reduction.
Twenty-four hours after plating, 0.05 mg ml-! MTS reagent
(Promega) was added to each well, and the cells were incu-
bated at 37 °C for 4 h, followed by absorbance measurement
at 490 nm. The sample values were standardized to those of
wells containing medium alone.

Apoptosis assays

First,cells were treated with cisplatin (10 mM, 24h,
Sigma-Aldrich, USA). After incubation, the cells were
washed with PBS and stained with fluorescein
isothiocyanate-Annexin V and propidium iodide accord-
ing to the manufacturer’s protocol (Beijing Biosea Bio-
technology Annexin V Kit). Then, the apoptotic cells
(Annexin V-positive, propidium iodide-negative) were
determined by flow cytometry.

Colony formation assays

Cells were resuspended in DMEM containing 0.35%
low-melting agarose (Sigma) and 10% FBS and seeded
onto a coating of 0.7% low-melting agarose in DMEM
containing 10% FBS. The plates were incubated at 37 °C
and 5% CO,, and the colonies were scored 3 weeks after
preparation. Colonies larger than 0.1 mm in diameter
were scored as positive.

Statistical analysis

Differences between two independent groups were eval-
uated using an unpaired Student’s t-test. Chi-square
tests and one-way ANOVA were used to compare the
groups. Correlation analysis was performed using

Page 4 of 14

Spearman’s rank correlation coefficient. All IHC and
WB statistical analyses were performed with GraphPad
Prism 7.00 and SPSS 19.0(IBM Corp, USA). All other re-
sults are expressed as the mean *standard deviation
(SD) of three independent experiments unless stated
otherwise. All statistical tests were two-sided, and p-
values< 0.05 (*) or < 0.01 (**) were considered statistically
significant.

Results

High OTUD3 expression is downregulated in BC tissues
and associated with a better prognosis in BC patients
OTUD3 is not frequently mutated in the TCGA pan-
cancer dataset (https://www.cbioportal.org/). To assess
OTUDS3 expression in BC patients, we first analyzed the
gene expression UALCAN database [24] (datasetshttp://
ualcan.path.uab.edu/)for human BC. The results showed
that OTUD3 mRNA levels in BC tissues were signifi-
cantly lower than those in normal breast tissues (Fig. 1a).
OTUD3 mRNA levels were not associated with individ-
ual cancer stages (Fig. 1b). Although no differences in
OTUD3 mRNA levels were found between luminal sam-
ples and HER2-positive or triple-negative BC samples, a
difference in OTUD3 mRNA levels was identified be-
tween the HER2-positive and triple-negative BC samples
(Fig. 1c). We used data obtained from the cBioPortal
database [25, 26] (https://www.cbioportal.org/) and
found that decreases in OTUD3 mRNA levels may not
be due to increased OTUD3 DNA methylation in BC
(Fig. 1d).

Our previous results showed that OTUD3 can deubi-
quitinate and stabilize PTEN. Here,we explored whether
OTUD3 is an enzyme related to p53.Therefore, we per-
formed a Kaplan-Meier survival analysis [22, 23] (http://
kmplot.com/analysis/index) to evaluate the associations
between OTUD3, TP53 and PTEN expression and sur-
vival in BC patients. Interestingly, the recurrence-free
survival (RFS) rate in the high-OTUD3 expression group
(n =1986) was better than that in the low-OTUD3 ex-
pression group (n=1965), p=0.00034 (Fig. le). Simi-
larly, patients with high TP53 (n =1977) expression had
better RFS than the patients with low expression (n =
1974), p=0.00054 (Fig. 1f). However, the expression
level of PTEN was not an independent prognostic factor
in the BC patients in the dataset, p =0.62 (Fig. 1g). We
speculate that high OTUD3 expression is associated with
a better prognosis in BC patients, and that the relation-
ship between OTUD3 and p53 is the most significant.

OTUD3 expression is downregulated in BC tissue

Consistent with the OTUD3 mRNA results, the protein
expression level of OTUD3 was also significantly lower
in BC tissue than in normal breast tissue. IHC staining
with an anti-OTUD3 antibody was performed on 80
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pairs of BC tissues and adjacent non-tumor tissues.
Staining scores of 0—6 were considered negative, and
scores of 6-12 were considered positive. As shown in
Fig. 2a, substantial OTUD3 immunostaining was de-
tected in the adjacent non-tumor tissue samples,
whereas little to moderate OTUD3 staining was

observed in the BC samples. According to the literature
[27], BC was divided into the following subtypes: luminal
A-like, luminal B-like (Her-2-negative), luminal B-like
(Her-2-positive), Her-2 positive (non-luminal) and
triple-negative (ductal). Notably, OTUD3 expression in
breast cancer tissue was not associated with the
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molecular type (x*=2.672,p = 0.614)(Fig. 2b). Although
not statistically significant, a trend indicating that
OTUD3 may be downregulated in luminal B (Her-2-
positive) cancer tissue compared with adjacent tissue
was observed.

The half-life of the wild-type p53 protein is very short,
and the p53 protein detected by IHC in various experi-
ments is the mutant p53 protein [28, 29]. Therefore, we

analyzed the expression of p53 and OTUD3 in 26 pairs
of fresh and frozen BC tissues and adjacent normal tis-
sues by WB. The expression of the p53 downstream pro-
tein p21 was also detected. P21 VAP/“P! js 3 p53-induced
cell cycle kinase inhibitor (CDKI) [30]. P53 causes G1
cell arrest by regulating the expression of p21 [31].
Knockout of p21 results in complete loss of p53-
mediated human tumor cell cycle(G1) arrest [32]. The
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specimens were numbered by the date of collection and
grouped by histological grade. Our experimental results
prove for the first time that OTUD3 and p53 are both
expressed in breast cancer and adjacent normal tissues.

Notably, the expression of OTUD3(p =0.0069) and
p53(p =0.041) in all BC tissues was lower than that in
the corresponding normal tissues (Fig. 2c). OTUD3
expression in breast cancer tissue was independent of
the histological grade (F=1.736, p=0.199) (Fig. 2d).
Additionally, the analysis of the relationship between
OTUD3 expression and p53 expression showed a signifi-
cantly positive correlation (r =0.8849, 95% CI: 0.8068—
0.9326, p<0.0001), and the levels of OTUD3 and p21
were also positively correlated (r=0.6427, 95% CI:
0.4484-0.779, p < 0.0001) (Fig. 2e). Our clinical data fully
proved that OTUD3 is downregulated in cancer tissues
and is highly correlated with p53 expression.

OTUD3 maintains p53 stability in vitro

Since the expression levels of OTUD3 and p53 are
correlated we tested whether overexpression of
OTUD3 affects p53 protein levels in breast cancer
cells. Two well-established p53 target genes, p21 and
the proapoptotic gene BCl-2-associated X protein
(BAX), were assayed to reflect p53 activity. Here, we
used the luminal breast cancer cell line MCF7 and
the TNBC cell line DU4475, both of which express
wild-type p53 [33]. As shown in Fig. 3a, the p53 level
was dramatically increased when OTUD3 was overex-
pressed in the MCF7 cells and DU4475 cells; in-
creased p21 and BAX protein levels were also
observed, indicating that OTUD3 also causes p53-
dependent transcriptional activation. To confirm the
role of OTUD3 in the regulation of p53, the MCF7
and DU4475 cells were transfected with sh-ctrl or sh-
OTUD3 lentivirus. Changes in the p53 protein level
were determined. We found that OTUD3 knockdown
in BC cells resulted in a dramatic decrease in the
protein level of endogenous p53,which was accompan-
ied by a decrease in the two target genes (Fig. 3b).
To test the possibility that OTUD3 regulation of p53
occurs through modulation of p53 protein stability,
we treated cells stably expressing OTUD3 shRNA
with the proteasome inhibitor MG132 (20 uM, 8h).
The decrease in p53 levels was reversed by MG132
treatment (Fig. 3b), suggesting that OTUD3 regulates
p53 levels by increasing its stability in a proteasome-
dependent manner.

Ubiquitin-mediated degradation is the only method by
which p53 is terminated by the proteasome [34]. To
date, some p53 E3 ligases have been found, and MDM2
is the most important [35]. MDM2 (human HDM2) is
an oncogene that promotes cell division and
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proliferation [36]. MDM2 mediates the sustainable deg-
radation of most p53 proteins, resulting in a very low
p53 intracellular level [37].P53 is regulated by Mdm2-
mediated ubiquitination and degradation and has a short
half-life (5-20 min) [38]. Subsequently, we examined the
half-life of p53 in the absence or presence of OTUDS3.
We treated control cells and cells stably expressing
OTUD3 shRNA with or without OTUD3 overexpression
with the protein synthesis inhibitor cycloheximide
(CHX) and examined p53 levels at various time points.
The half-life of endogenous p53 was significantly short-
ened in the BC cells depleted of OTUD3, and this effect
was fully reversed by the ectopic expression of OTUD3
(Fig. 3c). OTUD3 likely deubiquitinates p53 to counter-
act the action of the E3 ubiquitin ligase Mdm2. Indeed,
as shown in Fig. 3d, ectopic Mdm2 expression signifi-
cantly induced p53 degradation, while the coexpression
of OTUD3 efficiently rescued p53 from Mdm2-induced
degradation. These results demonstrate that OTUD3 can
antagonize the reduction in p53 by Mdma2.

OTUD3 interacts with p53

Co-immunoprecipitation (CO-IP) assays were conducted in
MCEF?7 cells and DU4475 cells to examine whether OTUD3
physically interacts with p53. As shown in Fig. 4a, endogen-
ous OTUD3 was specifically co-immunoprecipitated with
endogenous p53 in the cells by anti-p53 antibodies. Further-
more, p53 co-immunoprecipitated with endogenous OTUD3
in the MCF?7 cells and DU4475 cells (Fig. 4b). Then, we con-
structed OTUD3 truncated mutants as follows: OTUD3 was
divided into two parts per its domain structure, namely, D1
(1-183) containing the OTU domain and D2 (184—398) con-
taining the UBA domain and the C tail (Fig. 4c). Using the
D1 and D2 constructs in co-immunoprecipitation experi-
ments, we revealed that the OTU domain-containing region
D1 (1-183) is critical for the interaction between OTUD3
and p53 (Fig. 4d). To determine whether the OTUD3-TP53
interaction was direct, we generated and purified recombin-
ant Myc-OTUD3, Myc-D1 and Myc-D2. Interestingly, Myc-
D1 cultured from MCEF?7 cells was specifically bound by the
purified GST-TP53 protein but not GST alone (Fig. 4e),
further illustrating the direct interaction between OTUD3
and p53.

TP53 is located on chromosome 17 (17p13.1) and
encodes p53, which is a phosphoprotein comprising
393 amino acids. P53 consists of the following four
domains: (I) an N-terminal sequence (transactivation
domain, TAD) involved in the regulation of target
gene transcription, recruitment of RNA polymerase
and activation of the transcriptional (DNA-reading)
machinery, (II) a highly conserved DNA-binding do-
main (DBD) that recognizes specific DNA sequences;
(III) an oligomerization domain (OD) that assembles
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chains of other p53 monomers for tetramerization,
and (IV) a C-terminal domain essential for the regula-
tion of p53 activity. To determine the region where
p53 binds OTUD3, we also constructed truncated p53
mutants (Fig. 4f) and performed GST assays. The re-
sults indicated that OTUD3 bound the following two
mutants of p53: T2 (1-113)/(290-393) and T3 (1-
113)/(236-393) (Fig. 4g, h). These results suggest that
a direct interaction exists between OTUD3 and p53.

OTUD3 deubiquitinates p53

As OTUD3 is a deubiquitinase, we examined whether
OTUD3 deubiquitinates p53. To elucidate the molecular
mechanism by which OTUD3 stabilizes p53, we deter-
mined whether OTUD3 directly controls the levels of
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p53 ubiquitination. As indicated in Fig. 5a, a high level
of ubiquitinated p53 was found in the MCF7 and
DU4475 cells transfected with Mdm2 (lane 2); however,
p53 ubiquitination was significantly abrogated by
OTUD3 expression (comparison of lanes 3 and 2). Not-
ably, the enzyme activity of the mutant OTUD3“"* lost
its ability to deubiquitinate p53 (Fig. 5a, lane 4), indicat-
ing that p53 stabilization by OTUD3 requires deubiquiti-
nating enzymatic activity. In contrast, the OTUD3
downregulation by shRNA increased p53 ubiquitination
in the MCF7 and DU4475 cells (Fig. 5b). Collectively,
these data demonstrate that OTUD3 negatively regulates
p53 ubiquitination in breast cancer cells and plays an
important role in the balance between p53 ubiquitina-
tion and deubiquitination. We speculate that the balance

A Flag-OTUD3 - - + -

Flag-OTUD3C76A - - -+

Myc-MDM2 - + + +
MG132

IB: Ub

IB: Ub

IB: p53

IB: OTUD
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Myc-MDM2 - + + +
MG132 + + + +

IB: Ub

IB: p53

IB: Myc

IB: Flag

IP: p53

IB: Ub

IB: p53

DU4475

Fig. 5 Regulation of p53 ubiquitination levels by OTUD3, OTUD3“"*" and Mdm2. MCF7 and DU4475 cells transfected with the indicated
constructs (a) or stably expressing Ctrl shRNA or OTUD3 shRNA (b) were treated with MG132 before harvesting for the immunoprecipitation and
immunoblot analyses with the indicated antibodies
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between the Mdm2-mediated ubiquitination and
OTUD3-mediated deubiquitination of p53 is critical for
p53 stabilization.

OTUD3 inhibits cell proliferation

P53 stabilization is crucial for its suppression of cell
growth and apoptosis. To investigate the biological role
of OTUD3, we first examined its effect on cell prolifera-
tion. We compared the proliferation rates of MCF7 and
DU4475 cells stably transfected with OTUD3 and
OTUD3“"®* with those of negative control cell lines
using an MTS proliferation test kit. The results showed
that cell proliferation slowed after OTUD3 transfection
and accelerated after OTUD3"%* transfection (Fig. 6a).
Compared to the control cells, knockdown of endogen-
ous OTUD3 by shRNA in the MCF7 and DU4475 cells
increased the cell proliferation rate. However, the
DU4475 cells proliferated at a significantly slower rate
after OTUD3 expression was restored. OTUD3 could
rescue the accelerated cell proliferation caused by
OTUD3 knockdown, but the inactive enzyme mutant
OTUD3“"®* could not inhibit the accelerated cell prolif-
eration, indicating that regulation of the effect of

OTUD3 on cell proliferation depends on its ubiquitinase
activity (Fig. 6b). These data suggest that OTUD3 can
inhibit BC cell proliferation.

OTUD3 induces apoptosis in BC cells and inhibits colony
formation

Chemotherapy is an important method for the treatment
of BC. P53-mediated pathways can be activated by geno-
toxic compounds, such as cisplatin chemotherapeutic
compounds, leading to cell cycle arrest and cell death
[39]. We treated BC cells with the chemotherapy drug
cisplatin (10 mM, 24 h) and detected apoptosis. The re-
sults showed that the OTUD3-transfected cells were sig-
nificantly more sensitive to cisplatin-induced apoptosis
than the negative control cells (p < 0.01); however, the
sensitivity of the transfected OTUD3“7%* cells was sig-
nificantly decreased (p < 0.01) (Fig. 7a). Compared with
the negative control cells, the decreased OTUD3 protein
levels increased the resistance of the tumor cells to
cisplatin-induced apoptosis (p< 0.01). The apoptosis
rate was significantly increased when OTUD3 was re-
stored to the levels of the cells not treated with shRNA
(p< 0.01), but when the levels of OTUD3“"** were
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restored in the cells, the apoptosis rate did not signifi-
cantly change (Fig. 7b). These results suggest that
OTUD3 has a certain response to chemotherapy-
induced BC cell apoptosis and that this response de-
pends on its deubiquitinase activity.

Subsequently, we examined the effect of OTUD3 on
cell growth using a colony formation assay. The BC cells
were infected with either a control vector or a vector en-
coding OTUD3 or OTUD3“7** and cultured for 2
weeks. Strikingly, OTUD3, but not OTUD3“74, strongly
inhibited the number of colonies of BC cells (Fig. 7c).
When OTUD3 was knocked down, the cell clone

formation ability was enhanced, and when OTUD3 was
restored, the clone formation ability was inhibited (Fig.
7d). However, the cell cloning ability was significantly
enhanced after OTUD3 7% overexpression.

Discussion

Our experiment proved for the first time that OTUD3 is
a tumor-suppressing DUB in BC. The online database
analysis showed that BC patients with high OTUD3 and
p53 expression have better RFS, thus revealing a poten-
tial prognostic biomarker of BC. In addition, the mRNA
expression of OTUD3 was lower in BC tissue than in
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normal adjacent tissue and was unrelated to the staging
or molecular type. The clinical sample study of the Qilu
cohort further proved that the protein expression of
OTUD3 in BC tissues was lower than that in adjacent
tissues. OTUD3 expression in cancer tissues was inde-
pendent of the molecular type and histological classifica-
tion. Therefore, the absence of OTUD3 is associated
with the occurrence of BC. As a tumor suppressor gene,
OTUD3 may serve as a new biomarker of the occur-
rence and development of BC. Targeting the OTUD3
upstream and downstream pathways may be a useful
therapeutic strategy because BC cells may have lost the
expression of such tumor-suppressing DUBs.

Functional p53 prevents the progression of cancer by
increasing growth inhibition in the form of apoptosis,
senescence and/or autophagy [40]. Deubiquitination is a
major mechanism that stabilizes p53 and induces apop-
tosis. Regulation of p53 ubiquitination and deubiquitina-
tion in BC is of great interest but remains poorly
understood. Our study proves for the first time that
downregulation of OTUD3 in clinical BC samples highly
coincides with downregulation of p53. OTUD3 can dir-
ectly interact with and stabilize p53 through deubiquiti-
nation in BC cells. The N-terminal of OTUD3 contains
an OTU domain that directly participates in the binding
of the T2 and T3 sequences of p53. Decreased OTUD3
expression may be an important mechanism underlying
the loss of TP53 function in breast cancer cells carrying
WT TP53 alleles. Both breast cancer cell lines used in
this study were p53 wild-type BC cells—the luminal BC
cell line MCF-7 and the TNBC cell line DU4475. The
functional experiments using BC cells further confirmed
OTUD3 anticancer function. OTUD3 supplements en-
zymes that can regulate p53 by deubiquitination and
participates in protein-protein interactions in BC. Thus,
OTUD3 is of great significance.

The major causes of death from breast cancer are re-
lapse, drug resistance and metastasis, which are highly
related to dysregulation of the MDM family [41-43].
The MDM family comprises the E3 ligase MDM2 and
its close homologue MDM4 (alternatively termed
MDMX). MDM2 is a vital regulator of tumor suppressor
p53 activity in the breast [7, 8, 44] and has been identi-
fied as an independent prognostic biomarker in BC [45].
The complex between MDM?2 and p53 is largely formed
by the interaction between the N-terminal domain of
MDM2 and the N-terminal transactivation (TA) domain
of p53 (residues 15-29) [46, 47]. The N-terminal domain
of p53 contains the main Mdm?2 binding site. The find-
ing that OTUD3 potentially binds the N-terminus of
p53 may suggest that both Mdm2 and OTUD3 compete
for the same binding site in p53, possibly explaining the
observed effects of OTUD3 overexpression and knock-
down on p53 ubiquitination and p53 levels in cells. This
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spatially separates MDM2 from p53, resulting in the
stabilization of the p53 protein and allowing p53 to
regulate gene transcription, leading to p21 and BAX ex-
pression, cell cycle arrest, and/or cell death.

We found that OTUD3 deletion is generally associated
with the obliteration of WT p53 in BC, suggesting that
OTUDS3 loss may be selected by tumors to disrupt the
p53 pathway. Although our findings reveal an important
mechanism by which p53 can be stabilized by direct
deubiquitination and imply that OTUD3 might function
as a tumor suppressor in vivo through the stabilization
of p53, many questions remain unanswered. Our study
found that the OTUD3 mRNA level was not related to
DNA methylation through an online database; thus, the
reason for the decrease in OTUD3 expression in BC re-
mains to be further explained. In addition, the effect of
OTUD3 on other key regulators in the p53 pathway
must also be examined.

Conclusions

OTUDS3 is a cancer-suppressing DUB in BC that can
positively regulate the function and stability of p53. The
OTUD3-p53 interaction may be involved in the forma-
tion of BC.
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