
RESEARCH ARTICLE Open Access

The development and validation of a
radiomic nomogram for the preoperative
prediction of lung adenocarcinoma
Qin Liu†, Yan Huang†, Huai Chen, Yanwen Liu, Ruihong Liang and Qingsi Zeng*

Abstract

Background: Accurate diagnosis of early lung cancer from small pulmonary nodules (SPN) is challenging in clinical
setting. We aimed to develop a radiomic nomogram to differentiate lung adenocarcinoma from benign SPN.

Methods: This retrospective study included a total of 210 pathologically confirmed SPN (≤ 10mm) from 197 patients,
which were randomly divided into a training dataset (n = 147; malignant nodules, n = 94) and a validation dataset (n =
63; malignant nodules, n = 39). Radiomic features were extracted from the cancerous volumes of interest on contrast-
enhanced CT images. The least absolute shrinkage and selection operator (LASSO) regression was used for data
dimension reduction, feature selection, and radiomic signature building. Using multivariable logistic regression analysis,
a radiomic nomogram was developed incorporating the radiomic signature and the conventional CT signs observed
by radiologists. Discrimination and calibration of the radiomic nomogram were evaluated.

Results: The radiomic signature consisting of five radiomic features achieved an AUC of 0.853 (95% confidence interval
[CI]: 0.735–0.970), accuracy of 81.0%, sensitivity of 82.9%, and specificity of 77.3%. The two conventional CT signs
achieved an AUC of 0.833 (95% CI: 0.707–0.958), accuracy of 65.1%, sensitivity of 53.7%, and specificity of 86.4%. The
radiomic nomogram incorporating the radiomic signature and conventional CT signs showed an improved AUC of
0.857 (95% CI: 0.723–0.991), accuracy of 84.1%, sensitivity of 85.4%, and specificity of 81.8%. The radiomic nomogram
had good calibration power.

Conclusion: The radiomic nomogram might has the potential to be used as a non-invasive tool for individual prediction
of SPN preoperatively. It might facilitate decision-making and improve the management of SPN in the clinical setting.
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Background
The most common cause of cancer death around the
world is the lung and bronchus according to the 2017 can-
cer statistics [1–3]. Patients with lung cancer usually have
a bad prognosis because most of them are diagnosed at an
advanced stage (III or IV) with no discriminating symp-
toms as compared to early stage [4]. In clinical practice,

accurate diagnosis of early lung cancer from small pul-
monary nodules (SPN) is challenging. The detection of
SPN is increasing with years worldwide, mainly because of
the wide use of low-dose chest computed tomography
(CT) screening. In the Early Lung Cancer Action Project
performed by Henschke et al. [5], the detection rate of
SPN was as high as 23%, which increased to 39.5% in pa-
tients received lung operation [6]. For indeterminate solid
and ground-glass nodules, they should be followed with
CT at least 2 and 3 years, respectively, according to the
international guidelines for the management of SPN [7, 8].
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Therefore, accurate diagnosis of SPN using advanced tool
will reduce health costs and extensive CT examinations
with no additional benefits. Also, clinicians need an non-
invasive imaging tool to determine whether a patient
needs surgery or long-term follow-up.
Recently, by high throughput extracting quantitative

imaging features from standard-of-care medical images,
radiomics provides us a promising and non-invasive tool
in cancer research [9, 10]. The radiomic features mined
by sophisticated bioinformatics tools might involve the
process of diagnosis, prognosis and prediction [11].
Radiomic signature constructed by significant features
has been applied for precision diagnosis and treatment
of cancer, which will promote the development of preci-
sion medicine. Currently, radiomics has been used to de-
code tumor phenotypes, histological subtypes and
pathological response of lung cancer [12–14].
Therefore, the aim of this study was develop and valid-

ate a radiomic nomogram for the individual preoperative
prediction of lung adenocarcinoma from benign SPN,
which would improve the decision-making of SPN in
clinical practice.

Methods
Patients and nodules
Our institutional review board approved this retrospect-
ive study and waived the need for informed consent
from patients. A total of 197 patients with 210 SPN
treated with surgical resection were included from Janu-
ary 2011 to March 2017. Inclusion criteria were as fol-
lows: (1) Patients had histopathologically-confirmed SPN
≤10mm; (2) Patients had available clinical data; (3) Pa-
tients underwent baseline lung CT scan with the same
imaging parameters and reconstruction slice thickness;
and (4) Patients’ lung CT performed within 1 month be-
fore surgery. The patients were excluded if: (1) Patients
received surgery before CT scans; and (2) Patients’ lung
CT images have breathing artifacts. The patients were
randomly divided into training and validation sets by a
computer algorithm at a ratio of 7:3. Figure 1 illustrates
the study inclusion pathway.
A total of 11 CT findings of each nodule were col-

lected from the last CT scan before surgery, including
the maximum diameter, location, involvement of pleura
(pleural indentation with or without pleural thickness,
absence), nodule consistency (ground-glass nodule
[GGN], solid, part-solid GGN), shape (regular [e.g.,
round, oval] or irregular), margins (lobulation, spicula-
tion, both, absence), cavity (presence or absence), calcifi-
cation (presence or absence), intranodular changes
(necrosis, consolidation, vacuoles, air bronchogram, ab-
sence), bronchial disruption (presence, absence, unclear),
and vessel convergence sign (presence or absence). Two
radiologists with 13 years and 18 years of clinical

experience in lung cancer reviewed all of the CT images
and reached a consensus.

Imaging acquisition
Contrast-enhanced CT images were obtained by a 64-
slice CT scanner (Siemens Definition AS + 128,

Fig. 1 Inclusion pathway of pulmonary nodules
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Forchheim, Germany). The imaging parameters were as
follows: 120 kV; 120 mA; rotation time = 0.5 s; detector
collimation = 64 × 0.625 mm; the field of view = 500mm;
and matrix size, 512 × 512. All patients received intra-
venous administration of iodinated contrast agent (1–
1.1 ml/Kg, Ultravist 370, Bayer Pharma AG, Berlin,
Germany). The CT images were obtained after a 30 s
delay and reconstructed with a slice thickness of 2 mm.

CT-based radiomic feature extraction and selection
Figure 2 shows the radiomic workflow of this study. The
regions of interest (ROIs) of pulmonary nodules were
delineated by a junior radiologist using open-source
ITK-SNAP software (www.itk-snap.org) and validated by
a senior radiologist. Radiomic features were extracted
from contrast-enhanced CT images by using an in-
house feature extraction algorithm applied in Artificial
Intelligence Kit software that developed by GE Health-
care Life Sciences. It can be combined with ITK-SNAP

software to obtain three dimensional images. A total of
385 radiomic features consisting of form factor features,
histogram features, and textural features (such as Gray
Level Size Zone Matrix [GLSZM], Gray Level Run
Length Matrix [GLRLM], and Gray Level Cooccurrence
Matrix [GLCM]). The description of feature extraction
algorithms are presented in Supplementary Material.
We applied the least absolute shrinkage and selection

operator (LASSO) regression to select the most signifi-
cant features suggestive malignancy [15]. We performed
100 iterations of 10-fold cross-validation with minimal
binomial deviance to select the optimal parameters in
LASSO regression [16].

Training and validation of the conventional CT signature,
radiomic signature and radiomic nomogram
To determine the additional value of radiomic signature
to conventional CT features, we developed and com-
pared three models (i.e., conventional CT signature,

Fig. 2 Radiomic workflow. Contrast-enhanced chest CT images are retrieved for radiomic feature extraction. ROIs of pulmonary nodules are
segmented and the corresponding ROIs are stacked up to construct VOI of the nodules. Six categories of radiomic features are extracted from
within the defined VOI, including histogram features, form factor features, and texture features
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radiomic signature and radiomic nomogram). Conven-
tional CT signature was built based on the results of
multivariate logistic regression analysis of 11 conven-
tional CT features. Radiomic signature or radiomic score
(Rad-score) was calculated by linearly fitting the selected
radiomic features after weighted by their respective coef-
ficients. Finally, radiomic nomogram was constructed by
a multiple logistic regression using the selected conven-
tional CT features and Rad-score.
The area under the receiver operating characteristic

curve (AUC), accuracy, sensitivity, and specificity were
used to evaluate the performance of the three models in
the validation dataset. Calibration curve and the
Hosmer-Lemeshow test were used to assess the calibra-
tion and goodness-of-fit of the radiomic nomogram [17].

Statistical analysis
All the statistical analyses were performed using R soft-
ware (version 3.4.2). The packages were used as follows:
“glmnet” for LASSO logistic regression, “rms” for nomo-
gram and calibration plots, and “vcdExtra” for Hosmer-
Lemeshow test. Differences of patient and nodule char-
acteristics between the training dataset and validation
dataset were compared using Chi-square test or Fisher’s
exact test or Mann–Whitney U test, if appropriate. The
AUC comparison of different models used Delong test.
A P < 0.05 was considered significant.

Results
Patient and nodule characteristics
Table 1 shows patient and nodule characteristics. The
mean age of 197 patients was 51.0 years. Of the 210 nod-
ules, 87 (41.4%) were classified as benign, including
tuberculomas (15/87, 17.2%), fibrous nodules (13/87,
14.9%), lymph nodes (11/87, 12.6%), hamartomas (13/87,
14.9%), pulmonary cryptococcosis (10/87, 11.5%), in-
flammatory nodules (8/87, 9.2%), inflammatory granu-
loma (4/87, 4.6%), aspergillosis (3/87, 3.4%), sclerosing
hemangiomas (2/87, 2.3%), and atypical adenomatous
hyperplasia (8/87, 9.2%); 123 (58.6%) were malignant,
composed of invasive adenocarcinomas (44/123, 35.8%),
minimally invasive adenocarcinoma (59/123, 48.0%), and
adenocarcinoma in situ (20/123, 16.3%). No significant
difference was found between the training and validation
datasets in regard to most clinical and imaging features
(Table 1).

Feature selection and radiomic signature construction
A total of 385 radiomic features were extracted from
each volume of interest of the nodules on contrast-
enhanced CT images. Five features with non-zero coeffi-
cients were selected by LASSO (Fig. 3a-b). The radiomic
score calculation formula:
Rad-score =

3.608
-4.133e-03*stdDeviation
-0.214*uniformity
-3.082e-08*ClusterProminence_AllDirection_offset1_SD
-1.105e-9*ClusterProminence_angle90_offset1
-6.712e-05*Inertia_angle0_offset4
The five radiomic features were significantly different

between the benign and malignant SPN (for all, p <
0.001) (Fig. 4).

Training and validation of the conventional CT signature,
radiomic signature and radiomic nomogram
The radiomic signature achieved an AUC of 0.878
(95%CI: 0.813 to 0.943), accuracy of 85.0%, sensitivity of
90.1%, and specificity of 76.8% in the training dataset
(Table 2) and an AUC of 0.853 (95%CI: 0.735 to 0.970), ac-
curacy of 81.0%, sensitivity of 82.9%, and specificity of 77.3%
in the validation dataset (Table 2). The was a significant dif-
ference between benign and malignant SPN in regard to
Rad-score in the training dataset (median [interquartile
range], 1.295 [0.880 to 1.631] vs. -0.525 [− 0.964 to 0.106], re-
spectively, P < 0.001, Fig. 5a), which was confirmed in the val-
idation dataset (median [interquartile range], 1.027 [0.444 to
1.841] versus. -0.541 [− 1.208 to − 0.078], respectively, P <
0.001, Fig. 5b).
After multivariate analysis, only two CT findings (nodule

consistency and margins) remained (P < 0.001 and P =
0.026, respectively). The two CT features attained an AUC
of 0.842 (95%CI: 0.779 to 0.906), accuracy of 73.5%, sensi-
tivity of 62.6%, and specificity of 91.1% in the training data-
set and an AUC of 0.833 (95%CI: 0.707 to 0.958), accuracy
of 65.1%, sensitivity of 53.7%, and specificity of 86.4% in the
validation dataset (Table 2). The AUCs of conventional CT
signature and radiomic signature were not significantly dif-
ferent (P = 0.292 and 0.586 in the training and validation
datasets, respectively).
A radiomic nomogram incorporating radiomic signa-

ture, internal composition and margins of nodule was
constructed (Fig. 6a). The radiomic nomogram yielded
an AUC of 0.911 (95%CI, 0.858 to 0.965), accuracy of
87.1%, sensitivity of 87.9%, and specificity of 85.7% in
the training dataset and an AUC of 0.857 (95%CI: 0.723
to 0.991), accuracy of 84.1%, sensitivity of 85.4%, and
specificity of 81.8% in the validation dataset (Table 2),
which indicated that the radiomic signature provides
added value to the conventional CT features in terms of
discriminatory efficacy. The AUC of radiomic nomo-
gram was not significantly different from that of conven-
tional CT features and radiomic signature in the
validation dataset (P = 0.304 and 0.864, respectively).
The calibration curve of the radiomic nomogram is
shown in Fig. 6b. The Hosmer-Lemeshow test yielded P
values of 0.738 and 0.111 in the training and validation
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Table 1 Baseline characteristics of patients and nodules

Characteristics Training dataset
(n = 147)

Validation dataset
(n = 63)

p

Age (years) 51.9 ± 11.3 49.0 ± 11.0 0.079

Sex

Male 60 (40.8%) 16 (25.4%) 0.041

Female 87 (59.2%) 47 (74.6%)

Pathological results

Benign 53 (36.1%) 24 (38.1%) 0.876

Malignant 94 (63.9%) 39 (61.9%)

Maximum Diameter (mm) 7.8 ± 1.8 7.5 ± 1.9 0.273

Location

Left-upper lobe 43 (29.3%) 14 (22.2%) 0.301

Left-lower lobe 19 (12.9%) 14 (22.2%)

Right-upper lobe 48 (32.7%) 23 (36.5%)

Right-middle lobe 13 (8.8%) 6 (9.5%)

Right-lower lobe 24 (16.3%) 6 (9.5%)

Involvement of pleuraa

Pleural indentation without pleural thickness 25 (17.0%) 10 (15.9%) 0.967

Pleural indentation with pleural thickness 4 (2.7%) 2 (3.2%)

Absence 118 (80.3%) 51 (81.0%)

Nodule consistency

GGN 45 (30.6%) 23 (36.5%) 0.565

Solid 60 (40.8%) 26 (41.3%)

Part-solid GGN 42 (28.6%) 14 (22.2%)

Shapea

Regular 141 (98.6%) 61 (96.8%) 1.000

Irregular 6 (4.1%) 2 (3.2%)

Margins

Lobulation 10 (6.8%) 4 (6.3%) 0.546

Spiculation 27 (18.4%) 5 (7.9%)

Both 15 (10.2%) 4 (6.3%)

Absence 95 (64.6%) 50 (79.4%)

Cavitya

Presence 3 (2.0%) 0 (0%) 0.556

Absence 144 (98.0%) 63 (100%)

Calcification

Presence 3 (1.9%) 0 (0%) 0.556

Absence 144 (100%) 63 (100%)

Intranodular changesa

Necrosis 0 (0%) 0 (0%) 0.177

Consolidation 0 (0%) 0 (3.2%)

Vacuoles 15 (10.2%) 2 (3.2%)

Air bronchogram 5 (3.4%) 2 (3.2%)

Absence 127 (86.4%) 59 (93.7%)

Bronchial disruptiona
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datasets, respectively, which indicated good calibration
power.

Discussion
We trained and tested a radiomic nomogram based on
the radiomic signature and the anatomical CT features
for individualized preoperative prediction of lung adeno-
carcinoma, which showed good discriminative power
and calibration. This study indicates that CT-derived
radiomic features supplement the CT findings reported
by radiologists in the prediction process. Note that, this
study provides a non-invasive and effective prediction
tool to determine those patients with a high probability
of lung adenocarcinoma.
Early diagnosis of cancer is associated with prolonged

survival [18], for instance, the 5-year overall survival of
breast cancer was 74.8% between 1975 and 1977; between
2003 and 2009, the number has significantly increased to
90.3% [19]. This increase is mainly due to earlier detection

because of the extensive application of mammography for
cancer screening [19]. Currently, small pulmonary nodules
are still a common and challenging clinical problem. The
classification performance of CT is limited, especially in
small nodules (≤10mm in diameter). More accurate and
reliable non-invasive diagnostic tool is urgently needed for
precise treatment. Early diagnosis of malignant pulmonary
nodules is crucial for the improvement of patient’s long-
term overall survival.
To date, radiologists diagnose lung cancer by largely

depending on qualitative features of CT images, such as
nodule diameter, evidence of spiculation, upper lobe lo-
cation, and pleural indentation [20]. Low-dose CT
screening for pulmonary nodules may reduce mortality,
however, it also has the risk of overdiagnosis due to de-
tect indolent tumors [5]. Some radiologists contended
serial examinations for all serendipitous SPN on CT to
render an timely lung operation for cure [7], which may
be too aggressive. Excessive detection of SPN might has

Table 1 Baseline characteristics of patients and nodules (Continued)

Characteristics Training dataset
(n = 147)

Validation dataset
(n = 63)

p

Presence 0 (0%) 0 (0%) 0.300

Absence 147 (100%) 62 (98.4%)

Unclear 0 (0%) 1 (1.6%)

Vessel convergence sign

Presence 0 (0%) 0 (0%) 1.000

Absence 147 (100%) 63 (100%)
aFisher’s exact test

Fig. 3 Radiomic feature selection using LASSO logistic regression. a Selection of the tuning parameter (λ). The LASSO regression model was used
with penalty parameter tuning that was conducted by 10-fold cross-validation based on minimum criteria. The binomial deviance was plotted
versus log (λ). The dotted vertical lines were plotted at the optimal λ values based on the minimum criteria and 1 standard error of the minimum
criteria. The optimal λ value of 0.0809 with log (λ) = −2.515 was selected. b LASSO coefficient profiles of the 385 radiomic features. The dotted
vertical line was plotted at the λ value of 0.0809, resulting in five nonzero coefficients
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Fig. 4 Violin plots present the boxplots of the five radiomic features in the training and validation datasets, respectively

Table 2 Predictive performance of clinical-only, radiomics-only, and combined clinical-radiomics models

Models Training dataset
(N = 147)

Validation dataset
(N = 63)

AUC (95%CI) Accuracy Sensitivity Specificity AUC (95%CI) Accuracy Sensitivity Specificity

Conventional CT signature 0.842 (0.779–0.906) 0.735 62.6% 91.1% 0.833 (0.707–0.958) 65.1% 53.7% 86.4%

Radiomic signature 0.878 (0.813–0.943) 0.850 90.1% 76.8% 0.853 (0.735–0.970) 81.0% 82.9% 77.3%

Radiomic nomogram 0.911 (0.858–0.965) 0.871 87.9% 85.7% 0.857 (0.723–0.991) 84.1% 85.4% 81.8%
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potential adverse implications on current medical system
and clinical practice, such as low utilization of limited
resources, raised health care costs, increased radiation
and risk for morbidity and mortality of patients [7]. CT-
guided percutaneous biopsy has commonly used to ob-
tain tumor histological results due to the characteristics
of peripheral location of most pulmonary nodules. How-
ever, in actual clinical practice, progressively smaller
nodules often result in reduced sensitivity for percutan-
eous biopsy [21, 22] and other factors also influence the
accuracy of biopsy including nodule morphology and
length of needle path [20]. In addition, percutaneous bi-
opsy has several limitations, such as invasive nature and
high risk for complications [23]. Therefore, non-invasive
imaging-based biomarkers are needed to provide add-
itional diagnosis information.
Recently, the increased training of medical image ana-

lysis and tools has driven additional studies investigating
the radiomics of lung cancer. Radiomic signatures may
help to mining bioinformatics behind lung cancer on
medical image, for instance, tumor staging [24], gene ex-
pression patterns [25], treatment response [26, 27], and
patient survival [28, 29]. Current determination of
whether radiomic features can improve the prediction of
pulmonary nodules as being malignant as opposed to
conventional visual assessment on CT is a hot topic [30,
31], but most studies have examined nodules smaller
than 30mm in diameter. In this study, 210 SPN less
than 10mm with surgery-proven malignancy or benign
status were included for radiomic analysis. All radiomic
features were extracted from a same CT scanner, with
same imaging parameters and reconstruction slice

thicknesses. As Wu et al. indicated, without control of
the variability of factors such as imaging scanners, scan-
ning parameters, the performance of radiomic features
could be depressed [32]. An increased number of radio-
mic features has the potential ability to quantify intra-
tumoral heterogeneity. However, most of high-
dimensional features are redundant, which will cause
poor classification performance. We aimed to select the
radiomic features that most associated with lung adeno-
carcinoma. Only five useful features were selected from
385 features by LASSO algorithm. Unlike previous stud-
ies, this study describes some important CT findings that
contribute to the differential diagnosis of lung adenocar-
cinoma. After multivariate analysis, internal composition
and margins were two independent clinical features of
lung adenocarcinoma. Those nodules with GGN, lobula-
tion and/or signs of speculation had a higher risk for
malignancy, which was consistent with the radiologists’
experience. The conventional CT signature attained a
accuracy of 0.735 and 0.651 in the training and valid-
ation dataset, respectively. We hypothesized that radio-
mic features could further improve the diagnostic
accuracy of a CT signature. Our study demonstrated the
predictive performance of conventional CT features was
improved by adding radiomic features, attaining accur-
acy of 0.871 and 0.841 in the training and validation
datasets, respectively.
A number of risk models have been developed, of

varying complexity for identifying risk of incident lung
cancer among patients with visible lung nodules [33–
38]. The models were based on significant patient and
nodule characteristics. The accuracy and clinical utility
of predictive models depends on the case mix of the
population in which it was derived and the prevalence of
malignancy in that population. The risk prediction
models should be externally validated before they are
used in a different clinical setting and population. The
four validated models were the Mayo Clinic [33], Vet-
erans Administration [34], Herder [39] and Brock [38].
The studies have shown AUC of 0.89 for Mayo Clinic
model, 0.74 for Veterans Administration, 0.92 for Herder
and 0.90 for Brock. Our radiomic model achieved similar
performance, with an AUC of 0.857. Compared with
previous models, our model didn’t consider patient data,
but included radiomic features extracted from CT im-
ages that could reflect intratumoral heterogeneity. How-
ever, our model lacks external validation. We hope to
explore the added value of radiomics to the existing risk
prediction models.

Conclusions
In summary, this study showed the potential of radiomic
features extracted from unenhanced CT images for pre-
dicting lung cancer before surgery. Radiomic features

Fig. 5 Violin plots present the boxplots of the radiomic score in the
training and validation datasets, respectively
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showed the added value to the conventional CT features
in differentiating lung adenocarcinoma from benign
SPN. This study provides doctors a radiomic nomogram
as a non-invasive tool for individualized prediction of
lung cancer preoperatively. However, before applying in
real-world setting, more studies are needed to validate
the performance of the radiomic nomogram.
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