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The initial engraftment of tumor cells is
critical for the future growth pattern: a
mathematical study based on simulations
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Abstract

Background: Xenograft mouse tumor models are used to study mechanisms of tumor growth and metastasis
formation and to investigate the efficacy of different therapeutic interventions. After injection the engrafted cells
form a local tumor nodule. Following an initial lag period of several days, the size of the tumor is measured
periodically throughout the experiment using calipers. This method of determining tumor size is error prone
because the measurement is two-dimensional (calipers do not measure tumor depth). Primary tumor growth can
be described mathematically by suitable growth functions, the choice of which is not always obvious. Growth
parameters provide information on tumor growth and are determined by applying nonlinear curve fitting.

Methods: We used self-generated synthetic data including random measurement errors to research the accuracy of
parameter estimation based on caliper measured tumor data. Fit metrics were investigated to identify the most
appropriate growth function for a given synthetic dataset. We studied the effects of measuring tumor size at different
frequencies on the accuracy and precision of the estimated parameters. For curve fitting with fixed initial tumor volume,
we varied this fixed initial volume during the fitting process to investigate the effect on the resulting estimated
parameters. We determined the number of surviving engrafted tumor cells after injection using ex vivo bioluminescence
imaging, to demonstrate the effect on experiments of incorrect assumptions about the initial tumor volume.

Results: To select a suitable growth function, measurement data from at least 15 animals should be considered. Tumor
volume should be measured at least every three days to estimate accurate growth parameters. Daily measurement of the
tumor volume is the most accurate way to improve long-term predictability of tumor growth. The initial tumor volume
needs to have a fixed value in order to achieve meaningful results. An incorrect value for the initial tumor volume leads
to large deviations in the resulting growth parameters.
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Conclusions: The actual number of cancer cells engrafting directly after subcutaneous injection is critical for future tumor
growth and distinctly influences the parameters for tumor growth determined by curve fitting.

Keywords: Tumor growth, Nonlinear systems, Parameter estimation, Nonlinear least squares, Gompertz model,
Exponential model, Power model, Logistic model, Replacement, reduction and refinement (3Rs), Animal welfare

Background
Experiments with mouse models are some of the most im-
portant experimental tools to study the growth of tumors,
their metastatic progression and the effect of therapeutic inter-
ventions [1, 2]. In these types of experiments the animals are
assigned to different groups, which are then subject to treat-
ment or serve as control groups. Cells, often from commer-
cially available human cell lines, are engrafted under the skin
of genetically identical immunodeficient mice. After a period
of time when the primary tumors are allowed to grow, the size
of each tumor is normally measured by caliper every two or
three days. At the end of the experiment, the animals are
sacrificed and the primary tumors are excised and analyzed
directly. Typically, the variations between groups in the mean
values of primary tumor size measured on different days are
considered to be indicators of differences in, for example, the
effectiveness of a drug treatment [3–6]. Sometimes data from
these experiments are fitted to mathematical growth functions
to describe and predict the growth of the tumor [7–9]. This
experimental procedure promises well-defined reproducible
results and generates new insights into metastasis formation
when mathematical modeling is applied [10]. However, des-
pite the identical setup and careful execution of the experi-
ments, the final size of the primary tumors typically varies by
a factor of five [11]. The reasons for this wide range in size are
not fully understood. We may assume that there is a large
variation in the number of malignant cells that survive the first
days following engraftment. Another possible effect may be
variation in the growth parameters caused by, for example,
slight differences in location of the engrafted cells affecting
their proximity to the nearest blood vessels. It is therefore
questionable whether the common approach of only using the
mean values of primary tumor size measured on different days
can deliver valid results, or whether the observed differences
in fact represent random variations of the number of
engrafted cells. In order to avoid this problem, data from each
mouse can be fitted individually to mathematical functions
such as the Gompertz growth function [12–14]. The resulting
parameters of the mathematical functions provide meaningful
information about the growth behavior of the tumor and dif-
ferences between the different in vivo tumor models. These
data are also important for the parametrization of mathemat-
ical and computer models of cancer growth and the influence
of experimental therapeutic intervention on tumor growth
and metastasis formation [15–18]. A systematic evaluation of
whether this approach is delivering reliably accurate results,

and under which circumstances these can be obtained, is the
subject of the research presented in this article.
Different growth functions are in use to model the growth

of the primary tumor mathematically, most notably the Gom-
pertz and exponential growth functions [7, 12–14, 19, 20].
The choice of which of these two growth functions to use is
not obvious, since in many cases growth saturation of the pri-
mary tumor is not reached during the experiment. Experi-
mental errors make this identification even more difficult.
Besides the Gompertz and exponential growth functions,
other mathematical models exist that describe growth behav-
ior depending on the type of tumor [21, 22], for example the
power law, von Bertalanffy [23], generalized logistic [19, 24] or
dynamic carrying capacity model. The latter is based on time-
dependent carrying capacity as a result of the process of
angiogenesis [25]. It is of fundamental interest, accurately
identifying the type of growth function that best describes the
growth behavior. Due to animal welfare considerations (the
Three Rs: Replacement, Reduction and Refinement), only a
small number of mice can be investigated and experiments
are terminated once the tumors have reached 1.2 cm3 in vol-
ume [26]. However, the number of animals that have to be
studied to identify the most suitable growth function is an
open question.
Experimental xenograft mouse data suffer from many

sources of experimental inaccuracies. Measurement is
influenced by the epidermis, adipose tissue and fur of
mice themselves, as well as unsystematic errors made by
the laboratory staff. Furthermore, tumor volume deter-
mination with a manual caliper influences the results,
since only two dimensions of the tumor can be mea-
sured while neglecting the depth of the tumor. In
addition to the maximum likelihood estimation (MLE)
method, the most common approach to determining
growth parameters from a population or individual data
affected by measurement errors is a curve fit applying
least-squares minimization [21, 27, 28], which is avail-
able out of the box in mathematical computational soft-
ware such as MATLAB [29], Origin [30] or Prism [31].
However, this method tends to yield unrealistic values of
initial tumor volume. As an example, in the analysis of
experimental data where 106 cells were engrafted into
mice, the least-square fit delivered results of less than
100 surviving tumor cells, which is biologically implaus-
ible [32]. It could also be argued that an incorrectly
chosen model for the parameter estimation process
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causes this behavior. A common way to address the
problem of unrealistic values is to fix the initial cell
number as the number of injected cells during the
parameter estimation process to reduce the number of
degrees of freedom, as in Benzekry et al. [21], for ex-
ample. However, there is no experimental data concern-
ing the number of tumor cells that survive engraftment.
We hypothesize that the percentage of cells surviving
after s.c. injection into immunodeficient mice most likely
varies considerably depending on the used cell line and
mouse strain. A fixed initial cell number is a mere as-
sumption and the consequences for parameter estima-
tion are unclear at present.
Our research addresses the question of how growth of

the primary tumor can be quantified by applying mathem-
atical models, and investigates the limitations of different
methodological approaches. We used self-generated syn-
thetic data including random measurement errors to mimic
a typical experimental setup. Known parameters of growth
behavior were compared with the results from the least-
squares curve fitting approach. Different sample sizes were
used to investigate how many animals are necessary to
make a well-founded decision about the most suitable
growth function for the underlying tumor data using good-
ness of fit criteria. The influence of the frequency of tumor
volume measurement was investigated based on curve fit-
ting with free and fixed initial volume conditions. Because
we found that the choice of a fixed initial volume had a
large effect on parameter estimation, a first proof-of-
concept animal experiment using a well-established xeno-
graft model was performed to determine the number of vi-
able cells on days 1, 2, 4 and 8 after injection by making
use of the bioluminescent properties of the used tumor
cells. Only viable cells are able to metabolize luciferin by
the genetic overexpression of luciferase and hence to emit
photons that can be detected by bioluminescence imaging.
By measuring the photon flux emitted from tumor cells
taken from in vitro culture in parallel (standard row ranging
from 106 to 101 cells), we could estimate the number of vi-
able cells in the skin tumor nodules on days 1 to 8 after in-
jection to improve the parameter estimation process.

Methods
Cell culture
The prostate cancer cell line PC-3 (obtained from
ATCC®, CRL-1435™) was cultured in RPMI-1640
medium containing 10% heat inactivated fetal bovine
serum, 100 U/ml penicillin and 100 μg/ml streptomycin
(Gibco, Paisley, UK) under standard cell culture condi-
tions (37 °C, 95% relative humidity, 5% CO2).

Lentiviral transduction
PC-3 cells were prepared for bioluminescence imaging
(BLI) by lentiviral transduction using a mixture of three

vectors (LeGO-Luc2-iCer2-Puro+, LeGO-Luc2-iV2-
Puro+ and LeGO-Luc2-iC2-Puro+), adjusted to equal ti-
ters. Using this approach, we achieved stable expression
of fire fly luciferase from Photinus pyralis (Luc2, Pro-
mega), fluorescent proteins (Cerulean, Venus or
mCherry, respectively) and a resistance to puromycin
(puromycin N-acetyltransferase) in the PC-3 cells as de-
scribed before [33]. These PC-3 Luc2/RGB cells were
cultured in medium as described above, but supple-
mented with 500 ng/ml puromycin.

Animal experiments for detection of surviving engrafted
cells
At 10 to 12 weeks old, 8 male NSG (NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ; Jax, Stock 005557) mice were subcutane-
ously (s.c.) injected with 106 PC-3 Luc2/RGB cells. On
day 1, 2, 4 or 8 after tumor cell injection (n = 2) the
NSG mice were anesthetized with xylazine/ketamine
(120/16 mg/kg body weight, Bayer, Leverkusen, Germany
/ Graeub, Bern, Switzerland) and administered with lu-
ciferin (150 mg/kg body weight; Sigma, Steinheim,
Germany) intraperitoneally, 10 min before sacrificing the
mice (terminal cardiac blood collection with following
cervical dislocation) for resection of s.c. tumor nodules.
Mice were distributed randomly to the groups. The ex-
periment was not blinded. In parallel, a cell standard of
106 cells to one cell was plated in triplicate on a 96-well
plate in 100 μl of 300 μg/ml D-luciferin potassium salt
(Biosynth AG, Thal, Switzerland) diluted in Dulbecco’s
phosphate-buffered saline (DPBS, Gibco, Paisley, UK).
Tumors and prepared cells were measured in the in vivo
imaging system (IVIS 200, Perkin Elmer, Waltham, MA,
USA) for BLI signals. The signal intensity was analyzed
by total flux (p/s/cm3/sr) with Living Image Software
(Perkin Elmer, Waltham. MA, USA).
The animal experiments were approved by the local

animal experiment approval committee (Behörde für
Gesundheit und Verbraucherschutz, Amt für Verbrau-
cherschutz, Lebensmittelsicherheit und Veterinärwesen,
Freie und Hansestadt Hamburg, assigned project No.
G80/16). They are in accordance with the relevant na-
tional and international guidelines. The animals were
housed with a 12 h day-night cycle in a temperature-
(21 °C) and humidity- (50%) controlled room. All mice
were kept in individually ventilated cages under
pathogen-free conditions, fed with sterile standard food
and water ad libitum.

Statistical analyses of animal experiments
Due to the proof-of-principle character of this animal
experiment, a cohort size of n = 2 was used. Moreover,
we aimed to analyze the dynamics in tumor cell survival
early after injection. Therefore, we did not intend to per-
form statistical tests between different groups.

Hoffmann et al. BMC Cancer          (2020) 20:524 Page 3 of 14



Mathematical models
Mathematical models describe the change in tumor
volume V over time t. We focused our study on four
growth functions: exponential, Gompertz, power and
generalized logistic. These functions are widely used
to describe and predict the growth behavior of tu-
mors [21, 22, 34–36]. In the presented models,
growth starts from an initial tumor volume V0, which
is the number of engrafted tumor cells at the begin-
ning of the experiment.

Exponential
The simplest tumor growth behavior is exponential
growth, where the cells divide regularly (constant doub-
ling time) and growth is not decelerated by limitations
of nutrients and space. This behavior is usually observed
at the early stages of tumor development [20]. Exponen-
tial growth is defined by.

V tð Þ ¼ V 0e
at ð1Þ

where a is the initial proliferation rate at V0.

Gompertz
The Gompertz function is sigmoid, with a characteristic
“S”-shaped curve, and is the most common function
used to describe tumor growth. In the initial stages the
growth pattern corresponds to an exponential function.
The tumor grows over time and requires more and more
nutrients and space, which become less available with
time. At a certain size, tumor growth reaches saturation
and the curve levels off. The Gompertz growth is defined
by.

V tð Þ ¼ V 0e
a
β 1−e−βtð Þ ð2Þ

where a is the initial proliferation rate and β is the rate
of exponential decay, which is controlled by environ-
mental conditions.

Generalized logistic
The generalized logistic equation is another type of S-
shaped curve that is limited by a carrying capacity
denoted by K. The growth rate a decreases linearly in
proportion to the carrying capacity [24]. Generalized lo-
gistic growth is defined [35] by.

V tð Þ ¼ K V 0 eat

K þ V 0 eat−1ð Þ ð3Þ

Power
A power function can also be used to describe growth
behavior for some types of tumor [37]. The power func-
tion is defined [35] by.

V tð Þ ¼ V 1−α
0 þ 1−αð Þrt� �1= 1−αð Þ ð4Þ

where α describes the fraction of the tumor that is able
to grow (α < 1) and r is the initial proliferation rate at
V0.

Generating synthetic data
In order to evaluate parameter estimation, we generated
synthetic data including measurement errors. These er-
rors were quantified using experimental data by
Benzekry et al. [21]. We used the statistical framework
from this publication to generate synthetic tumor data
Y, including errors, applying the following mathematical
formalism:

Y j
i ¼ M t ji ; β

� �
þ σ jE j

i ε
j
i ð5Þ

This framework generates for animal j at time t ji , the

deterministic volume y ji ¼ Mðt ji ; βÞ based on a determin-
istic model M, which depends on a parameter vector β.
Measurement errors are added to the deterministic

volume y ji , where ε ji � N ð0; 1Þ is a random Gaussian

variable and σ jE j
i is the standard deviation of the error.

The following error model was applied to generate indi-
vidual measurement errors for each animal:

E j
i ¼

y ji
� �α

; y ji ≥Vm

V α
m; y

j
i < Vm

( )
ð6Þ

where Vm is the measurement threshold that represents
the smallest measurable tumor volume using a caliper.
The parameters Vm = 83 mm3, α = 0.84 and σ = 0.21
from the literature were used [21].

For y ji eqs. (1) (2) (3) and (4) were used with the pa-
rameters displayed in Table 1. Parameters for Gompertz
growth were taken from Benzekry et al. [21]. The growth
parameters for all other growth functions were derived
from the Gompertzian synthetic data. The growth
parameters were manually tuned until the generated
synthetic data showed a tumor volume of (1730 mm3 ±
130 mm3) as the Gompertz data at the end of the experi-
ment. Parameter V0 was set to 1mm3 for all growth
functions. The generation of synthetic data was imple-
mented with MATLAB (MATLAB R2019a, The Math-
Works Inc., Natick, MA, USA).

Curve fitting procedure
A common problem with the analysis of experimental
data is the limited duration of experiments due to ani-
mal welfare considerations. Often this leads to an ab-
sence of data points in the advanced stages of the
experiment where the tumor would have reached its
maximum size, corresponding to the saturated area of a
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Gompertz or logistic function. To mimic a common ex-
perimental setup [38], we analyzed N data points ranging
from days 23 to 43, where the number of data points N
depends on the measuring frequency of 1, 2, 3 or 4 days
between each measurement of the tumor volume.
Least-squares minimization was performed using lsqcurve-

fit (trust-region reflective algorithm) from the MATLAB
Optimization Toolbox (MATLAB R2019a, The MathWorks
Inc., Natick, USA) to obtain growth parameters based on

N synthetic tumor volume data Y j
i ¼ ½Y j

1;…;Y j
N � for

each individual dataset j. The fits were performed to
obtain all parameters depending on the mathematical
model M without the help of any prior knowledge,
for example well-known growth rates or carrying cap-
acities for specific cell lines. We also performed the
same fits but with a fixed initial tumor volume V0 = 1
mm3, which is widely used to reduce the number of
degrees of freedom [21, 28, 35, 39] (as examples
among many other studies). For comparison, we per-
formed the same fits with different initial tumor vol-
umes V0 = {1.0, 0.8, 0.6, 0.4, 0.2, 0.1} to study the
influence of an incorrectly assumed fixed initial tumor
volume on the estimated growth parameters.

Goodness of fit criteria
To determine which of the selected growth functions (1)
to (4) best modeled the growth behavior of the synthetic
data, different fit metrics were used. A classical goodness
of fit criterion is the root mean squared error (RMSE),
which sums up the deviations between the observed
values yi and the predicted values ŷi (residuals):

RMSE j ¼
ffiffiffiffi
1
N

r XN

i¼1
y ji−ŷ

j
i

� �2
ð7Þ

The RMSE value can range from 0 to ∞ depending on
the scale of the data (absolute measure of fit). Overall,
the lowest RMSE value can indicate the best mathemat-
ical model to describe the underlying data.
Another criterion is the coefficient of determination

denoted by R2 (R squared):

R2 j ¼ 1−

PN
i¼1 y ji−ŷ

j
i

� �2
PN

i¼1 y ji−y
j
i

� �2 ð8Þ

where y is the overall mean of the observed values. R2

describes how well the regression predictions approxi-
mate the observed data points. A value of R2 = 1 indi-
cates that a chosen model perfectly fits the underlying
data. Lower values of R2 indicate a non-perfect fit. Even
negative values are possible, if the summed squared
error based on the estimated fit curve is greater than the
summed squared error based on the mean line.
To take into account the fact that different models

have different numbers of degrees of freedom that can
be fitted, the Akaike information criterion (AIC) [40, 41]
was calculated, which penalizes a higher number of free
growth parameters. AIC is defined by.

AIC j ¼ N� ln

Pn
i¼1 yi−ŷið Þ2

N

 !
þ 2k ð9Þ

where k is the number of free parameters. When the
number of data points N is small compared to the num-
ber of parameters k, a corrected version of AIC is more
accurate:

AICc j ¼ AIC j þ 2k k þ 1ð Þ
N−k−1

ð10Þ

Accuracy and precision
To investigate the influence of different measurement
frequencies (1, 2, 3 or 4 days between each measure-
ment), the parameter estimation bias (peb) [42] was cal-
culated to assess the accuracy of each parameter:

peb ¼
Pn

k¼1
θ�−θ
θ

� �
n

ð11Þ

where θ∗ is the estimated parameter value, θ is the true
parameter value of the synthetic data and n is the num-
ber of samples within the population. For example, a
peb of ±0.10 represents a deviation of ±10% from the
original parameter. To describe the precision (statistical
variability) of the estimated parameters, the coefficient
of variation was calculated:

CV ¼ σ
x
�100 ð12Þ

where σ is the standard deviation of each parameter
within the population and x is the mean value of each
parameter.

Table 1 Summary of the selected parameters for the
generation of synthetic data

Function Parameter Value

Exponential a [day− 1] 0.175

Gompertz a [day−1] 0.56 [21]

β [day−1] 0.719 [21]

Generalized logistic a [day−1] 0.19

K [mm3] 3500

Power r [day−1] 0.78

α 2/3
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Results
Applying nonlinear curve fitting with a fixed initial tumor
volume improves the accuracy of the estimated
parameters
Some time after subcutaneous injection of the tumor
cells, the primary tumor at the injection site becomes
large enough to be measured. The frequency of measur-
ing the size of the tumor depends on various criteria,
such as the availability of qualified staff, the goal of the
experiment and the regulations at the research facility.
Gompertzian based synthetic data were evaluated by

applying nonlinear curve fitting under conditions of
fixed (V0 = 1mm3) and non-fixed initial tumor volume
to compare the accuracy and precision of the estimated
parameters. Fixing the initial tumor volume to a con-
stant value is believed to be more precise due to the re-
duced number of degrees of freedom [21, 28, 35, 39]. As
an example of using a fixed vs. non-fixed initial volume
during the fitting procedure, Fig. 1 shows growth curves

of fits on a single synthetic sample with different meas-
urement frequencies compared to the true volume which
represent the synthetic tumor growth with the true set
of growth parameters without measurement errors. The
growth curves with a fixed initial tumor volume look
similar (RMSE ¼ 94:19� 2:96) in the period under con-
sideration (day 23 to day 43, gray dashed lines), but
there are differences in the further course of the tumor
growth curve (RMSE 214:59� 16:75). However, the pre-
dictions in Fig. 1 are still within one and two standard
deviations of the measurement error for the fixed and
non-fixed fit curve, respectively. In order to check the
accuracy and precision of the estimated parameters nu-
merically, the parameter estimation bias (peb) and the
coefficient of variation (CV) were calculated for a sample
of 20 animals (Table 2). Additionally, we investigated an-
other period under consideration (day 14 to day 43) to
include more tumor volume data points beginning from
~ 150mm3 (Additional file 2). This data support our

Fig. 1 Example of estimated growth curves based on different data availability. Representative example of estimated growth curves and their
forecast performance. Each fit was performed based on the same synthetic sample, but different data points from that sample set were used.
*True synthetic tumor growth without errors. Fit curves based on different number of days between each data point: a = 1, b = 2, c = 3 and d = 4
days. The initial tumor volume V0 was fixed to 1 mm3 (**) and non-fixed (***) during curve fitting
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findings for data points beginning from ~ 500mm3. In
general, the precision and accuracy decrease with de-
creasing measuring frequency, especially when V0 is not
fixed during the fitting procedure. We conclude that the
best results in terms of parameter estimation can be ob-
tained with a one-day measuring frequency and a fixed ini-
tial tumor volume. However, a measuring frequency of
three days is also sufficient to describe the underlying data
points, since the determined parameters deviate from the
correct value by less than 2% (peb = ± 0.02) in combination
with a fixed initial tumor volume (Table 2). Furthermore,
with an increasing number of data points the estimated pa-
rameters will be more accurate, especially with a non-fixed
initial tumor volume (see Additional file 2). Despite these
results, we do not recommend performing curve fitting
without a fixed initial tumor volume.

Measuring tumor size every day improves long-term
predictability of growth model
Inspired by the results of parameter estimation with
fixed and non-fixed initial tumor volumes, we evaluated
Gompertzian synthetic data by applying nonlinear curve
fitting with a fixed (V0 = 1 mm3) initial tumor volume to
investigate the effect of the frequency of tumor size
measurement on long-term predictability. To predict
further tumor growth, the deviation between the true

tumor volume y jT and the estimated tumor volume ŷ ji
was calculated for each sample j at time tj + d, where d is
the prediction depth (Table 3). The predictive power de-
creased with decreasing measurement frequency and in-
creased depth. Statistical tests of differences between
measuring frequencies were performed based on the
quadratic error of the deviation. There is a significant
difference (p < 0.05) between a measuring frequency of 1
day and the others but no significant difference between
frequencies 2 and 3 days (p > 0.05). This behavior was
observed for all studied prediction depths. In order to
evaluate the predictive power for different growth behav-
iors, we investigated a slower (Additional file 3) and fas-
ter (Additional file 4) growth behavior. There is a

significant difference (p < 0.05) between a measuring fre-
quency of 1 day and the others, but no significant differ-
ence (p > 0.05) between the measuring frequencies 2, 3
and 4 days for the slower growth behavior. No significant
difference (p > 0.05) between measurement frequencies
of 1, 2 and 3 days could be found, but a measurement
frequency of 4 days is significant different (p < 0.05)
compared to the other ones for the fast growth behavior.
We assume that the observed difference in prediction is
due to the different availability of data points: In the case
of fast growth, there are more data points on the satur-
ation region of the Gompertz function in the period
under consideration, which makes the prediction of
growth more accurate. Overall, we concluded that the
best results in terms of tumor growth prediction were
obtained with a one-day measurement frequency. There-
fore, we recommend daily measurement in combination
with a fixed initial tumor volume to obtain a good pre-
diction of further tumor growth.

The influence of sample size on the selection of a suitable
growth function
An important question for planning animal experiments
is the selection of group size to achieve reliable results.
If the selected number of animals is too small, significant
differences, for example in the effects of different drugs,
cannot be interpreted correctly. This leads to unneces-
sary animal suffering and waste of resources. On the
other hand, the number of animals should be as small as
possible for animal welfare considerations.
We evaluated the influence of different sample sizes

(number of animals) on the selection of a growth func-
tion for the underlying data using fit metrics for 10, 12,
15, 20 and 25 generated synthetic samples. Ten sets of
samples were generated for each sample size and for
each different growth function (Gompertz, exponential,
power and logistic), as with only one randomly gener-
ated dataset there would be a risk of accidently drawing
a non-representative sample. All growth parameters
were determined by applying curve fitting with a fixed

Table 2 Parameter estimation of 20 synthetic samples of Gompertzian growth based on different measurement frequencies

Parameter Estimated values1 Estimated values3 Peb1 Peb3 CV1 CV3

V0 [mm3] 3.61 (0.01–9.48) 5.11 (0–27.48) 2.6141 4.1113 86.8475 164.8952

a [day−1] 0.52 (0.3–1.19) 0.69 (0.2–1.55) −0.0788 0.2290 44.2930 57.3469

β [day−1] 0.0664 (0.0524–0.0952) 0.0716 (0.0376–0.1031) −0.0765 −0.0035 18.7014 27.685

aa [day−1] 0.55 (0.54–0.58) 0.55 (0.52–0.59) −0.0104 −0.0156 2.0529 3.1901

βa [day−1] 0.0709 (0.0681–0.0758) 0.0702 (0.0655–0.0769) −0.0143 −0.0231 2.6240 4.0617

The mean values for each parameter are indicated. The minimum and maximum values for each parameter are given in parentheses. Estimated parameters and fit
metrics are based on different measurement frequencies of one1 and three3 days between each measurement of the tumor volume. For example, the parameter
estimation bias peb1 and peb3 show results based on measurement intervals of one day and three days, respectively
aParameter V0 was set to 1 mm3 during the fitting procedure
True values: V0 = 1mm3, a = 0.56 day− 1, β = 0.0719 day− 1. A full version of this table is given in Additional file 1

Hoffmann et al. BMC Cancer          (2020) 20:524 Page 7 of 14



initial tumor volume of V0 = 1 mm3 and a measurement
frequency of three days.
As an example of the evaluation procedure, Fig. 2 shows a

graphical representation of the estimated growth curves of a
single synthetic sample based on Gompertzian growth be-
havior (see Table 1) including measurement errors. The cal-
culated fit metrics RMSE, AIC, AICc and R2 for this sample
are displayed in Table 4 (Fit metrics of all datasets based on
Gompertzian growth are shown in Additional file 5). In these
cases, the Gompertz function had the lowest RMSE and
AIC/AICc value as well as the highest R2 value of all four
tested growth functions. In nearly all cases AIC, RMSE and
R2 led to the same decision regarding the most appropriate
growth model (see Availability of data and materials). In sub-
sequent analysis, we used only the RMSE value as a selection
criterion for a specific growth function.
Figure 3 shows the effect of different sample sizes on the

selection of a growth function based on the RMSE value of
the fit of the different growth functions to synthetic data
based on Gompertz growth. In Additional files 6–8 the

synthetic data is based on exponential, power and logistic
growth. The relative frequency denotes how often one of
the growth functions had the lowest RMSE value for an in-
dividual fit j in each sample size group. The difference in
the RMSE value for two functions may be very small (<
1%), but the function with the lowest value will always be
selected. A relative frequency of more than 50% for one of
the growth functions indicates the most suitable function
to model the underlying data.
The results show that 10 or 12 animals were not al-

ways sufficient to select the true Gompertzian growth
behavior (Fig. 3: sample size 10, synthetic dataset #8;
sample size 12, synthetic dataset #7). Similar results were
also obtained for the power (Additional file 7: sample
size 10, synthetic dataset #8; sample size 12, synthetic
dataset #7) and logistic functions (Additional file 8:
sample size 10, synthetic dataset #5). With a sample size
of 15 animals, a relative frequency of over 50% was
achieved for the correct growth function in each
synthetic dataset (Fig. 3). Therefore, we recommend a

Table 3 Deviation between true and predicted tumor volumes using different time intervals between measurements

Measuring
frequency
(days between
measurements)

RMSE Absolute mean deviation from true volume at depth d [mm3]

1 3 5 10

1 79.00 28.37 (16.64; 40.1) 33.76 (20.15; 47.37) 38.97 (23.4; 54.54) 51.03 (30.67; 71.39)

2 84.06 57.22 (39.19; 75.25) 66.54 (45.92; 87.16) 76.49 (53.9; 99.08) 99.28 (72.07; 126.49)

3 83.94 49.8 (37.8; 61.8) 59.04 (45.27; 72.81) 68.01 (52.04; 83.98) 91.18 (71.16; 111.2)

4 90.79 84.99 (59.68; 110.3) 98.42 (68.92; 127.92) 111.56 (77.93; 145.19) 143.3 (100.89; 185.71)

The absolute mean deviation values based on 20 synthetic samples of Gompertzian growth. Indicated are the absolute mean values for each measurement
frequency and the corresponding depth
() = 95% confidence interval. Parameter V0 was set to 1mm3 during the fitting procedure. The mean RMSE was calculated based on the model fit in the period
under consideration from day 23 to day 43

Fig. 2 Estimated growth curves. Estimated growth curves based on a single synthetic Gompertz growth sample for all selected growth functions.
The initial tumor volume V0 was fixed to 1 mm3 during curve fitting. Just from visual examination, the exponential growth function is not suited
to describing the sample tumor data. Fit metrics can be used to compare the suitability of the other functions
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minimum sample size of 15 animals to select a suitable
growth function that can compensate for the measure-
ment inaccuracies that occur when using calipers to
measure tumor size every three days. Similar results
were obtained when the evaluation was based on a
measurement frequency of one, two or four days (see
Availability of data and materials).
For synthetic data based on the exponential growth func-

tion, the procedure could not correctly identify the exponen-
tial growth function as the best suited function. As the
synthetic data did not provide sufficient information about
the saturated range, the Gompertz or power growth function
was selected erroneously (Additional file 6).

The influence of a fixed initial tumor volume on the
estimated parameters
In a typical experimental setup, 106 cells are subcutane-
ously injected into the mice to form a local tumor nod-
ule. The tumor volume is measured over time and the
growth behavior is analyzed by nonlinear curve fitting.
In order to reduce the number of degrees of freedom

the initial tumor volume is set to 1 mm3, which leads to
more accurate parameter results during the curve fitting
procedure (see Table 2). However, the assumption that
all injected cells survive is questionable. There is no
available data concerning the surviving cell numbers
after injection. We therefore investigated the conse-
quences of an incorrectly assumed initial tumor volume
V0 during the curve fitting procedure for the determin-
ation of tumor growth.
Figure 4 shows the deviation of the results for the

growth rate a (Fig. 4ac) and decay rate β (Fig. 4bd) at dif-
ferent fixed initial tumor volumes during the fitting pro-
cedure, with a measuring frequency of one day and based
on synthetic data with a true initial tumor volume of V t

0

= 1mm3 (Fig. 4ab) and V t
0 = 0.1mm3 (Fig. 4cd). (See Add-

itional files 9 and 10 for measuring frequencies of two,
three and four days based on true tumor volumes of V t

0 =
1mm3 and Vt

0 = 0.1mm3, respectively). As 106 cells were
injected into the mice, we only chose cell numbers less
than 106 cells for the evaluation. Individual fits were per-
formed based on 20 synthetic Gompertz growth samples.
Incorrectly assumed values for Va

0 led to large deviations
from the correct parameters (Fig. 4). Consequently, an in-
correctly estimated growth rate could lead to misinter-
pretation of the aggressiveness of the tumor.
In many cases no significant differences of the pre-

dicted tumor growth was found for two different as-
sumed initial tumor volumes Va

0 = 1 and Va
0 = 0.1 and

true initial volume V t
0 = 1 (Table 3 and Additional file 11)

and Vt
0 = 0.1 (Additional files 12 and 13) with regards to

Table 4 Fit performance of four different growth models based
on a single synthetic Gompertz dataset

Model AIC AICc RMSE R2 Number of parameters

Gompertz 61.22 64.22 59.57 0.97 2

Power law 65.28 68.28 79.62 0.95 2

Logistic 68.06 71.06 97.12 0.93 2

Exponential 93.37 96.37 592.01 −1.51 1

Models are ranked from the lowest to the highest RMSE value

Fig. 3 Effect of sample size on selection of most appropriate growth function for the underlying data. Each sample size (number of animals) was
generated 10 times (synthetic dataset number) to mimic a Gompertzian growth behavior including measurement errors. For each growth
function, Gompertz (Gomp), exponential (Exp), power (Pow) and logistic (Log), the RMSE value was determined for each individual sample within
each dataset (e.g. dataset 2 and sample size 10). The relative frequency denotes how often each of the growth functions had the lowest RMSE
value for an individual fit in each sample size group
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Fig. 4 ab and cd, respectively. As we have already de-
scribed, the accuracy of the prediction depends not only
on the estimated parameters, but also on the growth be-
havior in the period under consideration. For example,
in the case of a fast growth behavior, there are more data
points in the saturation phase of a Gompertzian growth,
which improves the quality of the fit obviously. There-
fore, a free selection of the initial volume of the tumor
(in the range of biological plausible values) can have a
negative effect on the quality of the prediction.

The number of surviving engrafted tumor cells varies by
a factor of 10
In order to confirm the assumption that not all
injected cells contribute to the formation of the initial
tumor, but rather that a proportion of the injected
cells die as the tumor becomes established in the
connective tissue, an animal experiment was per-
formed to examine the survival rate of the injected
cells over a short period. We analyzed a total number
of 8 mice in 4 different groups (days 1, 2, 4 and 8
after tumor cell injection, n = 2 each).
The cell mass of ex vivo tumors and diluted cell

culture control cells was detected by bioluminescence
imaging (BLI) of a luciferin signal. Comparing the pho-
ton flux emitted from the tumor nodules on day 1 post
injection (p.i.) with that emitted from control cells, the
intensity from the tumor nodule was 10 times lower

than the intensity of 1*106 cells (i.e. the number of cells
initially injected). On day 2 p.i. the photon flux from the
tumor reached the same level as that of the injected cell
number (1*106 cells), while on day 4 p.i. it decreased
again to the equivalent of approximately 1*105 cells. On
day 8 p.i. the photon flux from the tumor nodule corre-
sponded to that of 5*105 cells (approx. 50% of the num-
ber of injected cells) (Fig. 5ab).
The animals’ health status was monitored according to

the FELASA guidelines during the experiment. No path-
ogens known to influence the experiments were
detected.

Discussion
Complexity of parameter estimation methods
The present study was undertaken to analyze the best
way to collect data on tumor growth in animal experi-
mentation for mathematical modeling. Parameter esti-
mation methods such as classical least-squares or
maximum likelihood estimation attempt to approximate
the unknown growth parameters using the underlying
tumor data. Patmanidis et al. showed that the use of
MLE methods provides better growth parameter results
when the growth rate and carrying capacity are un-
known than the classical least-squares approach with a
fixed carrying capacity. If neither parameter is fixed, the
least-squares approach can provide better results than
MLE [43]. Therefore, we decided to use the least-
squares approach, since neither of the growth

Fig. 4 Box-plots of parameter estimation results using different initial volume conditions. The initial tumor volume was fixed at V0 = 1 mm3

(Panels a and b) and V0 = 0.1 mm3 (Panels c and d) (x-axis) during the process of fitting to a Gompertzian growth function. The resulting growth
rates and decay rates are based on fits of 20 synthetic data samples. The gray dashed line marks the correct value
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parameters (growth rate and carrying capacity) were
fixed during the evaluation process. Different algorithms
can be used for the least-squares approach, such as the
trust-region reflective, Levenberg–Marquardt or the
Nelder–Mead algorithm, to estimate growth parameters
based on tumor data. Benzekry et al. found no signifi-
cant differences between the parameter results when
comparing these three algorithms using self-generated
synthetic data [21]. Therefore, we used the trust-region
reflective least-squares algorithm implemented in
MATLAB (lsqcurvefit) as the parameter estimation pro-
cedure, which is also the default algorithm in MATLAB.
Overall, the complex curve fitting process depends on
various criteria such as the initial settings (fixed or non-
fixed parameters, boundary conditions or maximum iter-
ations for the selected algorithm) or the quality of the
tumor data, which in turn depends on the volume deter-
mination technique, such as the use of calipers, ultra-
sound or magnetic resonance imaging. Based on the
results of this study, we conclude that the least-squares
minimization approach including a fixed initial tumor
volume condition is able to determine tumor growth

parameters sufficiently well if the number of surviving
cells has been correctly determined.

Experimental methods need to be enhanced for
appropriate mathematical description of tumor growth
Mathematical models are used to describe tumor growth
in experimental and human data in order to better
understand how to treat and predict the growth of can-
cer. A common challenge is the selection of an appropri-
ate model that is robust enough to cope with inaccurate
and missing data points. For these incomplete and error-
prone datasets, fit metrics can help to select a function
that best describes the data points. However, our data
support the previous finding that forming conclusions
relating to long-term growth is difficult [34]. Our find-
ings also show that for proper determination of the
growth parameters it is important to determine the sur-
viving number of engrafted cells and to measure tumor
size every day.

Survival of engrafted tumor cells
The results of the animal experiment indicate that after
s.c. injection 90% of the human tumor cells died and
were not established in the mouse connective tissue.
However, within one further day, the number of viable
cells rapidly increased to the level of the initially injected
cell count (on day 2 p.i.). The strong proliferation seen
between days 1 and 2 p.i. may have been triggered by
growth factors included in the culture medium that was
injected with the tumor cells. On day 4 p.i. the viable
tumor cell numbers at the injection site decreased again
to about 10% of the injected cell count (comparable to
the situation on day 1). We suggest that in this phase
the injected growth factors have been consumed and the
tumor cells are not well enough established in the con-
nective tissue to be in contact with the vascular system,
which is necessary for them to be adequately supplied
with host growth factors. The increased tumor cell count
on day 8 p.i. suggests that the tumor now has a func-
tioning connection to the vascular system and further
tumor growth can be expected.

The absolute number of surviving engrafted tumor cells
is difficult to assess during an experiment
We have highlighted the significant problem that know-
ing the correct number of surviving engrafted tumor
cells is very important in order to improve parameter
estimation results and describe actual tumor characteris-
tics such as the aggressiveness (growth rate) of the
tumor. Our data indicate that the number of surviving
tumor cells is indeed smaller than the number of
injected cells and does vary widely. However, in an on-
going experiment it is practically impossible to deter-
mine the number of surviving engrafted tumor cells

Fig. 5 Bioluminescence signals from cultured tumor cells and initial
tumors. The luciferin signal is depicted for different numbers of
tumor cells (gray) and resected tumor nodules on days 1 (green), 2
(blue), 4 (violet) and 8 (purple) in photons per second per square
centimeter per steradian (p/s/cm2/sr) in a and normalized to 105

cells in b
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during the first days after the injection using standard
tumor volume determination techniques. With all stand-
ard methods for determining the tumor volume, includ-
ing palpation, calipers, X-ray, ultrasound or magnetic
resonance imaging, the tumor nodule is too small to be
detected during the first days/weeks after primary en-
graftment of the injected tumor cells. Because of the ex-
perimental limitations, little is known about the course
of events during this period (Fig. 6). This problem is fur-
ther complicated by the fact that the number of tumor
cells is calculated from the tumor volume and assump-
tions must be made about the structure of the tumor it-
self, such as the proportions of blood vessels, stroma
cells and malignant cells. Further experimental research
is required to improve understanding of the engraftment
phase during experiments and to develop a novel tech-
nique to determine the number of surviving engrafted
tumor cells in vivo.

Preclinical implications
Our results indicate that the number of animals per
group plays an important role in selecting a suitable
growth function based on goodness of fit criteria. For
the purpose of parameter estimation, at least 15 ani-
mals should be selected for an experiment. Research
groups should also consider sample size calculation
techniques to choose an appropriate number of ani-
mals depending on their research aims, for example
power analysis [44, 45].
In terms of parameter estimation, the most accurate

results were obtained with daily measurement to de-
scribe the underlying synthetic data including measure-
ment errors. However, one should bear in mind that a
high measurement frequency increases the burden on

the animals. The measurement frequency should there-
fore be carefully selected depending on the aim of the
experiment.
There is currently no optimum approach for choosing a

more realistic value for the initial tumor volume in the fit.
For the time being we propose a second control group to
evaluate surviving engrafted tumor cells, similar to that
used in this study. The large variation in the number of
malignant cells that survive the first days following en-
graftment can lead to a misinterpretation of the aggres-
siveness or drug effects compared to a control group.
Therefore, this information can then be used to improve
the parametrization during the curve fitting procedure. In
the long term, typical numbers of surviving tumor cells
may be available for particular cell and mouse types. The
definitive approach would be a novel experimental tech-
nique to determine the number of cells in the first days
after injection. We speculate that optical methods would
be a viable direction for further research.

Conclusions
In this article, we have examined the mathematical evalu-
ation process with respect to parameter estimation using
nonlinear least-square curve fitting based on self-generated
synthetic data that mimic caliper measured experimental
xenograft mouse tumor data including measurement errors.
Using this model we were able to determine that selection
of a suitable growth function for experimental data requires
at least 15 animals and that daily measurement provides
the best basis for the evaluation of growth parameters to
describe and predict the growth of cancer. Our study raises
the question of the overall validity of parameter estimation
results if the number of surviving engrafted tumor cells is
not determined in experiments. We conclude that research
into the development of engrafted cells during the first days
is necessary for quantitative understanding of tumor growth
in mouse models.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-07015-9.

Additional file 1: Table S1. Parameter estimation of Gompertzian
growth based on different data availability and growth behavior. Indicated
are the mean values for each parameter. () = Minimum and maximum
values for each parameter. {} = Parameter estimation bias (peb). [] =
Coefficient of variation (CV). *Parameter V0 was set to 1mm3 during the
fitting procedure. True values: V0 = 1mm3, a = 0.56 day− 1, β = 0.0719 day− 1.

Additional file 2: Table S2. Parameter estimation of Gompertzian
growth based on different data availability and growth behavior (first
measured tumor data point on day 14 with a size of about 150 mm3).
Fitting were performed from day 14 to day 43, which corresponds to an
initial tumor volume of about 150 mm3. Indicated are the mean values
for each parameter. () = Minimum and maximum values for each
parameter. {} = Parameter estimation bias (peb). [] = Coefficient of
variation (CV). *Parameter V0 was set to 1 mm3 during the fitting
procedure. True values: V0 = 1 mm3, a = 0.56 day− 1, β = 0.0719 day− 1.

Fig. 6 Schemata of the engraftment phase after injection of tumor
cells. Typically, the number of injected cells (Vinj) is used to perform
nonlinear curve fitting, which leads to erroneous parameter results
(black dotted line). Experimental data indicate that the first days of
tumor nodule growth are not simple but more complex (gray
dashed line)
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Additional file 3: Table S3. Deviation between true and predicted
tumor volumes using different time intervals between measurements
based on 20 synthetic samples of Gompertzian growth (slow growth
behavior). Indicated are the absolute mean values for each measurement
frequency and the corresponding depth. () = 95% confidence interval.
Parameter V0 was set to 1 mm3 during the fitting procedure. The mean
RMSE was calculated based on the model fit in the period under
consideration from day 23 to day 43. Growth parameters: V0 = 1mm3,
a = 0.4284 day− 1, β = 0.055 day− 1 (slow growth behavior).

Additional file 4: Table S4. Deviation between true and predicted
tumor volumes using different time intervals between measurements
based on 20 synthetic samples of Gompertzian growth (fast growth
behavior). Indicated are the absolute mean values for each measurement
frequency and the corresponding depth. () = 95% confidence interval.
Parameter V0 was set to 1 mm3 during the fitting procedure. The mean
RMSE was calculated based on the model fit in the period under
consideration from day 23 to day 43. Growth parameters: V0 = 1mm3,
a = 0.7399 day− 1, β = 0.095 day− 1 (fast growth behavior).

Additional file 5: File S1. Gompertzian_growth_Metrics.xlsx. Fit metrics
of all datasets based on Gompertzian growth.

Additional file 6: Figure S1. Effect of sample size on selection of most
appropriate growth function for the underlying exponential data based
on the lowest RMSE value. Each sample size (number of animals) was
generated 10 times (synthetic dataset number) to mimic an exponential
growth behavior including caliper measurement errors. For each growth
function, Gompertz (Gomp), exponential (Exp), power (Pow) and logistic
(Log), the RMSE value was determined for each individual sample within
each dataset (e.g. dataset 2 and sample size 10). The relative frequency
denotes how often each of the growth functions had the lowest RMSE
value for an individual fit in each sample size group.

Additional file 7: Figure S2. Effect of sample size on selection of most
appropriate growth function for the underlying power law data based on
the lowest RMSE value. Each sample size (number of animals) was
generated 10 times (synthetic dataset number) to mimic a power growth
behavior including caliper measurement errors. For each growth function,
Gompertz (Gomp), exponential (Exp), power (Pow) and logistic (Log), the
RMSE value was determined for each individual sample within each
dataset (e.g. dataset 2 and sample size 10). The relative frequency
denotes how often each of the growth functions had the lowest RMSE
value for an individual fit in each sample size group.

Additional file 8: Figure S3. Effect of sample size on selection of most
appropriate growth function for the underlying logistic data based on
the lowest RMSE value. Each sample size (number of animals) was
generated 10 times (synthetic dataset number) to mimic a logistic
growth behavior including caliper measurement errors. For each growth
function, Gompertz (Gomp), exponential (Exp), power (Pow) and logistic
(Log), the RMSE value was determined for each individual sample within
each dataset (e.g. dataset 2 and sample size 10). The relative frequency
denotes how often each of the growth functions had the lowest RMSE
value for an individual fit in each sample size group.

Additional file 9: Figure S4. Box-plots of parameter estimation results
based on different initial volume conditions (true initial tumor volume =
1mm3). The initial volume V0 was fixed (x-axis) during the fitting proced-
ure. Results are based on 20 synthetic data samples with different meas-
uring frequencies (1, 2, 3 and 4 days between each time point).

Additional file 10: Figure S5. Box-plots of parameter estimation results
based on different initial volume conditions (true initial tumor volume =
0.1 mm3). The initial volume V0 was fixed (x-axis) during the fitting pro-
cedure. Results are based on 20 synthetic data samples with different
measuring frequencies (1, 2, 3 and 4 days between each time point).

Additional file 11: Table S5. Deviation between true and predicted
tumor volumes using different time intervals between measurements
based on 20 synthetic samples of Gompertzian growth. Indicated are the
absolute mean values for each measurement frequency and the
corresponding depth. () = 95% confidence interval. Parameter V0 was set
to 0.1 mm3 during the fitting procedure. Growth parameters: V0 = 1mm3,
a = 0.56 day− 1, β = 0.0719 day− 1.

Additional file 12: Table S6. Deviation between true and predicted
tumor volumes using different time intervals between measurements
based on 20 synthetic samples of Gompertzian growth. Indicated are the
absolute mean values for each measurement frequency and the
corresponding depth. () = 95% confidence interval. Parameter V0 was set
to 0.1 mm3 during the fitting procedure. Growth parameters: V0 = 0.1
mm3, a = 0.745 day− 1, β = 0.0719 day− 1.

Additional file 13: Table S7. Deviation between true and predicted
tumor volumes using different time intervals between measurements
based on 20 synthetic samples of Gompertzian growth. Indicated are the
absolute mean values for each measurement frequency and the
corresponding depth. () = 95% confidence interval. Parameter V0 was set
to 1 mm3 during the fitting procedure. Growth parameters: V0 = 0.1 mm3,
a = 0.745 day− 1, β = 0.0719 day− 1.
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