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Abstract

Background: The microbiome has been shown to affect the response to Immune Checkpoint Inhibitors (ICls) in a
small number of cancers and in preclinical models. Here, we sought to broadly survey cancers to identify those in
which the microbiome may play a prognostic role using retrospective analyses of patients with advanced cancer
treated with ICls.

Methods: We conducted a retrospective analysis of 690 patients who received ICI therapy for advanced cancer. We
used a literature review to define a causal model for the relationship between medications, the microbiome, and ICl
response to guide the abstraction of electronic health records. Medications with precedent for changes to the
microbiome included antibiotics, corticosteroids, proton pump inhibitors, histamine receptor blockers, non-steroid
anti-inflammatories and statins. We tested the effect of medication timing on overall survival (OS) and evaluated
the robustness of medication effects in each cancer. Finally, we compared the size of the effect observed for
different classes of antibiotics to taxa that have been correlated to ICl response using a literature review of culture-
based antibiotic susceptibilities.
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association with OS across all tested cancers.

cancers.

Results: Of the medications assessed, only antibiotics and corticosteroids significantly associated with shorter OS.
The hazard ratios (HRs) for antibiotics and corticosteroids were highest near the start of ICl treatment but remained
significant when given prior to ICI. Antibiotics and corticosteroids remained significantly associated with OS even
when controlling for multiple factors such as Eastern Cooperative Oncology Group performance status, Charlson
Comorbidity Index score, and stage. When grouping antibiotics by class, 3-lactams showed the strongest

Conclusions: The timing and strength of the correlations with antibiotics and corticosteroids after controlling for
confounding factors are consistent with the microbiome involvement with the response to ICls across several

Keywords: Microbiome, Immune checkpoint inhibitors, Antibiotics, Corticosteroids, Cancer, Immunotherapy

Background

Treatment with Immune Checkpoint Inhibitors (ICIs)
has improved patient outcomes across a wide variety of
cancers. Not all patients respond to these drugs and
there is a need to identify biomarkers of response. Three
recent studies have shown that microbes are associated
with response and overall survival (OS) in renal cell car-
cinoma (RCC), non-small cell lung cancer (NSCLC) and
melanoma [1-3]. The microbiome may be a key player
in response to ICI therapy and a potential biomarker of
treatment response.

The microbiome is known to interact with the im-
mune system, but how it affects response to ICIs is not
fully understood. The effectiveness of ICI treatment re-
lies on active T-cell infiltration of a tumor; microbes
have been associated with increased Tumor Infiltrating
Lymphocytes in an IL12-depended manner [2]. How-
ever, other immune cells dampen response to ICIs such
as myeloid-derived suppressor cells and FOXP3 &
CD4 + CD25+ T-regulatory cells, the levels of which
have also been associated with the microbiome [4].
Moreover, the microbiome has been associated with an-
other, systemic form of immune repression characterized
by the production of prostaglandins [5-8].

Several medications commonly used during routine
oncologic care and ICI treatment can influence inflam-
mation pathways and/or the microbiome. Corticoste-
roids (CS) affect both of the aforementioned T-cell
subtypes and the prostaglandin-related inflammatory
pathways [9]. Additionally, antibiotics (ABx) have a dir-
ect effect on the microbiome by Kkilling or halting the
growth of bacteria. Proton pump inhibitors (PPIs), hista-
mine 2 blockers (H2Bs), non-steroid anti-inflammatory
drugs (NSAIDs), and CS have also been associated with
changes in the microbiome but, in contrast to antibi-
otics, this mechanism is indirect [10]. PPIs, by inhibiting
gastric acid secretion, alter the pH of the gut and change
the number and types of bacteria that pass through the
stomach [11]. Notably, if the taxa enriched by the PPI-
induced pH change are also important for response to

ICIs, then PPI treatment during ICI may influence clin-
ical outcomes. The effect of other medications on clin-
ical response may be challenging to interpret given that
the effects may influence both the microbiome and ICI
response.

In order to disentangle these complex interactions, we
created a model of the relationship between patient
characteristics, medications that affect the microbiome,
inflammation, and survival. Second, we performed a
retrospective analysis of patients who received ICI
therapy for advanced cancer between 2011 and 2017 in-
cluding medications with known effects on either the
microbiome or its pathway toward affecting ICI re-
sponse. Third, we estimated the association for each
medication with OS. Fourth, we analyzed the effects of
medications longitudinally, in order to decouple con-
founding variables at different time points. Fifth, we con-
trolled for variables that broadly describe differences in
baseline statuses (e.g. Eastern Cooperative Oncology
Group performance status (PS)) of individuals who re-
ceived concomitant medications and those who did not.
Sixth, we compared the associations across several can-
cers, for which the medications are prescribed in subtly
different ways that can be leveraged to gain further
insight into the causal effects. Finally, we related these
results to the microbes shown to be enriched or depleted
in individuals who respond to ICIs. The combination of
these strategies gives layers of support to defining the
role of the microbiome in the context ICI treatment of
cancer.

Methods

Causal model

We performed a literature review of the relationship be-
tween the microbiome and response to ICIs and medica-
tions that affect the microbiome (Fig. 1, references in
Figure S1). From these references, a causal model was
then constructed such that the nodes correspond to ob-
servable endogenous variables (V}), as a subset of a set of
U exogenous and unobserved variables that affect the
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Fig. 1 Causal model for the effect of concomitant medications on Immunotherapy Response and Overall Survival. Numbers along edges refer to
references supporting the connection. Hypothesized dominant pathways are shown in heavily-weighted edges [1
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relationship between the microbiome and OS in pa-
tients treated with ICIs. Directed edges denote a rela-
tionship between variables when the following
conditions are met: (1) there is a reported relation-
ship between variables in which both variables were
either observed or defined by intervention, and (2)
the relationship cannot be explained through using an
existing path. For example, Gopalakrishnan et al. re-
ported a correlation between the microbiome and ICI
response (1). This relationship exists in the graph as
mediated by the nodes Microbiome — T-cell Medi-
ated Inflammation — ICI Response, therefore no edge
is drawn directly from Microbiome — ICI Response.
The resulting directed acyclic graph was constructed
using the igraph and dagitty packages in R [33, 34].

Retrospective data collection

We identified patients with advanced cancer treated be-
tween 2011 and 2017 at the Ohio State University
Comprehensive Cancer Center/Arthur G. James Cancer
Hospital (OSUCCC-James) who received at least one
dose of ICIs as part of an IRB approved retrospective
study (OSU-2016C0070, OSU-2017C0063). Patient data
were collected and housed in REDCap [35]. Medication
timing, dose and names were collected from the elec-
tronic medical record information warehouse and vali-
dated by manual chart review. Additional diagnoses
prior to ICI start were manually recorded from the
Problem List, Medical History, and Encounter Diagnoses

in the electronic medical record and compiled using the
Charlson Comorbidity Index (CCI) [36], which includes
record of myocardial infarction, congestive heart failure,
peripheral vascular disease, cerebrovascular disease, de-
mentia, chronic pulmonary disease, connective tissue
disease, ulcer disease, mild liver disease, diabetes, hemi-
plegia, moderate or severe renal disease, moderate or se-
vere liver disease (e.g., cirrhosis with ascites), or HIV
AIDS.

Medication history curation

ABx and CS data were retrieved from the information
warehouse within 180 days of ICI start. All medications
matching a comprehensive list of steroid generic and
brand names were collected with dates and routes of ad-
ministration. Medications were filtered to those con-
firmed to be administered and the results checked
against a manually-curated subset of the records.

Survival analysis

Overall survival (OS) was reported in days from the ini-
tiation of ICI to the date of death or last follow-up. All
univariate and multivariate analyses were conducted
using the survminer package in R [37, 38]. Univariate
analyses used Kaplan-Meier survival curves with log-
rank tests. Multivariate analyses used Cox-Proportional
Hazards models, defining the hazard function for each
patient k as:
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Where h(t) is the hazard function at time t=1 to #,
A is a binary indicator of antibiotic use (+/- 28 days
from start of ICIs), S is a binary indicator of cortico-
steroid use (+/-28 days from start of ICls), B is BMI,
E is the Eastern Cooperative Oncology Group per-
formance status score [1-5], G is age, T is stage and
X is sex. We constructed the models using the sur-
vival package and evaluated model fits using a likeli-
hood ratio tests in R [39-41].

Timing analysis

A 30-day sliding window was used to evaluate the effect
of medication timing on the association with OS. Pa-
tients prescribed medications within the window were
compared to a cohort of individuals who were not pre-
scribed those medications within 180 days before or after
the start of ICI treatment. Kaplan-Meier survival curves
were used to estimate a hazard ratio (HR) of association
with each treatment window, incremented by single-
days, e.g. prescribed 180—150 days before ICI start vs no
prescribed medications, and then prescribed 179-149
days before ICI start vs no prescribed medications. HRs
and confidence intervals were calculated in the survival
package and plotted with ggplot2 in R [40—42].

Antibiotics and corticosteroids classes

ABx and CS were collapsed into categories by DrugBank
v5.0 accession numbers [43]. HRs were estimated for
medication class and cancer combinations if the total
sample set included at least 20 individuals. Cox Propor-
tional Hazards models for the effects of ABx and CS
class were used to allow for simultaneous estimation of
the effects of more than one class, when applicable. Plots
showing prescriptions of more than one class were cre-
ated with the UpSetR package in R [44].

Regularized cox regression

Regularized Cox survival models for each cancer were
implemented in the glmnet and coxnet packages in R
[45, 46]. We optimized the regularization parameter by
coordinate descent via 10-fold cross-validation and then
tested the robustness of the parameter selection and
resulting covariates with 1000 bootstrap replicates of dif-
ferent random samples of the dataset [45, 46].

Reproducibility
Scripts to reproduce all figures and analyses can be
found at https://github.com/spakowiczlab/co-med-io.
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Results

Causal model

The relationships between clinical variables, medica-
tions, the microbiome, ICI response and OS are strongly
interconnected. Our literature review to predict their re-
lationships (Fig. 1) led to several hypotheses testable
within retrospective data. First, medications that affect
ICI response via the microbiome will proceed through
T-cell mediated inflammation (i.e. ABx — Microbiome
— T-cell mediated inflammation — ICI Response —
OS). Second, the use of these medications is driven by
comorbidities, which must be controlled for. Here we at-
tempt this using the Charlson Comorbidity Index (CCI)
to capture and simplify several disease states [47]. Non-
ICI-response effects on OS proceed through Prostaglan-
din Inflammation. For example, the path CCI — ABx —
Microbiome — Prostaglandin Inflammation — OS may
include sepsis, through which inflammatory processes
may lead to low blood pressure or multi-system organ
failure and therefore OS. Third, CS and ABx may have
additive effects on ICIs through a collider effect on T-
cell mediated inflammation (i.e. ABx — Microbiome —
T-cell mediated inflammation <« CS). Finally, the
clinical variables of stage, BMI, and age, and medications
such as CS confound the relationship between the
microbiome and ICI response, mediated by
Prostaglandin-based inflammation (which itself is a col-
lider), and therefore must be controlled for in order to
infer the role of the microbiome on OS (Fig. 1).

Patient characteristics

Retrospective analysis of electronic medical records from
2011 to 2017 at the OSUCCC-James identified 690 pa-
tients treated with ICIs (Table 1). Most (76.6%) had a PS
of 0 or 1 and 0—1 co-morbidities (CCI 0-1, 66.7%). The
most common diagnoses were melanoma (28.5%) and
non-small cell lung cancer (NSCLC) (23.4%). Cancers
represented by fewer than 20 patients were categorized
as “Other” (23.4%). The majority of patients (90%) had
metastatic disease. ICI treatments included nivolumab in
52.8% of patients, ipilimumab in 18.0% and pembrolizu-
mab in 15.1%.

Microbiome and inflammation-related concomitant
medication use

Among the medications included in the causal model,
ABx, CS, PPIs, H2Bs, statins and NSAIDs were identified
in this cohort. ABx were prescribed in 36% of patients
within 28 days of the start of ICIs (Table 1). The most
commonly prescribed ABx were B-lactams (Figure S1).
CS were prescribed in 40% patients within 28 days of the
start of ICIs. The most commonly prescribed CS were
dexamethasone and prednisone (Figure S2). PPIs were
prescribed in 37% of patients. Some patients received a
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Table 1 Cohort characteristics

Overall n 689
BMI (mean (sd)) 27.76 (6.62)
Age (mean (sd)) 6227 (13.21)
Sex = Male (%) 402 (58.3)
ECOG (%)
0 185 (31.0)
1 272 (45.6)
2 113 (19.0)
>2 26 (44)
CCl=0-1 (%) 458 (66.7)
Cancer (%)
Bladder Cancer 32 (4.9)
Head and Neck Carcinoma 42 (6.5)
Melanoma 184 (284)
Non-Small Cell Lung Cancer 152 (23.5)
Renal Cell Carcinoma 65 (10.0)
Sarcoma 21 (3.2)
Other 152 (23.5)
Staging (%)
1 1(0.2)
2 4(0.7)
3 44 (7.2)
4 547 (90.0)
Unknown 12 (2.0)
Immune Checkpoint Inhibitors (%)
Atezolizumab 22 (3.2)
Durvalumab 12 (1.7)
Durva + Tremelimumab 6 (0.9)
Ipilimumab 126 (18.3)
Nivolumab 364 (52.8)
Nivolumab + Ipilimumab 37 (54)
Pembrolizumab 104 (15.1)
Tremelimumab 3(04)
Other 15 (2.2)
ATB within 28 days of ICl (%) 241 (35.0)
CS within 28 days of IClI (%) 273 (39.6)

single medication and no others during the study period,
however, more frequently patients received several
medications, e.g. CS with PPI and ABx, consistent with
prophylaxis for developing an ulcer or pneumonia
(Figure S3). The analysis strategy first tested for an asso-
ciation of a medication with OS without controlling for
confounding effects of other medications and then
further explored those medications with strong
associations.
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Across all cancer types, patients who were prescribed
ABx within 28 days of the start of ICIs showed decreased
OS (Fig. 2a). This was also true of patients prescribed
CS (Fig. 2b), but not of patients prescribed other medi-
cations (Fig. 2c). ABx showed a strong negative correl-
ation with OS in RCC, NSCLC, melanoma, and bladder
cancer. CS showed a strong negative correlation with OS
in NSCLC, melanoma and other cancers. While other
medications were not significantly associated with OS
across all cancers, several showed significant associations
with specific cancers. For example, H2Bs and NSAIDs
associated with decreased OS in sarcoma and NSCLC,
respectively. On the other hand, PPIs and Statins posi-
tively associated with OS in sarcoma. However, we ob-
served the strongest associations for ABx and CS, and
therefore followed these medications in further analyses.

Timing of medication use

Next we focused on the timing of ABx and CS prescrip-
tions and their associations with OS in each cancer,
using a 30-day sliding window (see Methods). ABx
showed a greater HR than CS over nearly the entire
period, and both were negatively associated with OS
(Fig. 3a). ABx treatment showed the highest HR more
than 100 days before the start of ICIs, a second peak
near day 50, and a third, lesser peak around day 0. CS
showed a single, strong peak at day 0. We therefore fo-
cused the timing analyses around ICI day O to capture
the largest HR for both ABx and CS and to best com-
pare the results to previous findings, and then examined
the effects across cancers and drug subclasses.

Antibiotics and corticosteroids classes

The effect of ABx on overall survival in different cancer
types was not consistently associated with ABx class
(Fig. 3b). For example, p-lactams showed the highest HR
in melanoma, but vancomycin (oral) had the highest HR
in head and neck squamous cell carcinoma (HNSC). In
addition, the overall effect of ABx was sometimes associ-
ated with a single ABx subclass and sometimes distrib-
uted over many. Additionally, NSCLC strongly
associated with fluoroquinolone ABx, and this effect was
stronger than the effect observed for all ABx combined.
By contrast, the combined effect of all ABx in melanoma
was much stronger than any individual ABx class. In
fact, tetracycline was positively associated with OS in
melanoma patients, despite the overall effect of ABx be-
ing negatively associated. On the other hand, the effects
of CS classes on different cancers was more consistent
(Fig. 3c), though these comparisons were often limited
by the sample size. Particularly with small sample sizes,
confounding effects of patients receiving multiple drugs,
e.g. ABx and CS, may dominate associations with OS.
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Fig. 2 The effect of medications at the start of ICl treatment across all cancers for a Antibiotics, b Corticosteroids, and ¢ other medications. The
cell color indicates the p-value of the Kaplan-Meier curve and the “+" or "-"the direction of the HR, in reference to its association with OS (i.e. a
““"indicates an association with decreased OS, therefore a HR > 1)
J

We therefore used combined models of ABx and CS to
examine the effects of each.

Combined modeling of ABx and CS, controlling for
covariates

Models containing both ABx and CS showed that both
are significantly associated with OS. A Kaplan-Meier
curve stratifying patients by ABx, CS, or both, showed
nearly identical intermediate effects of either ABx or CS,
and an additive combined effect (Fig. 4a). We next
sought to control for confounding covariates using a

Cox Proportional Hazards model. Including CCI, PS,
BMI, sex, stage, and age in the model confirmed that
ABx and CS remained highly significant, as were PS,
BMI and age (Fig. 4b). This suggests that ABx and CS
are affecting OS in the context of ICI therapy by a
mechanism other than that which is captured by PS,
BMI or age, and is consistent with the microbiome par-
ent to T-cell inflammation and child of ABx (Fig. 1).

In order to estimate the effects of ABx and CS within
each cancer, we applied a method that (1) allowed
different covariates to be included in each cancer,

A) Hazard ratio of ABx and CS
prescribed at varying days
from ICI

All-

Sarcoma

Renal Cell
Carcinoma

Non-Small Cell

Lung Cancer
Drug

B e
E o

Melanoma

Hazard Ratio

Head and Neck
Carcinoma

Bladder Cancer-

Other-

-100 0 100
Days relative to ICI start

window 28 days around IC| treatment start

B) Hazard ratio and significance of ABx or CS class
association with OS

Fig. 3 Associations of ABx and CS over time and by drug class. a Hazard ratios with 95% confidence intervals of a Cox Proportional-Hazards
model comparing individuals treated with ABx or CS during a 30-day sliding window compared to indivduals who did not receive ABx or CS,
respectively. The significance and direction of associations of Cox Proportional Hazards models by (b) ABx or (c) CS class and cancer, using a
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A) Survival curves comparing effects of
ABx and CS

C) Cox-LASSO models with additional covariates

for each cancer
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Fig. 4 Combined models for ABx and CS and controlling for covariates. a Kaplan-Meier curves for ABx and CS in combination. b Cox Proportional
Hazards model incorporating both ABx and CS as well as several covariates. ¢ Cox-LASSO models for each cancer showing the hazard ratios
estimated for covariates and the number of times the covariate was included in the model. The regularization parameter was selection by 10-fold
cross validation, and then the robustness was assessed by 1000 bootstrap replicates using different random samples of the data

commensurate with the different clinical features of each
cancer, and (2) removed uninformative variables, in-
creasing the power for those cancers with smaller num-
bers of patients in this dataset. In addition, we repeated
the analysis with different random samplings of the data
in order to estimate the robustness of the variable selec-
tion. We found ABx to consistently and significantly as-
sociate with OS in bladder cancer, melanoma and RCC,
but not in HNSC, NSCLC, or sarcoma. The HR was
above 1 in each of the cancers where ABx was a
consistently-selected covariate. Melanoma was notable
in that all variables were consistently selected, with ABx
showing the highest HRs (Fig. 4c).

The relationship between ABx, OS, and the microbiome

While no direct microbiome measurements were made
in this study, we next sought to relate effects of ABx to
the current knowledge about the organisms have been
associated with ICIs. The bacterial taxa that showed the
strongest enrichment in responders or non-responders
to ICIs were selected from the literature and combined
into a phylogenetic tree (Fig. 5) [1-3]. The taxa spanned

several phyla and few ranks were consistently enriched
in either responders or non-responders. For example,
Firmicutes was found to be enriched in responders [1],
but within the phylum are several taxa found to be
enriched in non-responders [2, 3]. An exception to this
was Bacteroidetes, which was found to be enriched in
non-responders and each of the four species in the
phylum were also enriched in non-responders [1, 2]. We
performed a literature review of ABx susceptibilities for
each of these taxa to estimate whether the size of the
HR of the ABx would relate to the taxa for which it is
active. For example, an ABx that target only bacteria
enriched in non-responders may be beneficial because it
may shift the community toward those taxa enriched in
responders. On the other hand, if the overall diversity of
the microbiome is important, broad-spectrum ABx may
have higher HRs than narrow-spectrum.

The ABx class with the largest HR across all cancers
was the B-lactams. Within this group category are the
cephalosporins, which have a relatively narrow spectrum
of activity and a unique pattern relative to other ABx
classes. The cephalosporins are ineffective against the
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Fig. 5 Relating the ABx effect to microbes enriched in responders to ICls. A dendrogram of the microbes recently shown to be most enriched in
responders (black) or non-responders (red), are related to known ABx susceptibilities (references for each cell in Table S1). The ABx are ordered by
hazard ratio across all cancers (i.e. B-lactams showed the largest hazard ratio and linezolid the smallest)

Bacteroidetes, found to be enriched in non-responders,
but so were ABx such as vancomycin and
sulfamethoxazole-trimethoprim (SXT). However, unlike
vancomycin and SXT, cephalosporins effectively target
A. muciniphila, which was shown to causally modify re-
sponse to ICIs. Cephalosporins are also ineffective
against several Firmicutes, similar to clindamycin,
macrolides and metronidazole (Fig. 5).

Discussion

The effects of medications or other variables are difficult
to parse in a dynamic setting such as during treatment
for cancer. We used a variety of methods to show that
ABx and CS are significantly associated with decreased
OS in several cancer types.

The association of CS with ICI response and OS re-
mains controversial. Our observed association is consist-
ent with other observations of decreased OS in NSCLC
[9]. However, Ricciuti et al. showed no effect of CS on
OS in NSCLC when given on the same day as ICI start,
when the CS was prescribed for reasons other than “can-
cer-related palliative indications” [48]. Our records lack
some variables needed to replicate those results, however

our results are consistent with aspects those findings.
For example, dexamethasone treatment showed a strong
negative association with OS across several cancer types,
consistent with its use for brain metastases and anorexia,
which are all indicators of poor clinical outcome. On the
other hand, several of our analyses demonstrated associ-
ations between CS and OS that may not be due to
selecting a sub-cohort with a poor prognosis. Our first
causal strategy, the time analysis, showed similar results
when restricting CS medications to a single day, but a
larger effect when a wider time window was used
(Table 2). Similar effects have been observed previously,
but with little consistency in the time window tested [2,
3, 9, 48-52]. Our second causal strategy, controlling for
covariates, cannot be directly compared because our
dataset did not include central nervous system metasta-
ses. However, when we control for metastatic stage and
PS, the CS association remains. Our third causal strat-
egy, comparisons between cancers, shows that the CS as-
sociation with OS is observed in cancers for which brain
metastases are not common, such as RCC, and for spe-
cific CS not typically used for brain metastases, such as
methylprednisolone in HNSC. This suggests that
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Table 2 Timing of associations between medications and ICI response

Cancer Drug Type Timing Sig Sig NDrug N PFS  OS  Univs Multi  Controlled Covariates
Type Window (days) PFS OS  Users Total HR  HR Variate

This Melanoma ABx +/— 28 Yes 48 185 166 Multi CS, ECOG, BMI, G, A, CG

study

[14] Melanoma ABx (=30)-0 Yes No 10 74 032 052 Mult A, E G, LT, IR, Serum levels of

(only for PFS) lactate dehydrogenase (LDH),

BRAF status

This NSCLC ABX +/— 28 No 64 152 0.81 Multi CS, ECOG, BMI, G, A, CG

study

[13] NSCLC ABx +/— 28 Yes Yes 20 109 029 035 Multi A G, S, E His, Mut, LT, IR, CT

[22] NSCLC ABxX (=30)-0 Yes Yes 48 239 13 25 Mulhi A, His, S, PR, E, C, Hos

[13] NSCLC ABx (-60)-0 Yes Yes 20 109 029 035 Mult A, G, His, S, E, LT, C, IR Mutation,
ABx, PPIs

[22] NSCLC ABxX (- 60)-0 No Yes 68 239 12 2 Multi A, His, S, PR, E, C, Hos

[2] NSCLC ABx (—84)-0 No Yes 37 140 231 Multi A, G, His, S, PR, E, MS

[2] RCC ABXx (=30)-0 Yes Yes 16 121 22 2.1 Multi A, TB, R

[22] RCC ABx (—60)-0 Yes No 22 121 23 19  Mult A, TB, R

[2] RCC ABx (—84)-0 Yes No 20 67 216 Muilti A G R TB

[2] ucC ABx (—84)-0 No No 12 42 197 Multi Hemoglobin levels, KPS, Liver M

[49] Several Abx (=30)-0 Yes 29 167 74 Uni

[49] Several Abx 0+ No 68 128 09 Uni

[49] Several Abx (—30)-- Yes 29 167 82  Multi Cancer, E, CG, TB, A, CS

This Melanoma CS +/— 28 Yes 66 185 157 Multi ABx, ECOG, BMI, G, A, CG

study

[48] NSCLC CS (Cancer- +/—1 No Yes 66 650 14 16  Mult A, G, S, His, LT, IR, E, Mut, Brain M,

related) PD-L1 TPS, %, Median TMB
[48] NSCLC CS (Cancer- +/—1 No No 27 650 062 091 Multi A G, S, His, LT, IR, E, Mut, Brain M,
unrelated) PD-L1 TPS, %, Median TB

[21] NSCLC cs 0428 Yes Yes 35 151 188 238 Multi A, G, S, His, MS, E, LT, IR, Brain M
Bone M, Liver M, PD-L1 expression,
(@)

This NSCLC (@) +/— 28 Yes 67 152 1.85 Multi ABx, E, BMI, G, A, CG

study

[9] NSCLC (@) (=30)-0 Yes Yes 90 640 1.3 1.7 Muli S, E Brain M

[13] NSCLC PPIs +/— 28 No No 40 109 1.1 147 Uni

[2] NSCLC PPIs (—84)-0 No No 35 140 Uni

[2] RCC PPIs (—84)-0 No No 20 67 Uni

[2] uc PPIs -84 No No 7 42

Abbreviations: A Age, G Gender, R IMDC Risk, TB Tumor Burden, His Histology, S Smoking History, PR Number of Prior Regimens, E ECOG Performance Status, C
Clinical Trial, Hos Hospitalization, MS Number of Metastatic Sites, LT Line of Therapy, IR ICI Regimen, CS Corticosteroids, ABx Antibiotics, CG Cancer Stage, M

Metastases, Mut Mutation

understanding the association between CS and the re-
sponse to ICIs may require more granular assessment of
CS types (ie. rather than collapsing to 10 mg prednisone
equivalent) and cancers.

We applied the same logical framework to ABx treat-
ment to demonstrate an effect on OS. Unlike CS, the
majority of studies have found an association between
ABx use and ICI response, independent of the time win-
dow (Table 2). Our longitudinal analysis showed a global
maximum HR well before the start of ICIs, consistent

with the ABx effects persisting for long periods. Given
this result, it is unlikely that acute illnesses drive the as-
sociation between ABx and OS. However, a recent pro-
spective study found that ABx given currently with ICI
treatment did not significantly affect OS for a group of
patients with lung, skin, or several other cancers [49]
(Table 2). We observe lower HRs for the effect of ABx
after ICI start, however it remains significant until ap-
proximately 120 days post ICI start. We note that within
cancers the effect of ABx is highly variable (Fig. 4c); the
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difference may be due to the composition of the cohorts
(e.g. more patients with bladder cancer, where ABx has
a strong effect, and fewer with NSCLC, where the effect
is less). Our results are consistent with a recent meta-
analysis across several cancers, in which the greatest HR
was observed in the 42 days before the start of ICIs [50].

When controlling for illness-related covariates that re-
port on the overall health status of the individual (e.g.
CCI, PS) the effect of ABx remained significant. Third,
the associations of ABx and OS were observed across
cancer types (e.g. patients with bladder cancer versus
melanoma). A larger fraction of bladder cancer patients
were treated with ABx than any other cancer (56%), con-
sistent with their use for urinary tract or as prophylaxis
for invasive urologic procedures. On the other hand,
melanoma patients treated with ABx were the smallest
fraction of any cancer (25%), consistent with this popula-
tion being less likely to undergo procedures in which
prophylactic ABx are used. It is reasonable to suspect
that melanoma patients treated with ABx are therefore
more compromised than those not treated with ABx.
However, an effect of ABx remains, even for bladder
cancer. Although it remains probable that the cohorts
who receive ABx are different from those who did not in
ways that have not been controlled for in analyses, these
three analyses add confidence to the association of ABx
with OS in the context of ICIs.

We next related the strength of the association of ABx
classes with OS and the microbes that those ABx classes
affect. The B-lactam ABx were shown to have the stron-
gest association with OS across cancer types. The litera-
ture review of antibiotic susceptibilities showed that this
diverse class is effective against the Gram-positive
phylum Firmicutes. The literature review of the bacterial
taxa associated with response to ICIs, showed that the
Firmicutes are enriched in responders to ICIs. Moreover,
B-lactams are not consistently effective against members
of the phylum Bacteroidetes, which was found to be
enriched in non-responders. This suggests that the p-
lactams may show the strongest signal across all cancers
in our dataset because they disrupt the microbiome in
such a way that they reduce response to ICIs by deplet-
ing the Firmicutes more so than the Bacteroidetes.

The association between ABx prescriptions and OS
that we observe is consistent with direct measurements
of the microbiome and response to ICIs [1-3]. However,
there is no consensus for which taxa are enriched in the
responders to ICIs (Fig. 5). For example, there is causal
evidence for Akkermansia muciniphila increasing re-
sponse to ICIs, however, it was not among the most
enriched in the other datasets [1-3]. Nonetheless, some
agreement can be observed between the effects of ABx
on isolated taxa and OS. Narrow spectrum p-lactams
(e.g. cephalosporins), which show the strongest
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association with OS, are not effective against Bacteroi-
detes (enriched in non-responders (1)) but are against A.
muciniphila (enriched in responders (2)). However, we
note that the effects of ABx can be difficult to predict
over long time scales; some broad spectrum [-lactams
have resulted in increased Firmicutes post-recovery, des-
pite being effective against them [51].

The results presented here contrast with several as-
sumptions gathered from the literature and described by
the causal model (Fig. 1). First, we found that ABx and
CS are the only medications significantly associated with
OS, despite the inclusion of several medications associ-
ated with changes to the microbiome (Fig. 2). This may
be due to the types of changes incurred (e.g. PPIs may
not significantly change the abundances of those taxa
linked to ICI response) or the strength of the effect amid
the noise in the data. However, the other two hypotheses
were borne out by the analyses.

The CS and ABx medications showed an additive ef-
fect on OS, consistent with a collider interaction in the
model (Fig. 4a). Also, there was an effect of ABx after
controlling for many covariates, consistent with its direct
effect on the microbiome and the microbiome playing a
role in ICIs (Fig. 4b). This result was consistent with the
relationship between the strength of the ABx signal and
the bacterial taxa susceptible to that ABx (Fig. 5).

Limitations
A key challenge in this and other retrospective analyses
is inferring causal relationships in non-randomized co-
horts. For example, patients who receive medications
such as antibiotics may be quite different from those
who do not. However, it is difficult to imagine an ethical
trial that could randomize treatment with ABx in this
setting. Therefore, retrospective analyses may be the best
option until direct measurements of the microbiome are
widely available. We used a variety of methods to show
that ABx and CS are significantly associated with de-
creased OS across a variety of cancers and that these re-
sults are consistent with a role for the gut microbiome.
Our study remains limited by being unable to account
for important factors known to affect OS in the context
of ICI treatment. For example, the complete ABx history
of patients -- much longer than the windows reported
here -- are very likely of consequence. Several groups
have studied the recovery of microbiome diversity fol-
lowing ABx exposure and results show reasonable recov-
ery 90 days later [51, 52]. However, multiple courses of
ABx prevented such a recovery; i.e. diversity returned to
baseline after one treatment with ABx, but not after a
second ABx treatment within 60 days [12]. It is therefore
possible that individuals who show extreme effects of
ABx treatment received additional doses outside of the
time scale of this study. Without baseline microbiome
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diversity measures we are unable to capture such infor-
mation. Similarly, estimating the effects of ABx on com-
munities from data on microbes in isolation is, at best,
approximate. A better understanding of how ABx affect
complex communities is needed. Other limitations in-
clude our small sample size relative to the heterogeneity
in the data. Future directions should capture variables
such as the presence of brain metastases, tumor bio-
markers such as tumor mutational burden and PD-1/
PDL-1 status, and outcome variables like ICI response
or the number of tumor-infiltrating lymphocytes.

Conclusions

ABx and CS, but not other medications known to affect
the microbiome, are associated with reduced OS when
administered near the start of ICI treatment. Our results
show this finding several cancer types, and for several
subclasses of these drugs. These results are consistent
with a role of the microbiome in response to ICIs and
identify clinical settings where the microbiome is likely
to play the largest role, namely NSCLC, melanoma,
RCC, HNSC, and bladder cancer. A clear understanding
of which microbes are important for ICI responses and
in what cancers will require the collection of micro-
biome samples across a wide variety of clinical settings.
However, some information can be gathered by indirect
means, which identifies the settings where the micro-
biome is likely to have the greatest effects. Medications
that affect the microbiome given concomitantly with
ICIs provide evidence for where microbes play a role.
Further work is needed to identify which microbes are
important and identify solutions to mitigate these effects
and perhaps promote greater response to ICIs.
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