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Abstract

Background: Antigen-processing machinery molecules play crucial roles in infectious diseases and cancers. Studies
have shown that polymorphisms in endoplasmic reticulum aminopeptidase (ERAP) genes can influence the
enzymatic activity of ERAP proteins and are associated with the risk of diseases. In the current study, we evaluated
the influence of ERAP gene (ERAP1 and ERAP2) polymorphisms on susceptibility to cervical intraepithelial neoplasia
(CIN) and cervical cancer.

Methods: Six single nucleotide polymorphisms (SNPs) in ERAP1 and 5 SNPs in ERAP2 were selected and genotyped
in 556 CIN patients, 1072 cervical cancer patients, and 1262 healthy control individuals. Candidate SNPs were
genotyped using SNaPshot assay. And the association of these SNPs with CIN and cervical cancer was analysed.

Results: The results showed that allelic and genotypic frequencies of rs26653 in ERAP1 were significantly different
between cervical cancer and control groups (P = 0.001 and 0.004). The allelic frequencies of rs27044 in ERAP1 and
rs2287988 in ERAP2 were significantly different between control and cervical cancer groups (P = 0.003 and 0.004).
Inheritance model analysis showed that genotypes of rs27044, rs26618, rs26653 and rs2287988 SNPs may be
associated with the risk of cervical cancer (P = 0.003, 0.004, 0.001 and 0.002). Additionally, haplotype analysis results
showed that the ERAP1 haplotype, rs27044C-rs30187T-rs26618T-rs26653G-rs3734016C, was associated with a lower
risk of cervical cancer (P = 0.001). The ERAP2 haplotypes rs2549782G- rs2548538A-rs2248374A-rs2287988G-
rs1056893T (P = 0.009 and 0.006) and rs2549782T-rs2548538T-rs2248374G-rs2287988A-rs1056893T (P = 0.003 and
0.009) might be associated with cervical cancer and the development from CIN to cervical cancer.

Conclusion: Our results indicated that rs27044, rs26618 and rs26653 in ERAP1 and rs2287988 in ERAP2 influenced
susceptibility to cervical cancer.
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Background
The antigen-processing machinery (APM) is composed
of the proteasome, where exogenous and tumour anti-
gens are degraded into peptides; transporters associated
with antigen presentation (TAPs), which are responsible
for the translocation of peptide precursors; endoplasmic
reticulum aminopeptidases (ERAPs), which trim the
peptides to fit major histocompatibility complex (MHC)
molecules; and MHC proteins, which present antigen
peptides on the cell surface [1, 2]. Human ERAPs, which
belong to the oxytocinase subfamily of M1 metallopro-
teases, are crucial molecules of the APM. In the endo-
plasmic reticulum lumen, ERAP1 and ERAP2 trim
peptides into their final length to render them suitable
for loading onto HLA class I molecules [3, 4]. Recently,
several studies have shown that ERAP proteins play cru-
cial roles in autoimmune diseases [5, 6], infectious dis-
eases [7, 8], and cancers [9, 10].
Cervical cancer is the fourth most common malignancy

in women globally [11]. Persistent human papillomavirus
(HPV) infection confers a high risk of cervical cancer [12,
13]. Since the HLA class I antigen-presenting system is re-
sponsible for the presentation of foreign and cancerous
antigens to the immune system [14, 15], and ERAPs
downregulation was observed in cervical cancer [16, 17],
therefore, ERAP proteins may play crucial roles in the ini-
tiation and development of cervical cancer [18].
Previous studies revealed the association between single

nucleotide polymorphisms (SNPs) in ERAP genes (such as
rs26653, rs30187, rs27044, rs2549782, rs2287988, rs26618,
rs3734016, rs27037, rs2248374, rs2548538 and rs1056893)
and autoimmune and infectious diseases [19–22], and hu-
man cancers [23–26]. Moreover, functional studies have
shown that SNPs in ERAP genes could affect the enzym-
atic activity and selectivity of ERAP proteins (such as
rs27044, and rs30187 in ERAP1 gene, rs2287988 in ERAP2
gene) [27–32], and affect the conformation of ERAP pro-
teins (such as rs27044, rs30187 and rs26653 in ERAP1
gene; rs2549782 and rs2287988 in ERAP2 gene) [31, 33,
34]. These results suggested that SNPs in ERAP genes
could be valuable to be selected for association studies.
Thus, in the current study, we selected 11 SNPs located in
ERAP1 (rs27037, rs27044, rs30187, rs26618, rs26653 and
rs3734016) and ERAP2 (rs2549782, rs2548538, rs2248374,
2,287,988 and rs1056893) and investigated their distribu-
tion in patients with cervical intraepithelial neoplasia
(CIN) and cervical cancer and healthy individuals, to as-
sess their association with the initiation and development
of cervical cancer.

Methods
Study population
In the current study, a total of 556 patients with CIN
and 1072 patients with cervical cancer were enrolled at

the Third Affiliated Hospital of Kunming Medical Uni-
versity from May 2014 to August 2018. The inclusion
criteria were as follows: 1) diagnosis of CIN or cervical
cancer according to Current Diagnosis and Treatment:
Obstetrics and Gynaecology and International Federation
of Gynaecology and Obstetrics (2009) guidelines; 2) no
other malignancy in patients and no history of cancer or
other chronic diseases in control individuals; and 3) no
preoperative neoadjuvant therapies (including chemo-
therapy and radiotherapy). The exclusion criteria for pa-
tients were as follows: 1) a prior history of primary
cancer other than cervical cancer; 2) malignant tumours
other than cervical cancer; 3) currently receiving radio-
therapy or chemotherapy; and 4) an unclear diagnosis.
Over the same period, 1262 healthy women from a
health screening project at the same hospital were en-
rolled as controls.

SNP selection and genotyping
Six SNPs located in ERAP1 and 5 SNPs located in
ERAP2 were selected in the current study. The minor
allele frequency should be over 0.05 in East Asian popu-
lation (http://asia.ensembl.org/index.html). The details
of the selected SNPs are displayed in Supplementary
Table 1. Venous blood samples were collected for the
extraction of genomic DNA, using the QIAamp Blood
Mini Kit (Qiagen NV, Venlo, Netherlands). Genotyping
of the 11 SNPs was performed using the SNaPshot SNP
assay (Thermo Fisher Scientific, Waltham, MA, USA),
and results were analysed using GeneMapper TM 4.0
software (Applied Biosystems, Foster City, CA, USA).
For quality control, 5% of samples from the case and
control groups were genotyped twice with unique ana-
lysis serial numbers and the reproducibility was found to
be 100%.

Statistical analysis
Hardy-Weinberg equilibrium (HWE) was evaluated to
determine the representativeness of the study popula-
tion. The differences in age among the CIN, cervical
cancer, and control groups were analysed using a one-
way ANOVA, with a least significant difference test for
multiple comparison correction. Allelic and genotypic
frequencies of these SNPs were compared between dif-
ferent groups using a Chi-square test and odds ratios
(ORs) with associated 95% confidence intervals (CIs)
were calculated. Additionally, linkage disequilibrium
(LD) was calculated and a D’ value greater than 0.80 was
considered to indicate LD. The haplotypes among these
SNPs were analysed using SHEsis software [35, 36]. Sub-
sequently, the distribution of the haplotypes between dif-
ferent groups was compared using a Chi-square test. In
addition, inheritance analysis adjusted by age was per-
formed using SNPstats software to identify the
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relationship between genotypes at these SNPs and cer-
vical cancer [37]. In the inheritance analysis, four inher-
itance models (codominant, dominant, recessive, and
log-additive) were analysed. Simultaneously, Akaike in-
formation criterion (AIC) and Bayesian information cri-
terion (BIC) values were calculated to determine the
inheritance model with the best fit, i.e. the model with
the smallest AIC and BIC values [37]. The statistical
power was calculated using Power and Sample Size soft-
ware (V3.1.2) [38]. Bonferroni correction was performed
for multiple comparisons, after which the statistical sig-
nificance threshold was set at P < 0.0045 (0.05/11).

Results
Characteristics of the subjects
Table 1 shows the clinical data of the subjects in the
present study. There was no significant difference in age
among the control, CIN, and cervical cancer groups (P >
0.05, F = 1.438), as evaluated by one-way ANOVA. In
the CIN group, there were 65 patients with low-grade
CIN (I/II) and 491 patients with high-grade CIN (III). In
the cervical cancer group, there were 151 patients with
adenocarcinoma, 903 patients with squamous cell car-
cinoma, and 18 patients with other pathological types.

Association of the eleven SNPs with CIN and cervical
cancer
All 11 SNPs were in HWE in the control group (P > 0.05)
(Supplementary Table 1). The allelic and genotypic fre-
quencies of these SNPs are presented in Tables 2 and 3.
The results showed that the allelic and genotypic frequen-
cies of rs26618 (P = 0.021 and 0.016, respectively), rs26653
(P = 0.001 and 0.004), rs27044 (P = 0.003 and 0.012) and
rs30187 (P = 0.008 and 0.020) in ERAP1 (Table 2) and
rs2248374 (P = 0.014 and 0.020) and rs2287988 (P = 0.004

and 0.007) in ERAP2 (Table 3) were significantly different
between cervical cancer and control groups. Additionally,
the allelic and genotypic distributions of rs2248374 (P =
0.015 and 0.041, respectively) and rs2287988 (P = 0.014
and 0.039) in ERAP2 were significantly different between
CIN and cervical cancer groups (Table 3). However, after
Bonferroni correction, only rs26653, rs27044, and
rs2287988 were associated with cervical cancer risk (P <
0.0045). The results indicated that, in ERAP1, the G allele
of rs26653 may be associated with a lower risk of cervical
cancer compared with C allele (OR = 0.829; 95% CI:
0.738–0.930) and the C allele of rs27044 may be a protect-
ive factor for cervical cancer (OR = 0.838, 95% CI: 0.746–
0.941). Moreover, the G allele of rs2287988 in ERAP2 may
be associated with a higher risk of cervical cancer (OR =
1.187, 95% CI: 1.057–1.332). There were no SNPs in
ERAP1 (Table 2) or ERAP2 (Table 3) that exhibited a sig-
nificantly different distribution between the CIN and con-
trol groups or between the CIN and cervical cancer
groups after Bonferroni correction (P > 0.0045).

Inheritance model analysis
To evaluate the genotypic association of the 11 SNPs
with CIN and cervical cancer, inheritance analysis was
performed among cervical cancer, CIN, and control
groups (Table 4, Table 5, and Supplementary Tables 2–
5). The CC genotype of rs26618 was a risk factor for cer-
vical cancer, compared with TT-CT genotype (P = 0.004;
OR = 1.53, 95%CI: 1.14–2.05) in the recessive model (the
best-fit inheritance model for the comparison between
control and cervical cancer groups) (Table 4). The
2GG + CG genotype of rs26653 was associated with a
lower risk of cervical cancer compared with the CC
genotype (P = 0.001, OR = 0.82; 95% CI: 0.73–0.93) in
the log-additive model (the best-fit inheritance model
for the comparison between control and cervical cancer
groups) (Table 4). The 2CC + CG genotype of rs27044
may be a protective factor against cervical cancer com-
pared with the GG genotype (P = 0.003, OR = 0.84; 95%
CI: 0.75–0.94) in the log-additive model (the best-fit in-
heritance model for the comparison between control
and cervical cancer groups) (Table 4) and the GG-GA
genotype of rs2287988 may be a risk factor for cervical
cancer compared with the AA genotype (P = 0.002, OR =
1.33; 95% CI: 1.11–1.60) in the dominant model (the
best fit inheritance model for the comparison between
control and cervical cancer groups) (Table 5).

Linkage disequilibrium (LD) and haplotype analysis of
SNPs in ERAP1 and ERAP2
The results of LD analysis showed that rs26618, rs26653,
rs27044, rs30187, and rs3734016 in ERAP1 and
rs2248374, rs2549782, rs2287988, rs2548538, and
rs1056893 in ERAP2 were in LD (D’ > 0.80)

Table 1 Characteristics of the subjects enrolled in the current
study

Cervical
cancer

CIN Control F P-value

N 1072 556 1262

Age 47.81 ±
10.21

47.42 ±
9.37

48.28 ±
9.60

1.438 0.238

Pathological types

SCC 903

AC 151

Others 18

Stages of CIN

Low degrade of
CIN (I/II)

65

High Degrade of
CIN (III)

491

Note: SCC squamous cell carcinoma; AC, Adenocarcinoma
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(Supplementary Tables 6, 7). Subsequently, we con-
structed the haplotypes, rs27044-rs30187-rs26618-
rs26653-rs3734016 and rs2549782-rs2548538-rs2248374-
rs2287988-rs1056893. The distribution of these haplo-
types (with a frequency of more than 3%) was compared
in a pairwise manner among the cervical cancer, CIN, and

control groups (Tables 6 and 7). The ERAP1 haplotype,
rs27044C-rs30187T-rs26618T-rs26653G-rs3734016C, was
associated with a lower risk of cervical cancer (P = 0.001;
OR = 0.804, 95% CI: 0.711–0.910) (Table 6). The distribu-
tion of haplotypes rs2549782G-rs2548538A-rs2248374A-
rs2287988G-rs1056893T and rs2549782T-rs2548538T-

Table 2 The allelic and genotypic distribution among control, CIN and cervical cancer groups of SNPs in ERAP1 gene

SNPs Control
(Freq)

CIN (Freq) Cervical
cancer
(Freq)

Cervical cancer vs Control CIN vs Control Cervical cancer vs CIN

P-value OR[95%CI] P-value OR[95%CI] P-value OR[95%CI]

rs27037

G 1372 (54.4%) 592 (53.2%) 1092 (50.9%) 0.020 1.147 [1.022–1.288] 0.532 1.046 [0.908–1.205] 0.212 1.097 [0.949–1.268]

T 1152 (45.6%) 520 (46.8%) 1052 (49.1%)

G/G 359 (28.4%) 161 (29.0%) 283 (26.4%) 0.020 0.323 0.462

G/T 654 (51.8%) 270 (48.6%) 526 (49.1%)

T/T 249 (19.8%) 125 (22.5%) 263 (24.5%)

rs27044

G 1350 (53.5%) 611 (54.9%) 1240 (57.8%) 0.003 0.838 [0.746–0.941] 0.416 0.943 [0.818–1.086] 0.114 0.889 [0.768–1.029]

C 1174 (46.5%) 501 (45.1%) 904 (42.2%)

G/G 362 (28.7%) 175 (31.5%) 360 (33.6%) 0.012 0.454 0.196

G/C 626 (49.6%) 261 (46.9%) 520 (48.5%)

C/C 274 (21.7%) 120 (21.6%) 192 (17.9%)

rs30187

C 1318 (52.2%) 589 (53.0%) 1203 (56.1%) 0.008 0.855 [0.761–0.960] 0.678 0.970 [0.843–1.118] 0.087 0.881 [0.762–1.019]

T 1206 (47.8%) 523 (47.0%) 941 (43.9%)

C/C 343 (27.2%) 169 (30.4%) 347 (32.4%) 0.020 0.151 0.134

C/T 632 (50.0%) 251 (45.1%) 509 (47.5%)

T/T 287 (22.8%) 136 (24.5%) 216 (20.1%)

rs26618

T 1852 (73.4%) 785 (70.6%) 1508 (70.3%) 0.021 1.162 [1.023–1.321] 0.083 1.148 [0.982–1.342] 0.879 1.012 [0.863–1.187]

C 672 (26.6%) 327 (29.4%) 636 (29.7%)

T/T 678 (53.7%) 285 (51.3%) 546 (50.9%) 0.016 0.076 0.989

C/T 496 (39.3%) 215 (38.7%) 416 (38.8%)

C/C 88 (7.0%) 56 (10.1%) 110 (10.3%)

rs26653

C 1227 (48.6%) 574 (51.6%) 1143 (53.3%) 0.001 0.829 [0.738–0.930] 0.095 0.887 [0.770–1.021] 0.359 0.934 [0.808–1.080]

G 1297 (51.4%) 538 (48.4%) 1001 (46.7%)

C/C 281 (22.3%) 142 (25.5%) 299 (27.9%) 0.004 0.224 0.591

G/C 665 (52.7%) 290 (52.2%) 545 (50.8%)

G/G 316 (25.0%) 124 (22.3%) 228 (21.3%)

rs3734016

C 2159 (85.5%) 947 (85.2%) 1801 (84.0%) 0.145 0.888 [0.756–1.041] 0.767 0.970 [0.795–1.184] 0.387 0.915 [0.748–1.119]

T 365 (14.5%) 165 (14.8%) 343 (16.0%)

C/C 921 (73.0%) 404 (72.7%) 752 (70.1%) 0.318 0.832 0.500

C/T 317 (25.1%) 139 (25.0%) 297 (27.7%)

T/T 24 (1.9%) 13 (2.3%) 23 (2.1%)

Note: The statistical significant threshold was set at P < 0.0045 after Bonferroni correction
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rs2248374G-rs2287988A-rs1056893T in ERAP2 (Table 7)
were significantly different in the control (P = 0.009 and
0.003, respectively) and CIN (P = 0.006 and 0.009) groups
compared with the cervical cancer group. The results
indicated that rs2549782G-rs2548538A-rs2248374A-
rs2287988G-rs1056893T may be associated with a higher
risk of cervical cancer (OR = 1.592, 95% CI: 1.122–2.258)
and the progression from CIN to cervical cancer (OR =
2.000, 95% CI: 1.215–3.292). Moreover, rs2549782T-
rs2548538T-rs2248374G-rs2287988A-rs1056893T may be
associated with a lower risk of cervical cancer (OR = 0.835,
95%CI: 0.740–0.942) and the progression from CIN to
cervical cancer (OR = 0.817, 95% CI: 0.702–0.951).

Discussion
The immune system is activated by MHC-peptide com-
plexes, after which it eliminates infected and cancerous
cells in various ways. The APM plays crucial roles in the
initiation and development of various human diseases.
As components of the APM, ERAP1 and ERAP2 are im-
portant determinants of the repertoire of peptides ultim-
ately presented by HLA class I molecules [39–42].
Moreover, the SNPs in ERAP genes have been shown to
affect the function of ERAPs by changing their pepti-
dome or enzymatic activity [29, 30, 43]. In cervical can-
cer, ERAP1 and ERAP2 proteins have been reported to
be highly variable, ranging from low to high expression

Table 3 The allelic and genotypic distribution among control, CIN and cervical cancer groups of SNPs in ERAP2 gene

SNPs Control
(Freq)

CIN (Freq) Cervical
cancer
(Freq)

Cervical cancer vs Control CIN vs Control Cervical cancer vs CIN

P-value OR[95%CI] P-value OR[95%CI] P-value OR[95%CI]

rs2549782

T 1418 (56.2%) 628 (56.5%) 1146 (53.5%) 0.062 1.117 [0.995–1.253] 0.869 0.988 [0.857–1.139] 0.100 1.130 [0.977–1.307]

G 1106 (43.8%) 484 (43.5%) 998 (46.5%)

T/T 395 (31.3%) 173 (31.1%) 291 (27.1%) 0.089 0.906 0.214

G/T 628 (49.8%) 282 (50.7%) 564 (52.6%)

G/G 239 (18.9%) 101 (18.2%) 217 (20.2%)

rs2548538

T 1461 (57.9%) 638 (57.4%) 1185 (55.3%) 0.073 1.112 [0.990–1.249] 0.774 1.021 [0.885–1.178] 0.252 1.089 [0.941–1.261]

A 1063 (42.1%) 474 (42.6%) 959 (44.7%)

T/T 439 (34.8%) 189 (34.0%) 337 (31.4%) 0.197 0.948 0.524

A/T 583 (46.2%) 260 (46.8%) 511 (47.7%)

A/A 240 (19.0%) 107 (19.2%) 224 (20.9%)

rs2248374

G 1396 (55.3%) 625 (56.2%) 1109 (51.7%) 0.014 1.155 [1.029–1.296] 0.616 0.964 [0.837–1.116] 0.015 1.198 [1.035–1.386]

A 1128 (44.7%) 487 (43.8%) 1035 (48.3%)

G/G 382 (30.3%) 169 (30.4%) 269 (25.1%) 0.020 0.690 0.041

A/G 632 (50.0%) 287 (51.6%) 571 (53.3%)

A/A 248 (19.7%) 100 (18.0%) 232 (21.6%)

rs2287988

A 1407 (55.7%) 623 (56.0%) 1104 (51.5%) 0.004 1.187 [1.057–1.332] 0.875 0.989 [0.858–1.140] 0.014 1.200 [1.038–1.388]

G 1117 (44.3%) 489 (44.0%) 1040 (48.5%)

A/A 387 (30.7%) 167 (30.0%) 267 (24.9%) 0.007 0.743 0.039

A/G 633 (50.1%) 289 (52.0%) 570 (53.2%)

G/G 242 (19.2%) 100 (18.0%) 235 (21.9%)

rs1056983

T 1462 (57.9%) 647 (58.2%) 1225 (57.1%) 0.587 1.033 [0.919–1.160] 0.884 0.989 [0.858–1.141] 0.567 1.044 [0.901–1.209]

C 1062 (42.1%) 465 (41.8%) 919 (42.9%)

T/T 439 (34.8%) 195 (35.1%) 360 (33.6%) 0.830 0.990 0.831

C/T 584 (46.3%) 257 (46.2%) 505 (47.1%)

C/C 239 (18.9%) 104 (18.7%) 207 (19.3%)

Note: The statistical significant threshold was set at P < 0.0045 after Bonferroni correction
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Table 4 Inheritance model analysis of SNPs in ERAP1 gene between control and cervical cancer groups
SNPs Models Genotypes Control (Freq) Cervical cancer (Freq) OR[95%CI] P-value AIC BIC

rs27037 Condominant G/G 359 (28.4%) 283 (26.4%) 1 0.020 3218.2 3241.2

G/T 654 (51.8%) 526 (49.1%) 1.02 (0.84–1.23)

T/T 249 (19.8%) 263 (24.5%) 1.34 (1.06–1.69)

Dominant G/G 359 (28.4%) 283 (26.4%) 1 0.280 3222.8 3240.1

G/T-T/T 903 (71.6%) 789 (73.6%) 1.11 (0.92–1.33)

Recessive G/G-G/T 1013 (80.2%) 809 (75.5%) 1 0.006 3216.2 3233.5

T/T 249 (19.8%) 263 (24.5%) 1.32 (1.09–1.61)

Log-additive – – – 1.15 (1.02–1.29) 0.020 3218.6 3235.8

rs27044 Condominant G/G 362 (28.7%) 360 (33.6%) 1 0.012 3217.2 3240.2

G/C 626 (49.6%) 520 (48.5%) 0.84 (0.70–1.01)

C/C 274 (21.7%) 192 (17.9%) 0.71 (0.56–0.89)

Dominant G/G 362 (28.7%) 360 (33.6%) 1 0.012 3217.6 3234.9

G/C-C/C 900 (71.3%) 712 (66.4%) 0.80 (0.67–0.95)

Recessive G/G-G/C 988 (78.3%) 880 (82.1%) 1 0.021 3218.7 3235.9

C/C 274 (21.7%) 192 (17.9%) 0.79 (0.64–0.97)

Log-additive – – – 0.84 (0.75–0.94) 0.003 3215.2 3232.5

rs30187 Condominant C/C 343 (27.2%) 347 (32.4%) 1 0.020 3218.2 3241.2

C/T 632 (50.0%) 509 (47.5%) 0.80 (0.66–0.96)

T/T 287 (22.8%) 216 (20.1%) 0.74 (0.59–0.94)

Dominant C/C 343 (27.2%) 347 (32.4%) 1 0.007 3216.6 3233.9

C/T-T/T 919 (72.8%) 725 (67.6%) 0.78 (0.65–0.93)

Recessive C/C-C/T 975 (77.2%) 856 (79.8%) 1 0.120 3221.6 3238.9

T/T 287 (22.8%) 216 (20.1%) 0.86 (0.70–1.04)

Log-additive – – – 0.86 (0.76–0.96) 0.009 3217.1 3234.3

rs26618 Condominant T/T 678 (53.7%) 546 (50.9%) 1 0.016 3217.7 3240.7

C/T 496 (39.3%) 416 (38.8%) 1.04 [0.88–1.24]

C/C 88 (7.0%) 110 (10.3%) 1.55 [1.15–2.10]

Dominant T/T 678 (53.7%) 546 (50.9%) 1 0.180 3222.2 3239.5

C/T-C/C 584 (46.3%) 526 (49.1%) 1.12 [0.95–1.32]

Recessive T/T-C/T 1174 (93.0%) 962 (89.7%) 1 0.004 3215.9 3233.1

C/C 88 (7.0%) 110 (10.3%) 1.53 [1.14–2.05]

Log-additive – – – 1.16 [1.02–1.31] 0.023 3218.9 3236.1

rs26653 Condominant C/C 281 (22.3%) 299 (27.9%) 1 0.004 3214.8 3237.8

C/G 665 (52.7%) 545 (50.8%) 0.77 [0.63–0.94]

G/G 316 (25.0%) 228 (21.3%) 0.68 [0.54–0.86]

Dominant C/C 281 (22.3%) 299 (27.9%) 1 0.002 3214.2 3231.5

C/G-G/G 981 (77.7%) 773 (72.1%) 0.74 [0.61–0.89]

Recessive C/C-C/G 946 (75.0%) 844 (78.7%) 1 0.034 3219.5 3236.7

G/G 316 (25.0%) 228 (21.3%) 0.81 [0.67–0.98]

Log-additive – – – 0.82 [0.73–0.93] 0.001 3213.5 3230.7

rs3734016 Condominant C/C 921 (73.0%) 752 (70.2%) 1 0.330 3223.8 3246.8

C/T 317 (25.1%) 297 (27.7%) 1.15 (0.95–1.38)

T/T 24 (1.9%) 23 (2.1%) 1.17 (0.65–2.09)

Dominant C/C 921 (73.0%) 752 (70.2%) 1 0.140 3221.8 3239.0

C/T-T/T 341 (27.0%) 320 (29.9%) 1.15 (0.96–1.37)

Recessive C/C-C/T 1238 (98.1%) 1049 (97.8%) 1 0.690 3223.8 3241.1

T/T 24 (1.9%) 23 (2.1%) 1.13 (0.63–2.01)

Log-additive – – – 1.13 (0.96–1.33) 0.150 3221.9 3239.1

Note: The statistical significant threshold was set at P < 0.0045 after Bonferroni correction
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Table 5 Inheritance model analysis of SNPs in ERAP2 gene between control and cervical cancer groups

SNPs Models Genotypes Control (Freq) Cervical cancer (Freq) OR[95%CI] P-value AIC BIC

rs2549782 Codominant T/T 395 (31.3%) 291 (27.1%) 1 0.088 3221.1 3244.2

G/T 628 (49.8%) 564 (52.6%) 1.22 (1.01–1.47)

G/G 239 (18.9%) 217 (20.2%) 1.23 (0.97–1.56)

Dominant T/T 395 (31.3%) 291 (27.1%) 1 0.028 3219.2 3236.4

G/T-G/G 867 (68.7%) 781 (72.8%) 1.22 (1.02–1.46)

Recessive T/T-G/T 1023 (81.0%) 855 (79.8%) 1 0.430 3223.4 3240.6

G/G 239 (18.9%) 217 (20.2%) 1.09 (0.89–1.33)

Log-additive – – – 1.12 (1.00–1.26) 0.057 3220.4 3237.6

rs2548538 Condominant T/T 439 (34.8%) 337 (31.4%) 1 0.200 3222.8 3245.8

A/T 583 (46.2%) 511 (47.7%) 1.14 (0.95–1.37)

A/A 240 (19.0%) 224 (20.9%) 1.22 (0.96–1.53)

Dominant T/T 439 (34.8%) 337 (31.4%) 1 0.089 3221.1 3238.4

A/T-A/A 823 (65.2%) 735 (68.6%) 1.16 (0.98–1.38)

Recessive T/T-A/T 1022 (81.0%) 848 (79.1%) 1 0.260 3222.7 3240.0

A/A 240 (19.0%) 224 (20.9%) 1.12 (0.92–1.38)

Log-additive – – – 1.11 (0.99–1.24) 0.080 3220.9 3238.2

rs2248374 Condominant G/G 382 (30.3%) 269 (25.1%) 1 0.020 3218.1 3241.2

A/G 632 (50.0%) 571 (53.3%) 1.28 (1.06–1.56)

A/A 248 (19.7%) 232 (21.6%) 1.33 (1.05–1.69)

Dominant G/G 382 (30.3%) 269 (25.1%) 1 0.005 3216.2 3233.5

A/G-A/A 880 (69.7%) 803 (74.9%) 1.30 (1.08–1.56)

Recessive G/G-A/G 1014 (80.3%) 840 (78.4%) 1 0.230 3222.6 3239.8

A/A 248 (19.7%) 232 (21.6%) 1.13 (0.92–1.38)

Log-additive – – – 1.16 (1.03–1.31) 0.012 3217.7 3235.0

rs2287988 Codominant A/A 387 (30.7%) 267 (24.9%) 1 0.007 3216.0 3239.0

A/G 633 (50.1%) 570 (53.2%) 1.30 (1.07–1.58)

G/G 242 (19.2%) 235 (21.9%) 1.41 (1.11–1.78)

Dominant A/A 387 (30.7%) 267 (24.9%) 1 0.002 3214.5 3231.8

A/G-G/G 875 (69.3%) 805 (75.1%) 1.33 (1.11–1.60)

Recessive A/A-A/G 1020 (80.8%) 837 (78.1%) 1 0.100 3221.3 3238.6

G/G 242 (19.2%) 235 (21.9%) 1.18 (0.97–1.45)

Log-additive – – – 1.19 (1.06–1.34) 0.003 3215.3 3232.5

rs1056983 Condominant T/T 439 (34.8%) 360 (33.6%) 1 0.820 3225.6 3248.6

C/T 584 (46.3%) 505 (47.1%) 1.06 (0.88–1.27)

C/C 239 (18.9%) 207 (19.3%) 1.06 (0.84–1.34)

Dominant T/T 439 (34.8%) 360 (33.6%) 1 0.530 3223.6 3240.9

C/T-C/C 823 (65.2%) 712 (66.4%) 1.06 (0.89–1.25)

Recessive T/T-C/T 1023 (81.0%) 865 (80.7%) 1 0.810 3223.9 3241.2

C/C 239 (18.9%) 207 (19.3%) 1.03 (0.83–1.26)

Log-additive – – – 1.03 (0.92–1.16) 0.580 3223.7 3241.0

Note: The statistical significant threshold was set at P < 0.0045 after Bonferroni correction
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levels [44–46]. Although there are inconsistencies
among these studies, it is clear that the dysregulated ex-
pression of ERAP proteins, which may be induced by
ERAP gene SNPs [47, 48], is associated with cervical
cancer risk.
In 2007, Mehta et al. found that rs27044 in ERAP1

was associated with cervical cancer risk. In the current
study, rs27044 was found to be associated with cervical
cancer risk (P = 0.003). The C allele of rs27044 (Q730)
was found to be a protective factor for cervical cancer
(OR = 0.838, 95% CI: 0.746–0.941) (Table 2), which was
consistent with the results of Mehta’s study [24]. The
SNP, rs27044, a non-synonymous polymorphism, leads
to a Q730E substitution in the IV catalysis domain of
ERAP1 [33] and may change the substrate length prefer-
ences of ERAP1 [49]. Therefore, rs27044 may play a role
in cervical cancer by affecting ERAP1 function.
The SNP, rs26618, in ERAP1 leads to an amino acid

substitution (I276M) and the current study showed that
the CC genotype of this SNP may be associated with an
increased risk of cervical cancer (OR = 1.53; 95% CI:
1.14–2.05) compared with TT-CT genotypes (Table 4).
In 2016, Guasp et al. reported that I276M (rs26618) may
affect the peptidome of ERAP1 by destroying peptides
with p2 Ala, unless the p1 amino acid was resistant to
ERAP1 trimming [43], which indicated that rs26618 may
be associated with cervical cancer. However, in a
Netherlands population, Mehta et al. reported no

association between rs26618 and cervical carcinoma.
One of the reasons of inconsistency between our data
and Mehta et al. could be the different sample sizes and
statistical power. The sample size used by Mehta et al.
was 251 individuals and the statistical power of rs26618
is 0.141, while 2890 individuals were enrolled in the
current study and the statistical power of the same SNP
is 0.621. In addition, the different population genetic
background could be another reason.
In 2007, Mehta et al. reported that the C allele of

rs26653 in ERAP1 was associated with a higher cervical
cancer risk in a Netherlands population [24]. In the
current study, the G allele (OR = 0.829; 95% CI: 0.738–
0.930) (Table 2), compared to the C allele, and the
2GG + CG genotype, compared to the CC genotype
(OR = 0.82; 95% CI: 0.73–0.93) of rs26653, were associ-
ated with lower cervical cancer risk (Table 4). In 2014,
Stratikos et al. and Alvarez-Navarro et al. reported that
rs26653, which is a non-synonymous polymorphism
resulting in a P127R substitution, may be associated with
ERAP expression [18, 49], and this substitution may also
affect the enzymatic activity of ERAP1 in the editing of
tumour antigen peptides. This finding may explain the
association between rs26653 and cervical cancer risk;
however, the mechanisms need to be determined in
functional studies.
In the current study, we found an association between

rs2287988 in ERAP2, which is responsible for a

Table 6 The distribution of the haplotypes constructed by SNPs in ERAP1 gene

Haplotypes Control
(Freq)

CIN
(Freq)

Cervical
cancer
(Freq)

Cervical cancer vs
Control

CIN vs
Control

Cervical cancer vs CIN

P-value OR[95%CI] P-value OR[95%CI] P-
value

OR[95%CI]

G-C-C-C-C 646.12
(25.6%)

299.22
(26.9%)

556.04
(25.9%)

0.041 1.151 [1.006–
1.316]

0.122 1.137 [0.966–
1.338]

0.890 1.012 [0.855–
1.197]

G-T-T-G-C 76.43 (3.0%) 37.05
(3.3%)

64.76 (3.0%) 0.612 1.091 [0.779–
1.528]

0.486 1.153 [0.773–
1.719]

0.794 0.947 [0.627–
1.428]

C-T-T-G-C 1101.70
(43.7%)

444.48
(40.0%)

759.76
(35.4%)

0.001 0.804 [0.711–
0.910]

0.260 0.918 [0.791–
1.065]

0.096 0.876 [0.750–
1.024]

G-C-T-C-C 196.08
(7.8%)

72.59
(6.5%)

176.09 (8.2%) 0.150 1.169 [0.945–
1.447]

0.315 0.866 [0.655–
1.146]

0.039 1.350 [1.015–
1.795]

G-C-T-C-T 336.22
(13.3%)

142.58
(12.8%)

278.80(13.0%) 0.402 1.076 [0.906–
1.278]

0.970 1.004 [0.813–
1.241]

0.533 1.072 [0.862–
1.334]

Note: The statistical significant threshold was set at P < 0.01 (0.05/n, n = 5) after Bonferroni correction

Table 7 The distribution of the haplotypes constructed by SNPs in ERAP2 gene

Haplotypes Control (Freq) CIN (Freq) Cervical
cancer (Freq)

Cervical cancer vs Control CIN vs Control Cervical cancer vs CIN

P-value OR[95%CI] P-value OR[95%CI] P-value OR[95%CI]

G-A-A-G-C 953.78 (37.8%) 411.75 (37.0%) 784.87 (36.6%) 0.219 1.080 [0.955–1.220] 0.908 0.991 [0.852–1.153] 0.336 1.079 [0.925–1.258]

G-A-A-G-T 58.71 (2.3%) 20.26 (1.8%) 72.44 (3.4%) 0.009 1.592 [1.122–2.258] 0.053 1.837 [0.983–3.434] 0.006 2.000 [1.215–3.292]

G-T-A-G-C 61.18 (2.4%) 25.61 (2.3%) 71.82 (3.3%) 0.018 1.513 [1.070–2.139] 0.638 1.130 [0.678–1.884] 0.055 1.560 [0.987–2.465]

T-T-G-A-T 1346.11 (53.3%) 586.29 (52.7%) 973.03 (45.4%) 0.003 0.835 [0.740–0.942] 0.908 1.009 [0.868–1.173] 0.009 0.817 [0.702–0.951]

Note: The statistical significant threshold was set at P < 0.012 (0.05/n, n = 4) after Bonferroni correction
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synonymous polymorphism (Q563Q), and cervical cancer.
The G allele may be associated with a higher risk of cer-
vical cancer (P = 0.004; OR = 1.187, 95% CI: 1.057–1.332)
(Table 3). Moreover, the GG-GA genotype was associated
with an increased risk of cervical cancer (P = 0.002; OR =
1.33, 95% CI: 1.11–1.60) (Table 5). However, association
studies of this SNP are rare. Previous studies have found
that ERAP2 haplotypes containing rs2287988 affect
ERAP2 splicing and expression [50, 51]. Thus, additional
association studies in different populations are necessary
to investigate the role of this polymorphism during the
initiation and development of cervical cancer.
ERAPs are markedly polymorphic and ERAP haplotypes

whose protein products differ at multiple amino acids may
affect peptide editing by ERAPs [29, 30, 52, 53]. In the
current study, we also analysed haplotypes of ERAP SNPs in
LD. The results showed that the ERAP1 haplotype,
rs27044C-rs30187T-rs26618T-rs26653G-rs3734016C and
the ERAP2 haplotypes, rs2549782T-rs2548538T-rs2248374G
-rs2287988A-rs1056893T and rs2549782G-rs2548538A-
rs2248374A-rs2287988G-rs1056893T may be associated
with cervical cancer risk. These results indicated that SNPs
in polymorphic genes may have combinatorial effects on dis-
ease susceptibility.

Conclusion
Studies indicated that genetic factors might be correlated
with cervical cancer risk [54–56], the clinical parameters
of cervical cancer [57, 58] and the clinical outcome of
cervical cancer [59, 60]. In the current study, we found
that genetic polymorphisms in ERAP1 and ERAP2 genes
might be associated with CIN and cervical cancer, and
suggested that polymorphisms in key antigen-processing
genes could affect susceptibility of cervical cancer. The
strength of our study could be we investigated the asso-
ciation of ERAP SNPs with different stages of cervical
cancer (healthy individuals, CIN and cervical cancer pa-
tients). By contrary, the limitations of our study are that
we could not collect more details of the patients’ clinical
parameters and had no functional verification. Associ-
ation studies can only provide preliminary results for the
correlation between genetic factors and cervical cancer
susceptibility, the determination of the SNPs’ roles in
cervical cancer requires functional studies to be resolved
in the future.
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