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Abstract

Background: Metastatic prostate cancer (PC) is highly lethal. The ability to identify primary tumors capable of
dissemination is an unmet need in the quest to understand lethal biology and improve patient outcomes. Previous
studies have linked chromosomal instability (CIN), which generates aneuploidy following chromosomal
missegregation during mitosis, to PC progression. Evidence of CIN includes broad copy number alterations (CNAs)
spanning > 300 base pairs of DNA, which may also be measured via RNA expression signatures associated with
CNA frequency. Signatures of CIN in metastatic PC, however, have not been interrogated or well defined. We
examined a published 70-gene CIN signature (CIN70) in untreated and castration-resistant prostate cancer (CRPC)
cohorts from The Cancer Genome Atlas (TCGA) and previously published reports. We also performed transcriptome
and CNA analysis in a unique cohort of untreated primary tumors collected from diagnostic prostate needle
biopsies (PNBX) of localized (M0) and metastatic (M1) cases to determine if CIN was linked to clinical stage and
outcome.

Methods: PNBX were collected from 99 patients treated in the VA Greater Los Angeles (GLA-VA) Healthcare System
between 2000 and 2016. Total RNA was extracted from high-grade cancer areas in PNBX cores, followed by RNA
sequencing and/or copy number analysis using OncoScan. Multivariate logistic regression analyses permitted
calculation of odds ratios for CIN status (high versus low) in an expanded GLA-VA PNBX cohort (n = 121).
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Results: The CIN70 signature was significantly enriched in primary tumors and CRPC metastases from M1 PC cases.
An intersection of gene signatures comprised of differentially expressed genes (DEGs) generated through
comparison of M1 versus M0 PNBX and primary CRPC tumors versus metastases revealed a 157-gene “metastasis”
signature that was further distilled to 7-genes (PC-CIN) regulating centrosomes, chromosomal segregation, and
mitotic spindle assembly. High PC-CIN scores correlated with CRPC, PC-death and all-cause mortality in the
expanded GLA-VA PNBX cohort. Interestingly, approximately 1/3 of M1 PNBX cases exhibited low CIN, illuminating
differential pathways of lethal PC progression.

Conclusions: Measuring CIN in PNBX by transcriptome profiling is feasible, and the PC-CIN signature may identify
patients with a high risk of lethal progression at the time of diagnosis.
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Background
Chromosomal instability (CIN) describes a cell state
where whole chromosomes or chromosome arms are
gained, lost, or develop structural aberrations at high
rates [1, 2]. Chromosome missegregation due to mitotic
errors is the root cause of CIN and contributes to the
overall genomic instability that propels tumor evolution
[3–7]. The two main products of CIN are aneuploidy,
reflected in whole chromosome and arm-level (broad)
copy number alterations (CNAs), and micronuclei,
which are extra-nuclear bodies containing chromosomal
segments that are prone to rupture, eliciting further
DNA damage and inflammatory responses [5, 7–11].
Aneuploidy is a well-recognized hallmark of cancer and
is detectable in 88% of samples in The Cancer Genome
Atlas (TCGA) [11]. Aneuploidy frequency correlates
with TP53 mutations, overall mutation rate (after ex-
cluding tumors with high microsatellite instability), and
proliferative gene expression signatures [11–13]. Inter-
estingly, there is an inverse correlation between aneu-
ploidy levels and leukocyte infiltration, which may have
implications related to tumor immunogenicity [11, 14].
Activation of the cyclic GMP-AMP synthase-stimulator
of interferon genes (cGAS-STING) pathway by cytoplas-
mic DNA spillage from ruptured micronuclei can drive
metastatic spread through downstream non-canonical
NF-KB signaling in cell line models that display high
chromosomal missegregation [15].
Despite implications that CIN may be a catalyst for

genomic alterations and a permissive environment for
tumor progression, quantitation of CIN in tumors is
rarely performed due to technical challenges and lack of
therapeutic implications [10, 16, 17]. To facilitate meas-
urement of CIN, which can be costly using exome se-
quencing or single nucleotide polymorphism (SNP)
arrays, computational approaches can be used to derive
gene expression signatures as a surrogate of genomic
CIN measurements. Accordingly, a validated 70-gene
CIN expression signature of (CIN70) has been shown to
be consistently associated with poor outcome across a

variety of tumors [15, 16]. CIN70 was generated by
calculating total chromosomal imbalance via spectral
karyotype and SNP-Chip analysis, followed by identifica-
tion of corresponding differentially expressed genes
(DEGs) and predicted poor outcome in twelve independ-
ent data sets representing six cancer types. Annotation
of CIN70 DEGs revealed many with roles in chromo-
somal replication/condensation/separation, mitotic spindle
assembly, and centrosome function [16].
In prostate cancer (PC), metastatic and castration re-

sistant tumors exhibiting features of genomic instability
as a consequence of DNA damage repair (DDR) defects
has led to promising clinical trials evaluating inhibitors
that target these genomic subgroups [18–21]. In con-
trast, the prevalence, molecular mechanisms, and impact
of CIN as a prognostic indicator and/or therapeutic tar-
get in PC have lagged, despite detection of aneuploidy in
a large proportion of PC, including untreated primary
tumors and mCRPC [11, 22, 23]. Recently, a transcrip-
tome profiling method capable of estimating the number
of altered chromosome arms in PC samples from TCGA
was described [23]. Application of this method to surgical
specimens (radical prostatectomy and transurethral resec-
tion of the prostate) from two independent PC cohorts
with long-term follow-up available suggested that broad
CNAs were associated with an increased risk of PC lethal-
ity. Taken together, these observations implicate CIN is a
potential catalyst of PC progression through genomic and
structural chromosomal aberrations and warrants further
exploration for clinical utility.
Here, we aimed to evaluate the prevalence of CIN

across the clinical spectrum of PC, including localized
castration-sensitive PC (CSPC), metastatic CSPC
(mCSPC) and mCRPC. A large volume of genomic and
transcriptomic data from PC patients was utilized to as-
sess CIN, including a rare collection of diagnostic
PNBX (n = 99) comprised of patients with de novo
metastatic (clinical stage M1) as well as presumed lo-
calized (clinical stage M0) high-grade CSPC assembled
from patients treated over a period of 15 years at a
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single Veterans hospital. Although < 6% of new PC
diagnoses are stage M1, a disproportional number of
PC-related deaths occur in these men who exhibit a 5-
year survival rate of approximately 28% [24]. The high
lethality of M1 cases suggests a potential role for CIN
in the development/propagation of aggressive subtypes.
Consequently, profiling cases of de novo metastatic PC
may reveal CIN as a useful biomarker of dissemination,
progression, and/or inherent treatment resistance that
is feasible to measure in diagnostic PNBX and may re-
veal biology leading to new therapeutic targets.

Methods
Ethics statement
We received institutional review board (IRB) approval to
abstract data and procure both fresh and archival PNBX
samples from men diagnosed and treated within the
Greater Los Angeles VA (GLA-VA) Healthcare System
(protocol numbers PCC2018–020201 and PCC2010–
11489). Informed consent was obtained for all prospect-
ively collected tissue specimens. A consent waiver was
approved for collection of archival samples and data. All
specimens were stripped of personal health information
and identifiers.

GLA-VA patient cohort
After Institutional Review Board approval was obtained,
99 PC cases with archival biopsy tissue available were
selected for RNA sequencing (RNAseq) from a total
cohort 1927 cases identified within the GLA-VA cancer
registry or procedure logs. The selected cases were di-
vided into sub-cohorts based upon tumor burden at
diagnosis or recurrence/progression documented in im-
aging reports, including 99mTc-methylene disphospho-
nate (99mTc-MDP) planar bone scintigraphy, 18F-NaF
positron emission tomography (18F-NaF PET), ultra-
sounds, magnetic resonance imaging (MRI), computed
tomography (CT) scans, and plain radiographs. Cases
were designated clinical stage M1 if metastatic lesions
were identified on imaging scans performed within 1
year of the diagnostic PNBX. Osteoblastic, osteolytic,
and/or sclerotic bone lesions observed on bone scan
were confirmed or by the presence of overlapping le-
sions on plain radiographs, CT or MRI imaging. Oligo-
metastatic “oligo” disease was defined by < 5 extrapelvic
lymph node and/or bone metastases and no visceral me-
tastases. Polymetastatic “poly” disease was defined as > 5
metastases or any visceral involvement. M1 cases were
designated M1-oligo or M0-poly based on the aforemen-
tioned tumor burden assessment. Cases that were con-
sidered M0 at diagnosis, but demonstrated eventual
metastatic progression (M0-M) were designated M0-
oligo or M0-poly based on tumor burden on imaging
scans at the time of follow-up. Cases were designated as

clinical stage M0 non-metastatic (M0-NM) if no metastatic
lesions were identified at the time of last follow-up. If im-
aging scans were not performed, or equivocal results were
obtained, the cases were categorized as MX and excluded
from analysis. A significant subset of M0 cases from the ori-
ginal 1927 cohort did not have an indication for diagnostic
imaging due to diagnosis of low- or intermediate-risk PC
according to D’Amico classification [25].

Sample processing and RNA analysis
Diagnostic hematoxylin and eosin (H&E) PNBX slides
were reviewed by a genitourinary pathologist, and high-
grade tumor areas (Gleason grade 4, 5, or neuroendo-
crine/small cell) were encircled. Transfer of annotated
areas to the paraffin-embedded tissue blocks was per-
formed and 1-2 mm sterile circular biopsy punches en-
abled manual procurement of formalin-fixed tissue from
the block. A minimum of 2 (1 mm) cancer cores were
used from each high-grade tumor area for RNA and/or
DNA preparation. Total RNA was extracted from tissue
cores using the Ambion Recover All Total Nucleic Acid
Isolation Kit for FFPE (ThermoFisher). Samples were
eluted with H20 and quantitated with nanodrop and
bioanalyzer. Approximately 40-100 ng of RNA was used
to generate the libraries using the TruSeq RNA Access
Library Prep Kit (Illumina) according to manufacturer’s
instructions. Quality control for libraries was performed
with the HS DNA Qubit and bioanalyzer, followed by
sequencing on the Hiseq3000 at 1 × 50.

OncoScan CNA analysis
DNA was extracted from 1mm FFPE cores with Ana-
Prep 12 Automated Nucleic Acid Preparation Instru-
ment (Biochain) and quantitated with Qubit (Life
technology). Approximately 80 ng of gDNA was used in
the Affymetrix OncoScan FFPE Assay kit (Affymetrix)
according to manufacturer’s instructions. The Affyme-
trix GeneChip Scanner 3000 G7 was used and data was
processed with Affymetrix Chromosome Analysis Suite
3.1 (ChAS 3.1) to generate probe level and gene level
log2-ratio using normalized data.

Sequencing data access
Gene expression data and OncoScan CNA data were de-
posited into the GEO database with accession GSE147493
and GSE147353, respectively.

Genomic alterations of the TCGA PC cohort
We computed scores for focal CNAs, broad CNAs, over-
all CNAs (broad and focal), TMB, genomic fusion, MSI,
PC-CIN, and CIN70 using data from 473 prostate sam-
ples in TCGA. We used GISTIC 2.0 [26] to compute
focal, broad and overall CNAs. CNAs with the GISTIC
value less than − 0.3 were categorized as ‘loss’ and larger
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than 0.3 as ‘gain’. If the length of altered (loss or gain)
regions was longer than 98% of the chromosomal arm, it
was classified as broad CNAs, while less than 98%
chromosomal arm were classified as focal CNAs. For
each case, the broad CNA score was generated by calcu-
lating the total number of broad CNAs over the total
number of chromosomal arms, and the focal CNA score
was calculated based upon the number of focal CNAs
over the total number of genes. MSI score was based
upon the MANTIS scores as described in previously
published reports [27]. We obtained masked copy num-
ber segment, Mutect2 result of somatic mutation from
UCSC Xena Browser (http://xena.ucsc.edu/). Fusion data
was obtained from a published report [28]. TMB score
was calculated from counts of non-synonymous muta-
tions in a sample divided by exon size per million bases
(total exon size = 299.029409MB). Fusion score was de-
fined as the ratio of the number of fusion events and the
total number of fusion types [28]. The signature activa-
tion scores were computed using a Z-score method [29].

RNAseq data analysis of PNBX cohort
For RNAseq data analysis, the quality of sequence reads
from the RNAseq data were assessed and low quality
reads were filtered using the FastQC tool (Babraham
Bioinformatics, Cambridge, UK) and ShortRead (v.
1.30.0) package from R bioconductor (version 3.3).
Quantification of gene level expression from prepro-
cessed RNA-seq results were performed with the UCSC
hg19 build of the Homo sapiens genome, through the
use of the Subread aligner and the featureCounts soft-
ware [30, 31]. To reduce systemic bias between samples,
the Trimmed Mean Method (TMM) was applied to gene
level expression counts [32]. Genes were filtered out and
excluded from downstream analysis if they failed to
achieve raw read counts of at least 2 across all the librar-
ies. Differentially expressed genes (DEGs) were deter-
mined with false discovery rate (FDR) < 0.05 and fold
change> = 1.5 obtained from the integrative hypothesis
testing method [33]. In order to determine whether a set
of genes showed statistically significant and/or concord-
ant differences between two biological states such as M1
versus M0-NM, GSEA software tool was applied to
RNAseq dataset. Briefly, gene sets were obtained from
MSigDB [34] or previously published analysis [16] Genes
in the RNAseq dataset were sorted in descending order
using the ‘Signal2Noise’ ranking metric and computed en-
richment score (ES) using a Kolmogorov-Smirnov running
sum statistic for the gene set. Significance was computed
using a null distribution of the ES generated from a ran-
dom gene set by 1000 permutations. For the training and
evaluation of the classifier using the gene signatures, two
principal dimensions using principal component analysis
(PCA) were extracted from expression matrix of the gene

signature and then SVM algorithm was applied to deter-
mine the discrimination border between the two groups
(M1-poly versus M0-NM).

Statistics
The PNBX cohort (n = 99) was separated into five sub-
cohorts based upon tumor burden at diagnosis (oligo or
poly) or no tumor at diagnosis +/− metastatic progres-
sion (oligo, poly, or no metastases) on at last follow-up
(Supplementary Table 1). Bivariable analyses compared
patient clinical characteristics across the sub-cohorts
using Chi-square (or Fisher’s exact) tests for categorical
variables and ANOVA (or Wilcoxon rank-sum or median)
tests for continuous variables. Kaplan-Meir survival ana-
lyses were performed for prostate cancer-specific and all-
cause mortality stratified by tumor burden categories de-
scribed above. In addition, BCR-free survival was exam-
ined in high and low risk groups defined by the risk index
using Cox proportional hazard regressions of the gene sig-
nature. Clinical characteristics were also compared be-
tween CIN status (high v. low) stratified by patient race
(African-American and white). Lastly, multivariate logistic
regression analyses were conducted for CRPC, prostate
cancer-specific mortality and all-cause mortality to calcu-
late odds ratios for CIN status (high v. low), controlling
for age, race, PSA (> 20 v. ≤20) and Gleason sum (> 8 v.
≤8). Analyses were performed using Stata (StataCorp LP,
College Station, TX, USA), SAS 9.4 (SAS Institute Inc.,
Cary, NC, USA), MATLAB (Mathworks, Natick, MA,
USA) and R (v.3.1 http://www.r-project.org/).

Results
CIN70 is significantly elevated in CRPC metastases
The CIN70 signature was previously derived by identify-
ing differentially expressed genes in tumors displaying
high versus low levels of chromosomal imbalance.
CIN70 was applied to five CRPC transcriptome datasets
[22, 35–38]. The signature activation scores derived
from primary tumors were compared to CRPC metasta-
ses (Fig. 1). CIN70 scores were significantly higher in
CRPC metastases compared to primary tumors across all
datasets.

CIN70 score strongly correlates with various genomic
alterations in the PC cohort in TCGA
Since the high CIN70 signature activation score strongly
associated with CRPC metastases, we sought to deter-
mine if it correlated with genomic evidence of CIN (i.e.,
broad CNAs) as well as unfavorable tumor features and
outcome in untreated PC tissue samples. To assess the
correlations of specific types of genomic aberrations and
CIN70 activation scores measured in primary PC, we
employed the PC cohort (n = 473) found in TCGA
(Fig. 2a). We considered five different types of genomic
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Fig. 1 CIN70 score is significantly higher in mCRPC compared to primary tumors. Five transcriptome data from independent PC cohorts that
included primary tumors and mCRPC were analyzed for CIN70 activation score. a Box plots comparing primary tumors and metastatic tumors
demonstrated overall differences in gene expression scores (rank-sum p < 0.00001 for all). b Volcano plots reflecting differential expression in
primary tumors versus metastases were annotated with CIN70 genes (purple) to highlight differential expression in CRPC metastases
versus primaries

Fig. 2 CIN70 scores in primary untreated PCs are most strongly correlated with broad CNAs. a A heat map generated from 473 primary,
untreated, clinically localized prostate tumors in TCGA ordered by CIN70 score (high to low) demonstrates the frequency of broad CNAs and focal
CNAs (gains in red, losses in blue), mutations, and specific fusions (TMPRSS-ERG, SLC45A3-ERG, and TMPRSS-ETV4). In addition, MANTIS scores
reflecting the level of microsatellite instability (MSI) and clinical information, including Gleason sum (see legend to indicated sum of 6,7,8,9,or10)
and BCR were included. b A correlation matrix demonstrating links between CIN70 scores and specific genomic aberrations. c Plots of PC
samples from TCGA based upon CIN70 score demonstrate positive correlation with broad CNA score and negative correlation with MSI score.
d Frequency of somatic CNAs (gains in red, losses in blue) in PC cases from TCGA. Height of peaks indicates the frequency of CNAs at
each chromosome
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alterations including focal CNAs, broad CNAs, tumor
mutational burden (TMB), gene fusions, and microsatel-
lite instability (MSI) for each case. All genomic alter-
ations were quantified using the individual scoring
method (see Methods). Briefly, CNA events were identi-
fied in each sample and assigned broad or focal status
based exclusively upon length using GISTIC 2.0 [26].
The TMB and fusion score were computed using the
number of events identified in each case. The MSI score
was based upon the MANTIS scoring method, and pre-
computed scores for the PC cohort in TCGA were
obtained from a previously published report [27]. Cases
were displayed in a heat map based upon CIN70 score
(high to low) in order to visualize recurrent genomic al-
terations associated with the CIN (Fig. 2a). Pathology
Gleason score and biochemical recurrence (BCR) status
were also included on the map for each case. Comparing
CIN scores to specific classes of genomic alterations
allowed determination of correlation coefficients (Fig. 2b).
The CIN70 score most strongly correlated with broad
CNAs (r = 0.52, Fig. 2c). There was a positive correlation
with focal CNAs (r = 0.46), which was weaker with muta-
tional burden (r = 0.34) and fusions (r = 0.31). No signifi-
cant correlation between CIN70 score and MSI score was
observed (r = 0.09, Fig. 2c). High CIN70 scores were asso-
ciated with PC displaying Gleason score of 8 or higher
(Additional File 1, Supplemental Fig. 1). PC cases display-
ing BCR were also more likely to display high CIN70
scores (Additional File 1, Supplemental Fig. 1). These find-
ings confirm that high CIN70 score is reflective of broad
CNA frequency in PC, which, in turn, is associated with
aggressive disease and poor outcome in TCGA cases. To
assess whether specific, recurrent CNAs differ between
cases with high versus low CIN scores, TCGA cases classi-
fied as CIN70-high versus CIN70-low were compared
(Fig. 2d). An increase in recurrent CNAs were identified
throughout the genome, but no specific chromosomal lo-
cations where affected by increases in CNAs, confirming
the global genomic impact of CIN.

PNBX cohort
Having established that CIN70 scores are highest in
mCRPC and high-risk primary CSPCs contained in
TCGA, we sought to evaluate transcriptomic profiles de-
rived from untreated primary tumors of men diagnosed
with de novo metastases (clinical stage M1). High-grade
PC areas in PNBX were procured for RNA sequencing
(RNAseq) from formalin-fixed and paraffin-embedded
diagnostic PNBX of 99 patients (Fig. 3a). We accessed
selected archival diagnostic PNBX from a racially and
ethnically diverse cohort of 1927 men who were diag-
nosed and treated exclusively within a single Veterans
Affairs (VA) healthcare system (Additional File 1, Sup-
plemental Fig. 2). Sub-stratification of this cohort was

performed based upon metastatic tumor burden (oligo
versus poly) at diagnosis and follow-up (Additional File 1,
Supplemental Fig. 2A). Kaplan-Meier curves demon-
strated overall survival (Additional File 1, Supplemental
Fig. 2B), with M1-poly and M0-poly cases displaying
significantly shorter survival than M1-oligo and M0-oligo
cases. For comparison, we selected high-grade PC cases
without evidence of metastatic progression (M0-NM) over
a median follow-up of 56months. Clinical characteristics
of the sequenced PNBX cases are provided in Additional
File 1, Supplemental Table 1.

mCRPC biology embedded in PNBX M1 cases
We aimed to identify the transcriptomic footprint of
metastatic disease in primary tumors by comparing
mCRPC and primary tumors collected from PNBX of
men diagnosed with de novo metastatic disease (M1-
oligo and M1-poly). We also questioned the amount of
CIN in these cancers. Towards this goal, we identified
1234 DEGs by comparing RNA sequencing datasets of
PCs from men in the VA cohort diagnosed with de novo
metastatic disease (M1-poly or M1-oligo) versus non-
metastatic (M0-NM) cases. We also derived DEGs
through comparison of gene expression between primary
tumors from RPs and metastases collected at rapid aut-
opsy in two published mCRPC cohorts (Taylor and Grasso
data sets) [22, 35]. Strong correlations were revealed be-
tween DEGs from the VA cohort and the DEGs derived
from the Taylor (r = 0.64) or Grasso (r = 0.45) cohorts
(Fig. 3b). Slightly weaker correlations were evident for
M1-oligo cases (r = 0.34 and 0.27, respectively).
Next, the overlap amongst DEGs across datasets

(PNBX, Taylor, and Grasso) was used to identify 157
shared DEGs (Fig. 3c). Functional enrichment analysis in
the 157 DEGs demonstrated the greatest activity of path-
ways associated with mitotic nuclear division, cell prolif-
eration and cell-cell signaling (Fig. 3d). A large portion
of DEGs (89/157, 57%) had the same directionality in
gene expression between primary tumors associated with
de novo metastases and CRPC sampled at metastatic
sites. In a multidimensional scaling diagrams supervised
by the 157 DEG set, cases without metastases (M0-NM)
and M1 cases (both M1-oligo and M1-poly) form dis-
tinct clusters (Fig. 3e). Similarly, when applied to the
Taylor and Grasso cohorts, primary tumors were sepa-
rated from metastases (Fig. 3e). Collectively, these results
demonstrate that untreated primary tumors from men
with de novo metastases possess gene expression profiles
that are correlative to heavily treated mCRPC. These re-
sults suggest mCRPC biology is embedded in the pri-
mary tumors of M1 patients and has the potential to
reveal biological mediators of metastases, castration-
resistance and lethal PC at the time of diagnosis via
standard-of-care PNBX.

Miller et al. BMC Cancer          (2020) 20:398 Page 6 of 15



PNBX M1 cases represent high CIN without deregulated DDR
We hypothesized that CIN70, which is highly elevated in
mCRPC, may demonstrate a similar expression profile in
M1 PNBX. Consequently, we evaluated enrichment of
CIN70 gene expression via gene set enrichment analysis
(GSEA) of M1 versus M0-NM cases. This analysis re-
vealed significant up-regulation of CIN70 genes in M1
tumors (Additional File 1, Supplemental Fig. 3) [16]. In
order for tumor cells to tolerate CIN, inactivation of the
TP53 gene or its associated pathway is often required
[39]. Interrogation of genes linked to the hallmark p53

pathway activation signature demonstrated down-
regulated in M1 relative to M0-NM tumors (p =
0.031). Interestingly, there was no enrichment in the
DDR gene signature, indicating that this potential
mechanism of genomic instability may not be preva-
lent in de novo metastatic CSPC (Additional File 1,
Supplemental Fig. 3).

Derivation of PC-CIN
Since M1-oligo and M1-poly cases displayed significant
differences in PC-specific survival (Additional File 1,

Fig. 3 Transcriptome analysis of diagnostic PNBX primary tumors from mCSPC (M1) cases correlate strongly with mCRPC. a PNBX cohort
consisting of 99 cases of de novo metastatic (M1) CSPC (n = 63), localized (M0) cases that progressed with metastases (M0-M, n = 13), or high-
grade M0 cases without metastatic progression (M0-NM, n = 23). Cases were sub-stratified based upon oligometastatic (M1-oligo) or
polymetastatic (M1-poly) tumor burden at diagnosis or following recurrence (M0-oligo or M0-poly). b Correlation matrix of 1234 DEGs
determined by comparison of M1 (oligo and poly) versus M0-NM cases from the PNBX cohort. c A Venn diagram depicts the overlap of three
sets of DEGs (21 + 36 + 100 DEGs shaded in light blue) for a combined total of 157 shared genes that were revealed from comparison of M1
versus M0-NM PNBX cases with CRPC metastases versus primary tumors from Taylor and Grasso cohorts. d Bar chart showing cellular processes
(rows) enriched by 157 common DEGs. Functional enrichment analysis of genes in three clusters was independently performed using DAVID
software. e Multi-dimensional scaling of cases from the PNBX, Taylor
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Supplemental Fig. 1B), we hypothesized that distinct bio-
logical triggers may influence tumor burden. Consistent
with this idea, out of total 1234 DEGs in M1 versus M0-
NM, a relatively small portion of the DEGs (105 genes;
9%) were common in both M1-oligo and M1-poly, while
most of the genes (696/801 DEGs in M1-oligo and 433/
538 DEG in M1-poly) were exclusively regulated in M1-
oligo or M1-poly cases (Additional File 1, Supplemental
Fig. 4A). These DEGs were grouped into 3 clusters
(shared, oligo-dominant, and poly-dominant) based on
their differential expression patterns (Additional File 1,
Supplemental Fig. 4B). To identify cellular processes
within each group, functional enrichment analysis was
performed using DAVID software (Additional File 1,
Supplemental Fig. 4C) [40]. While the oligo-dominant
cluster was enriched in inflammatory response, steroid
metabolic processing, cell-cell signaling, and cell differ-
entiation, the poly-dominant cluster displayed the

strongest enrichment in cell proliferation and mitotic
cell division. Consistent with this, GSEA analysis of M1-
poly versus M0-NM revealed a leading-edge subset of
genes that significantly contributed to the enrichment of
CIN70 and demonstrated significant up-regulation in
M1 tumors (Fig. 4a and Additional File 1, Supplemental
Fig. 3A). Notably, seven out of the top 19 leading-edge
genes (PBK, CEP55, UBE2C, MELK, TPX2, PTTG1, and
CDCA3) regulate mechanisms during mitosis [41]. We
will refer to these seven genes as PC-CIN (prostate
cancer-CIN). In order to determine whether the CIN70
signature genes or simplified PC-CIN associated with
metastasis (M)-stage (M1 versus M0-NM) at diagno-
sis, we developed a prediction model using a support
vector machine (SVM) algorithm (see Methods and
Additional File 1, Supplemental Fig. 5) and tested its
accuracy using PC-CIN or CIN70 genes. The model
displayed a high level of accuracy in predicting

Fig. 4 PC-CIN separates primary tumors from CRPC metastases. a Heat map displays up-regulation of leading edge genes for CIN70 in M1-oligo and
M1-poly tumors that significantly contribute enrichment of CIN, including seven genes highlighted in red, referred to as PC-CIN. b PC-CIN genes
generated from a support vector machine (SVM) with a Gaussian kernel were determined to perform similarly to CIN70 in separation of PNBX case by
M-stage with high accuracy. The receiver operating characteristic (ROC) curves showed the performance of the PCA-SVM classifiers using the CIN70
and PC-CIN gene signatures. c PC-CIN scores are significantly higher in metastases compared to primary tumors in mCRPC datasets GSE21034 and
GSE35988 p. d Multidimensional scaling analysis of TCGA samples by PC-CIN scores (PC-CIN-High in red, PC-CIN-Low in blue). e Distribution of PC-CIN
scores among TCGA PC cases stratified by Gleason sum (one-way ANOVA p < 0.0001) or (f) biochemical recurrence (rank-sum p < 0.0001)
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metastasis stage with area under the curve (AUC)
value of 0.90 for PC-CIN and 0.96 for CIN70 (Fig.
4b). Both CIN70 and PC-CIN appeared significantly
enriched in mCRPC relative to primary tumors across
five datasets (Fig. 4c and Additional File 1,
Supplemental Fig. 5A, all p < 0.00001). PC-CIN activa-
tion score was also highest in Gleason 8 and higher
PC samples in TCGA, as well as in cases of BCR
(Fig. 4d-f).

PNBX analysis revealed heterogeneity of CIN in M1 cases
To better understand the distribution of CIN70 and PC-
CIN scores in the context of the PNBX cohort (n = 99),
we created an integrative heat map of CIN70 genes split
into functional groups, as well as the 7 PC-CIN genes
(Fig. 5a). Embedded in this heat map is the CIN70 score,
with cases arranged from CIN70-low to CIN70-high, the

disease stage (M0-NM, M0-oligo, M0-poly, M1-oligo,
M1-poly), and the Gleason Sum (6–10). The heat map
allows observation of the pattern of distribution of de
novo metastatic (M1) cases along the spectrum of CIN
scores. Interestingly, a bimodal distribution of M1 cases
is observed, with 23/63 displaying CIN70 scores in the
lowest third and 25/63 displaying CIN70 scores in the
highest third. PC-CIN gene expression variability ap-
peared to mirror the expression pattern of CIN70 genes.
A volcano plot of PC-CIN genes in M0-NM versus M1-
poly cases in the PNBX cohort demonstrates differen-
tial expression (Fig. 5b). PC-CIN scores are significantly
higher in M1-poly cases compared to M0-NM cases
(p = 0.0426), however, the wide range of PC-CIN scores
is evident in the box plot in Fig. 5c, which reflects the
bimodal distribution of M1 CIN scores observed in the
heat map (Fig. 5a).

Fig. 5 CIN70 score highlights distinct M1 subtypes. Derivation of CIN70 score in individual samples in the PNBX cohort (n = 99) identifies bimodal
distribution of M1 cases. a Heat map of PNBX samples organized by CIN70 score (low to high). Clinicopathological information is given in the header
according to the legend (disease stage, Gleason sum). PC-CIN genes and specific genes from the CIN70 signature organized into functional groups are
shown in accordance with the legend (chromosome replication, condensation, cyclins/cell cycle, cytokinesis, DDR, kinetochores, spindle-related, spindle-
related/centrosomes, and spindle-related/cyclins). b Volcano plot highlights distribution of PC-CIN genes among DEGS identified by comparison of M)-
NM and M1-poly cases from the PNBX cohort. c Boxplot demonstrates range of significantly higher PC-CIN scores found in M1-poly versus M1-NM PNBX
cases. d Box plots demonstrate significantly higher frequency of CNAs found in select M1-poly versus M0-NM cases from the PNBX cohort
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To identify genomic evidence of CIN in M1 cases,
we sampled the same tumor regions for DNA extrac-
tion that were previously selected to generate tran-
scriptome data in M0-poly and M0-NM cases. Since
there is limited tissue in PNBX, only 24 cases yielded
sufficient quality/quantity of DNA for CNA evalu-
ation. However, a significant increase (p = 0.038) in
copy number alterations in M1-poly versus M0-NM
cases was observed in this small sample (Fig. 5d),
consistent with heightened frequencies of amplifica-
tions and deletions associated with CIN in TCGA
(Fig. 2). Gain of MYC and loss of RB1 and SIAH3
were also identified, consistent with previous studies
of genetic alterations associated with poor PC prognosis
(Additional File 1, Supplemental Fig. 6A and B) [42–44].

Differentially expressed genes in CIN-high versus CIN-low
cases
The bimodal distribution of M1 cases when organized
by CIN70 score suggests both CIN-dependent and CIN-
independent gene associations and processes linked to
PC lethality. Consequently, we evaluated DEGs and bio-
logical processes associated with CIN70-Low versus
CIN70-High, as well as PC-CIN-Low versus PC-CIN-
High cases from the PNBX cohort. Heat maps of the
DEGs based upon these different gene expression signa-
tures is displayed in Additional File 1, Supplemental
Fig. 7A and B). Enriched biological processes associated
with CIN70 and PC-CIN scores (low versus high) are
also displayed (Additional File 1, Supplemental Fig. 7C
and D). Distinct biological processes appear to be active
in CIN-high versus CIN-low tumors. As expected, CIN-
high tumors involve processes associated with cell cycle,
mitosis, and chromosome segregation. In contrast, the
top processes associated with CIN-low tumors involve
developmental signatures, specifically those related to
vascular and urogenital system development, as well as
muscle contraction. In a subgroup analysis of clinical,
pathological, and outcomes variables associated with
CIN- high versus CIN-low metastatic tumors, there were
no significant differences found in de novo metastatic
cases. When all metastatic cases were included (i.e.,
those that were initially diagnosed as M0, but then pro-
gressed with metastasis), CIN-high cases were more
likely to have pathological N1 stage and demonstrated
significantly poorer outcomes than CIN-low cases
(Supplemental Tables 4 &5).
Additional analysis of previously described CIN genes

and drivers was also performed. During chromosome
segregation, sister chromatids are separated by a kineto-
chore mediated attachment to spindle microtubules [45].
The microtubules are nucleated from centromeres,
which require the highly evolutionary conserved OIP5/
MIS18β for proper assembly [46]. Disruption of

kinetochore and centrosome dynamics are components of
neoplastic transformation, and, similar to aneuploidy,
centrosome amplification is another hallmark of cancer
[47]. Although there was no clear evidence of specific
functional group dysregulation among nine mechanistic
subgroups of CIN70 genes that we annotated (chromo-
somal separation, condensation, cyclins/cell cycle, DNA
damage repair (DDR), kinetochores, spindle-related, spin-
dle related/centrosomes, and spindle related/cyclins), we
did find interesting expression differences that connect
CIN and metastatic progression. KIF20A is one of the
leading edge genes found on GSEA of M1-poly versus
M0-NM DEGs (Fig. 4a) and is homologous to KIF2B, a
protein that directly promotes tumor metastasis in cell
line models of CIN [15]. Both KIF20A and KIF2B are sig-
nificantly overexpressed in PC-CIN-high cases relative to
(Additional File 1, Supplemental Fig. 8A).
A recent analysis of highly aneuploidy breast cancers

in TCGA found overexpression of three transcriptional
regulators, E2F1, MYBL2, and FOXM1 [13]. Overexpres-
sion of these genes in non-transformed Xenopus em-
bryos was sufficient to significantly increase the rate of
chromosomal missegregation and initiate aneuploidy.
Evaluation of expression of these transcription factors in
CIN70-high versus CIN70-low PNBX demonstrated
significantly elevated expression in CIN70-high cases
(Additional File 1, Supplemental Fig. 8B). In addition,
6/7 PC-CIN genes (CEP55, UBE2C, MELK, TPX2,
PTTG1, and CDCA3) were also found to be among the
top DEGs identified through comparison of high aneu-
ploidy versus low aneuploidy breast tumors in TCGA.
These results suggest that the same drivers and effectors
are involved across tumor types.

Staging and prognostic value of PC-CIN in independent
cohorts
Next, we questioned whether the PC-CIN signature
genes were associated with disease progression in pre-
sumed localized (M0) cases. PC-CIN score separated
high- and low-risk BCR groups from two independent
PC cohorts (Fig. 6a) [22, 48]. We also tested the ability
of PC-CIN to separate cases based upon M-stage equally
well in subcohorts of African-American (AA) and
European-American (EA) PNBX (n = 121). Clinical char-
acteristics of patients included in this expanded PNBX
cohort are shown in Additional File 1, Supplemental
Table 2. PC-CIN was associated with metastatic progres-
sion in cases stratified by race with AUC of 0.78 for AA
men and 0.80 for EA men (Fig. 6b). Both AA and EA
men displayed significantly higher PC-CIN in M1 PNBX
compared to M0 PNBX (P = 1.06e-04 and 3.11e-04,
respectively, Fig. 6c). In both racial groups, univariate ana-
lyses demonstrated that PC-CIN high cases were signifi-
cantly more likely to be classified as clinical stage M1,
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progress to CRPC, and die from PC (Additional File 1,
Supplemental Table 3). In order to evaluate the impact of
PC-CIN score in the context of other clinicopathological
variables, multivariate logistic regression analysis was per-
formed. After controlling for age, race, PSA and Gleason
sum, PC-CIN-high is significantly associated with higher
odds of M1 stage, CRPC, PC-death and all-cause
mortality in multivariate analysis (OR 10.84, 16.13,
6.26 and 6.00, respectively; all p < 0.001, Table 1).

Discussion
We used a bioinformatics approach to rank PC tumors
in TCGA based upon CIN70 signature activation scores
and found a positive correlation between CIN70 score
and frequency of aneuploidy events (whole chromosome
and large fragments of chromosome gains/losses). We
evaluated genomic and transcriptomic evidence of CIN
across datasets representing the full clinical spectrum of
PC, including localized CSPC, mCSPC, and mCRPC,

Fig. 6 PC-CIN predicts poor outcome in independent PC cohorts and separates cases based upon M-stage in AA and White men. a Association of
BCR-free survival of the high and low risk groups defined by Cox proportional hazard regression model of CIN7 signature genes from the PC cohorts
of Taylor et al. and Ross-Adams et al. b The receiver operating characteristic (ROC) curves show the performance of the PC-CIN classifier in AA
(magenta) and EA (blue) men. c PC-CIN scores are significantly higher in M1 cases stratified by race (rank-sum p-value calculations are shown)

Table 1 Multivariate logistic regression analysis of variables associated with PC progression

CRPC PC-Death All-Cause Mortality

PC-CIN High Versus Low 16.13 (3.23, 80.55) 6.26 (2.44,16.04) 6.00 (2.45, 14.71)

Age at Diagnosis 0.93 (0.86,1.01) 1.00 (0.95,1.05) 1.01 (0.97,1.06)

Race (AA v. White) 0.99 (0.22,4.96) 0.31 (0.11,0.86) 0.43 (0.16,1.11)

PSA (< 20 v. > 20) 1.04 (0.22, 4.96) 8.23 (3.06, 22.15) 5.71 (2.29, 14.25)

Gleason (> 8 v. < 8) 2.29 (0.52, 10.03) 0.62 (0.23, 1.64) 0.87 (0.35, 2.18)
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and found increased CIN70 scores in mCRPC. Compari-
son of diagnostic biopsies (PNBX) from patients with de
novo metastatic (M1) CSPC and published mCRPC data-
sets revealed a common gene set with CIN70 genes, that
could be simplified into a 7-gene classifier (PC-CIN) cap-
able of predicting metastatic stage, poor outcomes (BCR,
CRPC progression, metastasis), and lethality (PC-specific
and all cause mortality) in PC cohorts.
Genomic instability in cancer results from ongoing

DNA damage and is a fundamental feature of many ag-
gressive tumors, including mCRPC [49]. Recent profiling
studies and clinical trials in PC have focused on identify-
ing mutations and structural rearrangements mediated
by defective DNA damage repair, because these aberra-
tions may render tumors susceptible to PARP inhibitors
and immunotherapy [5, 6, 50–52]. However, CIN-
induced broad copy number alterations and DNA dam-
age from ruptured micronuclei byproducts also contrib-
ute to overall genomic instability in cancer and have the
potential to drive tumor evolution, metastases and the
emergence of treatment-resistant populations [53]. Sup-
port of this concept in PC was provided in a recent
study examining aneuploidy in archival specimens from
surgical cohorts with localized disease that had long-
term follow-up outcome variables available [23]. In this
analysis, the authors identified aneuploid PC tumors in
TCGA and generated a transcriptomic profile that corre-
lated with lethal progression in the independent cohorts.
Using a different computational approach, our findings
affirm that arm-level gains and losses, measured indir-
ectly through the transcriptome via, are linked to PC
progression. We also employed Oncoscan® in a subset of
cases in order to directly measure copy number alter-
ations. Since we were confined to using the diagnostic
PNBX tissues, which contain small amounts of cancer,
we could not always perform orthogonal studies to
confirm aneuploidy. This is a limitation of this
study. However, by performing RNA sequencing, we
were able to implicate functional categories of genes
directly involved in chromosome separation that are
dysregulated in tumors exhibiting CIN, as well as
potential transcriptomic drivers of this process.
Altogether, our study has illuminated a tumor land-
scape where genomic aberrations can rapidly accu-
mulate and drive cancer progression.
Despite a renewed focus on mCSPC and movement

of treatments previously reserved for mCRPC to the
frontline of mCSPC care, the 5-year survival of pa-
tients presenting de novo with metastatic PC is still
low [24]. Combination therapies are primarily focused
on targeting the androgen axis and incapable of elicit-
ing cures, indicating the need for novel approaches
[54–58]. CIN70 and the distilled PC-CIN signatures
reveal, in both metastatic CSPC and mCRPC, that

deregulated expression of genes involved in chromo-
somal segregation during anaphase is linked to meta-
static progression and lethality. Interestingly, factors
that may be capable of initiating the vicious cycle of
CIN through centrosome disruption have been stud-
ied previously for links with PC progression and
centrosome genes/mediators are present on CIN70/
PC-CIN gene lists [59–61]. Bisphenol-A (BPA) is an
alkaphenyl estrogen-like compound found in plastics,
including food containers and baby bottles. Low dose
exposure to BPA appears to be associated with in in-
creased incidence of PC and known to induce irre-
versible changes in centrosomes [61–63].
Targeting CIN directly is complicated. One way to

target CIN is to restore the activity of mitotic check-
points that stall cell proliferation when they sense
CIN. Another approach is to identify drugs with syn-
thetic lethality to CIN. Inhibitors of kinases that regu-
late the duplication of centrosomes, by itself can
induce CIN. Drugs that inhibit targets broadly associ-
ated with CIN, such as polo-like kinases, cyclin-
dependent kinases, and Aurora kinases are being ex-
plored in clinical trials, and histone deacetylases
(HDAC1, HDAC5, and SIRT1) are being evaluated for
efficacy in inhibiting centrosome duplication and
amplification [61, 64–66]. Interestingly, taxols, in
addition to inhibiting depolymerization of microtu-
bules and blocking mitosis, are reported to affect the
capacity of centrosomes to nucleate microtubules,
which may explain another mechanism of anti-tumor
activity [67]. Recent clinical trials in PC revealed sig-
nificant improvement in overall survival in M1-poly
patients receiving docetaxel combined with standard-
of-care ADT [54, 55]. As we know from our analysis,
a significant subset of M1-poly CSPC cases, similar to
the ones enrolled in the clinical trials, demonstrates
CIN [55, 68]. M1-poly cases in our cohort were pre-
dominantly distributed at the extremes of the CIN70/
PC-CIN score spectrum (the majority were classified
as either PC-CIN-High or PC-CIN-Low), so we would
predict that the CIN-high subset of M1 cases is likely
to be more responsive to taxol than the CIN-low sub-
set. Consequently, hormone-sensitive metastatic cases
that are CIN-high may be optimally managed by in-
cluding docetaxel in the combination therapy regimen
with ADT. This prediction can be explored in future
studies, however, it will be necessary to understand
the mechanisms of metastatic progression and lethal-
ity exhibited by CIN-low tumors, as well. It is
possible that CIN-low tumors display plasticity
through epigenetic mechanisms that support survival
and progression.
There is an unmet need of measuring the magnitude

of CIN-mediated aneuploidy in PC using cost-effective,
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reliable, and feasible assays [23]. Our discovery of a 7-
gene PC-specific PC-CIN classifier constitutes a small
gene panel is quantifiable through RNA sequencing of
cancer tissue retrieved from archival diagnostic PNBX.
Consequently, the PC-CIN classifier may lead to more
cost-effective measurements of aneuploidy. For example,
the application of new technologies, such as Nanostring®,
could facilitate the measurement of the PC-CIN7 gene
signature and be used to develop a clinical grade assay.
It is also possible that CIN gene expression could be
measured in the urine. We are currently in the process
of determining whether or not CIN can be measured in
diagnostic H&E slides using machine-learning image
analysis technology. These opportunities for measure-
ment and validation of CIN in PC have the potential to
offer improved, staging, prognostic, and possibly predict-
ive information for management of newly diagnosed PC
patients, without the need to access additional tissue
samples.

Conclusions
Quantitating CIN in PNBX by transcriptome profiling is
feasible and has the potential to serve as a biomarker
that identifies patients with a high risk of lethal progres-
sion at the time of diagnosis. Additionally, CIN indicates
a specific biological feature of a subset of metastatic
prostate cancers that can be further defined and ex-
plored for therapeutic targeting in the future.
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