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Abstract

Background: Leukemia stem cells (LSCs) in play an important role in the initiation, relapse, and progression of acute
myeloid leukemia (AML), and in the development of chemotherapeutic drug resistance in AML. Studies regarding the
detection of LSCs and the development of novel therapies for targeting them are extensive. The identification of LSCs
and targeting therapies for them has been continuously under investigation.

Methods: We examined the levels of CD45dimCD34+CD38−CD133+ cells in bone marrow samples from patients with
hematological malignancies and healthy controls, using four-color flow cytometry.

Results: Interestingly, the CD45dimCD34+CD38−CD133+ cells were highly expressed in the bone marrow of patients
with AML compared to that in healthy controls (HC). Moreover, the proportions of CD45dimCD34+CD38−CD133+ cells
were also examined in diverse hematological malignancies, including AML, CML, DLBCL, MM, MDS, HL, ALL, and CLL.
LSCs were prominently detected in the BMCs isolated from patients with AML and CML, but rarely in BMCs isolated
from patients with DLBCL, MM, MDS, ALL, CLL, and HL. Additionally, the high CD45dimCD34+CD38−CD133+ cell counts
in AML patients served as a significantly poor risk factor for overall and event free survival.

Conclusions: Therefore, our results suggest that CD45dimCD34+CD38−CD133+ cells in AML might potentially serve as
LSCs. In addition, this cell population might represent a novel therapeutic target in AML.

Keywords: Acute myeloid leukemia, Leukemic stem cells, CD45dimCD34+CD38−CD133+ cells, Prognosis,
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Background
Acute myeloid leukemia (AML) is generally regarded as a
stem cell disease. It originates from a class of leukemic
stem cells that are capable of self-renewal [1, 2]. AML is a
heterogeneous disease, with respect to the causative
pathogenic mutations and clinical outcomes [3]. AML can
progress aggressively within a short period of time and be-
come lethal. Survival rates for adults with AML are very

poor despite extensive chemotherapy and/or targeted
therapies, provided along with supportive care [4].
The leukemia stem cells (LSCs) in AML play an im-

portant role in the development, relapse and progression
of leukemia, and in the development of chemotherapeu-
tic drug resistance in AML [5]. Recent studies have sug-
gested that LSCs are capable of giving rise to identical
daughter cells that can differentiate into other cells and
maintain AML [6, 7]. Rhenen et al. showed that a high
percentage of CD34+CD38− stem cells at diagnosis sig-
nificantly correlated with a high minimal residual disease
frequency and subsequently to relapse in AML patients.
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These cell populations directly correlated with poor sur-
vival [8, 9].
Identification and characterization of the LSC population

is one of the best ways to develop treatment strategies and to
improve treatment outcomes in patients with AML and
other malignant diseases [3]. Extensive basic research on the
identification and targeting of LSCs is being done globally.
Many scientists are interested in this area and have found ap-
propriate biological markers for LSC population in AML, in-
cluding CD34+CD38− cells [10, 11], CD34+lin− cells [12],
CD34+Thy1+CD38low cells [13], CD34+CD117+ cells [14],
CD34+CD38−CD123+ cells [15–17], CD34+CD38−CD123+

CD33+ cells [18], CD34+CD38−C-type lectin-like molecule-1
(CLL-1)+ cells [19], CD34+CD38−CD96+ cells [20],
CD34+CD38−CD45−/low cells [21], CD34/CD123/CD25/
CD99+ [5], etc. The CD34+CD38− progenitor cells express
varying levels of the target receptors, CD33, CD133, and c-
kit (CD117) [22]. However, most of the studies have not pro-
vided any conclusive data. Therefore, we analyzed the find-
ings from published studies and identified new combinations
that could help detect LSCs. We developed this method
using the basic CD34+CD38− markers to which novel anti-
gens such as CD45dim and CD133 were added. In this study,
we developed a four-color flow cytometric analysis method,
and measured the levels of LSCs in bone marrow cells iso-
lated from AML patients. Our findings suggest that
CD45dimCD34+CD38−CD133+ cells exhibit similar potential
as that of LSCs in AML patients.

Methods
Reagents
Mouse anti-human CD45-FITC (Clone 2D1, Cat No.
347463), mouse anti-human CD34-PE [Clone 8G12 (also
known as HPCA2), Cat No. 348057], mouse anti-human
CD38-PE-Cy™5 (Clone HIT2, Cat No. 555461), and ap-
propriated isotype control antibodies were purchased
from BD Biosciences (San Diego, CA, USA). Mouse
anti-human CD133-APC (Clone CD133, Cat No. 130–
090-826) was obtained from Miltenyi Biotec (San Diego,
CA, USA).

Patient samples
We analyzed bone marrow samples collected from 87
patients who were newly diagnosed with AML (n = 40),
chronic myeloid leukemia (CML, n = 6), diffuse large B-
cell lymphoma (DLBCL, n = 19), multiple myeloma
(MM, n = 10), myelodysplastic syndrome (MDS, n = 5),
Hodgkin lymphoma (HL, n = 4), acute lymphocytic
leukemia (ALL, n = 3), or chronic lymphocytic leukemia
(CLL, n = 2). Control bone marrows were obtained to
rule out hematologic disorders but proven to be normal
marrows from 27 healthy donors at Ulsan University
Hospital, Ulsan South Korea. Baseline clinical character-
istics of 40 patients with AML are summarized in

Supplementary Table 1. Other patient characteristics (ex-
pect AML) are summarized in Supplementary Table 2.

Isolation of bone marrow cells
The bone marrow cells (BMCs) were isolated by the
density gradient method, as previously described [23]. In
brief, BMCs were isolated via density gradient centrifu-
gation at 400×g using Lymphoprep (Axis-Shield, Oslo,
Norway; density, 1.077 g/mL). They were washed with
phosphate-buffered saline (PBS).

Flow cytometric phenotypic analysis
The BMCs were collected and washed twice with FACS
buffer (PBS containing 0.3% BSA and 0.1% NaN3). The
total bone marrow cell number used in the experiment
was 4 × 106 cells. Cells were incubated with four anti-
bodies against each cell surface antigen, including CD45,
CD34, CD38, and CD133 on ice for 30 min. First, live
BMCs were collected, and SSClow and CD45dim cells
were gated, as shown in Fig. 1a and b. And we always
draw gates with the same criteria and select cells in the
same section. The criteria are as follows: R1 Gate: live
cells; R2 Gate: SSC-H, 100–500 and FL2-H, 101–102; R3
Gate: FL2-H, 102–104, FL3-H, 100–101. The BMCs were
incubated with three combinations of monoclonal anti-
bodies (mAbs) on ice for 30 min; these included isotype
control 1 (mouse anti-human CD45-FITC, mouse IgG-
PE, mouse IgG-PE CY5, and mouse IgG-APC), isotype
control 2 (mouse anti-human CD45-FITC, mouse anti-
human CD34-PE, mouse anti-human CD38-PE CY5,
and mouse IgG-APC), and sample (mouse anti-human
CD45-FITC, mouse anti-human CD34-PE, mouse anti-
human CD38-PE CY5, and mouse human CD133-APC),
as shown in Fig. 1c and Fig. 1d. Cells were then washed
twice with FACS buffer and analyzed using the FACSCa-
libur flow cytometer and CellQuest Pro software (BD
Bioscience) as shown Fig. 1. Finally, the counts of
CD45dimCD34+CD38−CD133+ cells, CD133 positive cells
among the R1, R2, R3-gated cells were measured, and
the results were expressed as percentage change from
the basal conditions including the isotype control 2. The
40,000 cells were used for flow cytometric acquisition in
each sample tube.

ELISA for cytokine measurement
Cell-free plasma from bone marrow samples of patients
with AML was collected and frozen at − 80 °C. Plasma
interleukin (IL)-1β, IL-6, IL-17, and IL-23 levels were
measured using ELISA kits according to the manufac-
turer’s introductions (R&D Systems).

Statistics
The data presented here represent the mean ± standard
error of mean (SEM) of at least three independent

Heo et al. BMC Cancer          (2020) 20:285 Page 2 of 10



experiments. All values were evaluated by one-way ana-
lysis of variance followed by Turkey range tests imple-
mented in GraphPad Prism 7.0. Differences were
considered significant at P < 0.05. For patients with
AML, continuous variables were compared using the

Student’s t-test, whereas categorical variables were ana-
lyzed using the Pearson chi-square test or Fisher’s exact
test. Overall survival (OS) was calculated from the date
of HCT to the date of death or last follow-up. Event-free
survival (EFS) was defined from the date of HCT to the

Fig. 1 The process of four-color staining flow cytometry using monoclonal antibodies. The BMCs were collected and washed twice with FACS
buffer. Cells were incubated with four antibodies against cell surface antigens, including CD45, CD34, CD38, and CD133 on ice for 30 min. a, b
The live BMCs were collected, and SSClow and CD45dim cells were gated. c, d The BMCs were incubated with three types of combinations of
monoclonal antibodies (mAbs) on ice for 30 min such as isotype control 1 (mouse anti-human CD45-FITC, mouse IgG-PE, mouse IgG-PE CY5 and
mouse IgG-APC), isotype control 2 (mouse anti-human CD45-FITC, mouse anti-human CD34-PE, mouse anti-human CD38-PE CY5, and mouse IgG-
APC), and sample (mouse anti-human CD45-FITC, mouse anti-human CD34-PE, mouse anti-human CD38-PE CY5, and mouse human CD133-APC).
Cells were then washed twice with FACS buffer and analyzed using the FACSCalibur flow cytometer and CellQuest Pro software (BD Bioscience).
Finally, the levels of CD45dimCD34+CD38−CD133+ cells, CD133 positive cells among the R1, R2, R3-gated cells were measured and the results were
expressed as percentage change from the baseline conditions including isotype control 2. The filled histogram represents the isotype control 2,
and the empty histogram represents CD45dimCD34+CD38−CD133+ cells
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date of relapse or death from any cause. Survival probabil-
ities were estimated by the Kaplan–Meier method. Uni-
variate and multivariate analyses for OS, EFS, and relapse
probability were performed using the log rank test and
Cox proportional hazards model, respectively. The follow-
ing variables were included in univariate analyses:
CD45dimCD34+CD38−CD133+ cell proportion, age, white
blood cell (WBC) count, platelet count, bone marrow blast
percentage, cytogenetic risk groups, chemotherapeutic
regimens, and immunophenotyping including CD7, CD33,
CD34, and HLA-DR. Variables with a P-value < 0.1 in the
univariate analyses were included in the multivariate ana-
lyses. The statistical analyses were performed with SPSS
version 21.0 software (IBM Corp., Armonk, NY). For all
analyses, the P-values were two-sided; a P-value of < 0.05
was considered statistically significant.

Results
CD45dimCD34+CD38−CD133+ cells are present in high
numbers in the bone marrow of patients with acute
myeloid leukemia
The work flow of the four-color flow cytometry experi-
ments using monoclonal antibodies (mAbs) is shown in
Fig. 1. As shown in Fig. 1a and b, live BMCs were col-
lected and SSClow/CD45dim cells were obtained. The
BMCs were stained with various combinations of mono-
clonal antibodies for 30 min such as isotype 1, isotype 2,
and sample (Fig. 1c). The CD133 positive cells in the R1,
R2, R3-gated cells were measured using flow cytometry,
and the results were expressed as percentage changes
from the isotype 2 (Fig. 1d). A total of 40 AML patients
were examined for the expression of the target antigens,
CD45dimCD34+CD38−CD133+ on the surface of BMCs.
These cells were present in high numbers in the bone
marrow samples isolated from patients with AML, but
not in those of healthy controls (Fig. 2). These results in-
dicated that CD45dimCD34+CD38−CD133+ cells in bone
marrow are potential AML stem cells.

Elevated IL-1β, IL-6, IL-17 and IL-23 cytokine production
of plasma in patients with AML
Recently, Th17 related cytokines such as IL-1β, IL-6, IL-
17, IL-21, IL-22, and IL-23 play crucial roles in the
pathogenesis of many diseases, including inflammatory
diseases, autoimmune diseases, and cancers [24]. They
have been shown related to Th17 cells. Especially, ele-
vated frequencies of these cytokines in patients with
AML have been associated with prognosis [25]. There-
fore, we examined the levels of IL-1β, IL-6, IL-17 and
IL-23 in the bone marrow plasma samples, which were
matched to BMCs in AML patients. Plasma samples
from the AML patients exhibited higher levels of IL-1β,
IL-6, IL-17, and IL-23 than those from healthy controls
(Fig. 3).

The CD45dimCD34+CD38−CD133+ cells are prominently
detected in the bone marrow of patients with AML and
CML
As shown in Fig. 4, the CD45dimCD34+CD38−CD133+

cells were examined by four-color flow cytometry in di-
verse hematological malignancies including AML (n =
40), CML (n = 6), DLBCL (n = 19), MM (n = 10), MDS,
(n = 5), HL (n = 4), ALL (n = 3), and CLL (n = 2). These
cells are significantly detected in the bone marrow of pa-
tients with AML and CML, but not in those with
DLBCL, MM, MDS, ALL, CLL, and HL. These results
indicated that CD45dimCD34+CD38−CD133+ cells in
bone marrow are potential of AML stem cells. In
addition, these cells might be used for the detection of
AML stem cells.

Clinical characteristics according to levels of the
CD45dimCD34+CD38−CD133+ cells
CD34+ AML and CD34− AML among 36 AML patients
evaluable for CD34 expression was noted in 30 patients
and 6 patients, respectively. The proportion of
CD45dimCD34+CD38−CD133+ cells in CD34- AML were
significantly lower than CD34+ AML (median, 5.0%
[range, 1–14%] vs. 13.5% [range, 1.8–58%], P = 0.001,

Fig. 2 The CD45dimCD34+CD38−CD133+ cells are highly expressed
in the bone marrow of patients with AML, but not in healthy
controls. Bone marrow cells from healthy controls and AML
patients were examined for the expression of the target antigens,
CD45dimCD34+CD38−CD133+ cells. Data represent mean ± SEM
representing three independent experiments from different AML
patients. Significantly different from the control (*); ***, P < 0.001. HC,
healthy controls; AML, acute myeloid leukemia patients
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respectively). And CD34− AML showed tendency to have
lower proportion of CD45dimCD34+CD38−CD133+ cells.
FLT3-ITD mutation was rarely found in AML patients with
higher counts of CD45dimCD34+CD38−CD133+ cells (≥10%)
than in patients with fewer CD45dimCD34+CD38−CD133+

cells (< 10%) (0% vs. 23.1%, respectively, P= 0.031). In
addition, higher counts of CD45dimCD34+CD38−CD133+

cells (≥ 20%) were significantly associated with lower levels of
IL-17, as compared to lower CD45dimCD34+CD38−CD133+

cells (< 20%) (118.0 vs. 35.0 pg/ml, respectively, P= 0.028).
However, there was no significant difference in IL-1β, L-6,
and IL-23 levels based on the population of
CD45dimCD34+CD38−CD133+ cells.

High proportion of the CD45dimCD34+CD38−CD133+ cells
predicts poor survival in AML patients
When we divided AML patients into three groups based
on the percentage of CD45dimCD34+CD38−CD133+ cells
(< 10%, 10–40%, and ≥ 40%), univariate analysis revealed
that the 2-year OS rate was 64.3, 57.9, and 0%, respect-
ively (P < 0.001) and the 2-year EFS was 62.3, 37.2, and
0% (P = 0.002), respectively (Supplementary Table 3).
Among the three groups (CD45dimCD34+CD38−CD133+

cell proportions < 10%, 10–40%, and ≥ 40%), no signifi-
cant differences were observed in baseline clinical factors
including age (P = 0.085), white blood cell count (P =
0.397), platelet count (P = 0.737), and chemotherapy

Fig. 3 Quantification of the cytokines present in the plasma of healthy controls and AML patients. Cell-free plasma from bone marrow samples of
AML patients was collected and frozen at − 80 °C. Plasma interleukin (IL)-1β, IL-6, IL-17, and IL-23 levels were measured using ELISA kits according
to manufacturer’s introductions (R&D Systems). Data represent mean ± SEM from three independent experiments in different AML patients.
Significantly different from the control (*); ***, P < 0.001. HC, healthy controls; AML, acute myeloid leukemia patients; BM, bone marrow
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intensity (P = 0.158). Univariate analyses for OS and EFS
in patients with AML revealed that older age (> 60 years)
was significantly associated with worse OS than younger
age (32.8% vs. 75% at 2-year, respectively, P = 0.041) (Sup-
plementary Table 3). In addition, patients with higher
marrow blast % (≥ 60%) showed significantly lower OS
rates than those with lower marrow blast % (< 60%)
(36.7% vs. 66.7%, P = 0.038) (Supplementary Table 3). Pa-
tients who were treated with intensive chemotherapy
showed significantly better OS than those treated with
hypomethylating agents (57.8% vs. 30.0%, P = 0.012).
When we took into consideration other clinical parame-
ters in univariate and multivariate analyses, higher per-
centage of CD45dimCD34+CD38−CD133+ cells (≥ 40%)
was found to be an independent prognostic factor for OS
(hazard ratio [HR], 6.052, P = 0.005) and EFS (HR, 9.028,
P = 0.002) (Fig. 5. and Table 1). In addition, higher BM
blast (%) ≥60% (HR, 2.607 < P = 0.049) and chemotherapy
intensity (hypomethylating agents vs. intensive chemo-
therapy) (HR, 4.058, P = 0.010) were significant prognostic
factors for OS in multivariate analysis.

Discussion
The hypothesis that cancer stem cells including LSCs are
responsible for the initiation, relapse, and drug resistance
of cancers has caused a great deal of excitement in this
area of research. The importance of cancer stem cells has
been demonstrated in a variety of tumors [6, 25–29]. Es-
pecially, LSCs have unlimited capacity of self-renewal and

are responsible for the maintenance of leukemia. Because
selective eradication of LSCs could lead to considerable
therapeutic benefits, there has been an interest in the
identification and characterization of the LSC population
that controls their development [30, 31]. Therefore, stud-
ies related to prognostically relevant and potentially reli-
able molecular targets are needed.
AML is a hematopoietic disease that is characterized by

clonal growth and the accumulation of myelopoietic pro-
genitor cells [31]. It is a devastating disease that is mostly
incurable [4]. Moreover, the treatment for AML involves
intense cytotoxic treatment as approximately 70% of the
patients with AML are refractory to initial therapy or
undergo relapse [2]. This is at least partially driven by the
chemo-resistant nature of the LSCs that maintain the dis-
ease. Therefore, novel anti-LSC therapies could decrease
the number of relapses and improve survival.
The first LSC compartment that was described had

the CD34+CD38− immunophenotype [1, 11]. The
CD34+CD38− compartment was shown to contain both
CD34+CD38− LSCs and normal hematopoietic stem cells
(HSCs) [13]. Mawali et al. have proposed that
CD34+CD38−CD123+ cells are AML LSCs [17]. In the
present study, the CD45dimCD34+CD38−CD133+ cells
were examined by four-color flow cytometry to define a
more specific and prognostically significant LSC popula-
tion (Fig. 1).
In the present study, CD34+ AML was found in 75%

of patients with AML and 6 patients had CD34− AML.

Fig. 4 The CD45dimCD34+CD38−CD133+ cells are prominently detected in bone marrow of patients with AML and CML. As shown in Fig. 1, the
CD45dimCD34+CD38−CD133+ cells were examined by four-color flow cytometry in diverse hematological malignancies including AML (n = 40),
CML (n = 6), DLBCL (n = 19), MM (n = 10), MDS, (n = 5), HL (n = 4), ALL (n = 3), and CLL (n = 2). Data represent mean ± SEM from three independent
experiments in different AML patients. Significantly different from the control (*) or AML (#); #: P < 0.05.; ***, ###: P < 0.001. HC, healthy controls;
AML, acute myeloid leukemia; CML, chronic myeloid leukemia; DLBCL, diffuse large B-cell lymphoma; MM, multiple myeloma; MDS, myelodysplastic
syndrome; HL, Hodgkin lymphoma; ALL, acute lymphocytic leukemia; CLL, chronic lymphocytic leukemia
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The clinical implications of CD45dimCD34+CD38−CD133+

cells might be different in CD34− AML. The CD34−AML
had lower proportion of CD45dimCD34+CD38−CD133+

cells. Even though we could not evaluate prognostic im-
pact of CD45dimCD34+CD38−CD133+ cells in CD34−

AML due to small number of patients, some portion of
CD45dimCD34+CD38−CD133+ cells in CD34− AML might
contain normal hematopoietic stem cells as well as LSCs.

CD133 has been reported to be a cancer stem cell
marker in solid tumors [14, 32–34]. Several studies have
shown that CD133 positive cells have the capacity for self-
renewal, differentiation, high proliferation, and forming
tumors in xenografts [33, 34]. Although the precise func-
tion of CD133 remains unknown, it is associated with ag-
gressive cancers and poor prognosis. CD133 is known to
be required for tumor growth and survival [14, 29, 32].

Fig. 5 High proportion of the CD45dimCD34+CD38−CD133+ cells predicts poor survival in AML patients. a Higher CD45dimCD34+CD38−CD133+ cell proportion
was significantly associated with worse OS (P<0.001). b Poor EFS was significantly associated with higher proportion of CD45dimCD34+CD38−CD133+ cells
(P=0.002)
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However, in hematological malignancies including AML,
the clinical implications of CD133 expression are not well
known. Interestingly, CD45dimCD34+CD38−CD133+ cells
are present in more numbers in the bone marrow of pa-
tients with AML, but not in healthy controls (Fig. 2). In a
further study, only CD133 expression in AML need to be
investigated if CD133 marker positivity regardless of
CD34+CD38− might be a significant marker for discrimin-
ating LSC and a prognostic biomarker. Moreover, the
asynchronism of CD133+ expression should be also evalu-
ated in CD34− AML in the future. In other lymphoid
hematologic malignancies such as lymphoma, MM, ALL,
and CLL than AML, there could be some differences ac-
cording to the percentages of both malignant cells and
CD34+CD38− compartments within bone marrows be-
cause of niche competition between two cell populations.
We also found increased production of IL-1β, IL-6, IL-

17 and IL-23 in the bone marrow microenvironment of
AML patients at the time of diagnosis (Fig. 3). These
findings suggest that IL-1β, IL-6, IL-17 and IL-23 may
be associated with leukemogenesis or pathophysiology of
AML. Carey et al. also reported that IL-1 and IL-1β
might be associated with AML cell growth [35]. IL-3
plays a key role within the network of cytokines involved
in the regulation of hematopoiesis and leukemic blast
formation. However, IL-3 has no prognostic significance
[20]. As expected, the plasma samples from the AML pa-
tients at diagnosis exhibited higher levels of Th17 related
cytokines, including IL-1β, IL-6, IL-17 and IL-23, than
those from healthy controls (Fig. 3). To be honest with
you, we expected these cytokines to have some degree of
association with LSCs, but it was difficult to find the cor-
relation in the experimental results. More specifically, the
prognostic impact of IL-17 in AML is not clear, although
higher serum IL-17 levels have been reported to be an ad-
verse prognostic factor of AML in a univariate analysis of
IL-17 by Han et al. [25]. In our results, however, IL-17 did
not seem to have an adverse impact on prognosis of AML,

because IL-17 was inversely correlated with the percent-
age of CD45dimCD34+CD38−CD133+ LSCs which was
shown to be a significant negative prognostic marker, con-
sidering together clinical factors. There is little data re-
garding IL-23 levels in AML, although IL-23 levels have
been reported to be associated with AML leukemogenesis
and disease susceptibility in a previous study [36]. Based
on our findings, it may be more advantageous to investi-
gate T helper type 17 (Th17) cell or cell level associations
than to monitor cytokines expressed in plasma to under-
stand the association between LSC and Th17.
We applied the gate of CD45dim population using the same

criteria. Also, our results showed that the individual differ-
ences were large for CD45dim population (Supplementary
Fig. 1). In addition, the CD45dimCD34+CD38−CD133+ cells
were prominently detected in the bone marrow of patients
with AML and CML, but not in those with DLBCL, MM,
MDS, ALL, CLL, and HL (Fig. 4). Moreover, the prognostic
significance of LSCs has been reported in previous studies [1,
17]. Tervinjin et al. showed that higher CD34+CD45−LAP+

cell proportions were related to poor survival [1]. However,
our study demonstrated that higher levels of the
CD45dimCD34+CD38−CD133+ cells predict poor OS and
EFS in AML (Fig. 5). These results also indicate that the
CD45dimCD34+CD38−CD133+ cell compartment in the bone
marrow could help discriminate between LSCs and normal
hematopoietic stem cells, and can serve as a strong prognos-
tic marker. Therefore, targeting CD45dimCD34+CD38−

CD133+ cells could serve as a novel therapeutic strategy in
AML. Future studies will focus on the elimination of the
CD45dimCD34+CD38−CD133+ cells in patients with AML.
Also, it needs to make sure that CD45dimCD34+

CD38−CD133+ cells actually work as LSCs in the future.
And it is necessary to assess whether the
CD45dimCD34+CD38−CD133+ cells have the same character-
istics as the stem cells. Therefore, our results indicate that
CD45dimCD34+CD38−CD133+ cells have the potential of
leukemic stem cells in acute myeloid leukemia.

Table 1 Multivariate analysis for patients with acute myeloid leukemia

HR for OS P-value HR for EFS P-value

CD45dimCD34+CD38−CD133+

< 10% (n = 14) 1 1

10- < 40% (n = 19) 1.859 0.276 2.731 0.089

> 40% (n = 7) 6.052 0.005 9.028 0.002

BM blast (%)

< 60% (n = 16) 1 – –

≥ 60% (n = 24) 2.607 0.049

Chemotherapy

Intensive chemotherapy (n = 30) 1 1

Hypomethylating agent (n = 10) 4.058 0.010 4.829 0.010

HR hazard ratio, OS overall survival, EFS event free survival
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Conclusions
CD45dimCD34+CD38−CD133+ cells in AML might po-
tentially serve as LSCs. Moreover, the high
CD45dimCD34+CD38−CD133+ cell counts in AML pa-
tients served as a significantly poor risk factor for overall
and event free survival. In addition, this cell population
might represent a novel therapeutic target in AML.
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