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Abstract

Background: Combining anti-cancer therapies with orthogonal modes of action, such as direct cytotoxicity and
immunostimulatory, hold promise for expanding clinical benefit to patients with metastatic disease. For instance, a
chemotherapy agent Oxaliplatin (OXP) in combination with Interleukin-12 (IL-12) can eliminate pre-existing liver
metastatic colorectal cancer and protect from relapse in a murine model. However, the underlying dynamics
associated with the targeted biology and the combinatorial space consisting of possible dosage and timing of each
therapy present challenges for optimizing treatment regimens. To address some of these challenges, we developed a
predictive simulation platform for optimizing dose and timing of the combination therapy involving
Mifepristone-induced IL-12 and chemotherapy agent OXP.

Methods: A multi-scale mathematical model comprised of impulsive ordinary differential equations was developed
to describe the interaction between the immune system and tumor cells in response to the combined IL-12 and OXP
therapy. An ensemble of model parameters were calibrated to published experimental data using a genetic algorithm
and used to represent three different phenotypes: responders, partial-responders, and non-responders.

Results: The multi-scale model captures tumor growth patterns of the three phenotypic responses observed in mice
in response to the combination therapy against a tumor re-challenge and was used to explore the impacts of
changing the dose and timing of the mixed immune-chemotherapy on tumor growth subjected to a tumor
re-challenge in mice. An increased ratio of CD8+ T effectors to regulatory T cells during and after treatment was key
to improve tumor control in the responder cohort. Sensitivity analysis indicates that combined OXP and IL-12 therapy
worked more efficiently in responders by increased priming of T cells, enhanced CD8+ T cell-mediated killing, and
functional inhibition of regulatory T cells. In a virtual cohort that mimics non-responders and partial-responders,
simulations show that an increased dose of OXP alone would improve the response. In addition, enhanced IL-12
expression alone or an increased number of treatment cycles of the mixed immune-chemotherapy can barely
improve tumor control for non-responders and partial responders.

Conclusions: Overall, this study illustrates how mechanistic models can be used for in silico screening of the optimal
therapeutic dose and timing in combined cancer treatment strategies.
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Background
Carcinomas of the colon or rectum, termed colorectal
cancer, are the third most common cancer diagnosed in
both men and women in the United States. The Ameri-
can Cancer Society estimates the number of new cases of
colorectal cancer in the United States for 2019 at 145,600
[1]. With 60,000 fatalities per year, colorectal cancer is
second only to lung cancer as a cause of cancer-related
deaths in the United States. Upon diagnosis, 10%-20%
of patients have already developed liver metastases while
70% of patients with colorectal cancer ultimately develop
liver metastases. Unfortunately, the prognosis for patients
with liver metastatic colorectal cancer is poor because
hepatectomy, palliative chemotherapy and symptomatic
treatments are the only available options [2].
Interleukin-12 (IL-12) is a potent immunostimulatory

cytokine that activates the proliferation and function of
key cellular effectors of innate and adaptive immunity
such as T lymphocytes and natural killer (NK) cells [3–
5]. While toxicity is a serious obstacle for use of IL-12
as a systemic therapy in humans, an attractive alternative
is to use adenoviral vectors to induce expression in spe-
cific tissues. However, transgene expression tends to be
transient and the efficacy of re-administration is impaired
by the rapid emergence of neutralizing antibodies [3].
To allow a good control of the strength and duration of
IL-12 expression, high-capacity adenoviral vectors con-
taining a liver-specific, Mifepristone-inducible system for
the expression of murine IL-12 (HC-Ad/RUmIL-12) were
recently designed to control primary or metastatic liver
cancer [6]. Since stand-alone chemo- or radiotherapeu-
tic regimens are insufficient (with a few notable excep-
tions) to eradicate neoplastic lesion [7], HC-Ad/RUmIL-
12 was combined with chemotherapy agent Oxaliplatin
(OXP) to treat liver-implanted colon cancer cells [6]. As
a consequence of the combination therapy, pre-existing
liver metastases of colorectal cancer were eradicated, and
enhanced establishment of a protective immune response
against tumor re-challenge and increased overall survival
of animals were observed. In addition, a dramatic increase
in the ratio of cytotoxic CD8+ T lymphocytes to immuno-
suppressive cell populations was detected in the tumor
microenvironment [3].
Mathematical modeling using systems of ordinary dif-

ferential equations (ODEs) can improve the design and
administration of cancer treatments, especially when
experimental data are incorporated [8–13]. In silico
screening of parameter regions that seem most promising
for optimal timing and dosage of therapy can be sug-
gested using calibrated mathematical models and clinical
trials can focus on those regions [13–17]. For instance, a
quantitative systems pharmacology model [8] was devel-
oped to reproduce experimental data of CT26 tumor
dynamics upon administration of radiation therapy and an

anti-PD-L1 agent in [18] and [19]. The calibrated model
was further used as an in silico tool to predict the best
treatment combination schedules and sequences. Over
the past decades, a variety of ODE-based mathematical
models have been developed to better understand cancer
progression and response to immunotherapy (see details
in [20–25]). In exploring immunotherapy in combination
with other treatment modalities, de Pillis et. al developed
an ODE model governing cancer growth on a cell popu-
lation level with a combination of immuno-chemotherapy
treatments [26–29]. In addition, Kim and colleagues for-
mulated a mathematical model of therapy with oncolytic
viruses that simultaneously express immunostimulatory
cytokines and costimulatory molecules [12]. Inspired by
these studies, we developed an impulsive ODE model to
represent the interaction between tumor and immune
system in response to the chemotherapy drug OXP com-
bined with liver-specific expression of IL-12 therapy
to explore therapeutic options in the context of liver
metastatic colorectal cancer. The current model extends
the impulsive ODE model in [13] that only considered
an immunotherapy initiated by an adenovirus vaccination
to stimulate a tumor-associated antigen-specific T cell
response.
The structure of this paper is as follows. First, we

present a multi-scale mechanistic model of anti-tumor
immunity and tumor growth in response to a combined
immuno-chemotherapy using a set of impulsive ODEs.
Second, we describe how we calibrated the model param-
eters against published experimental data using a genetic
algorithm. Next we investigate the stability of tumor-
free and high-tumor equilibria based on the linearized
system. Then we study how alter parameter values may
change the tumor growth dynamics. Finally, we used the
simulation platform to explore potential ways to improve
treatment regimes for non-responders and partial
responders.

Methods
Our method was to develop a multi-scale impulsive ODE
model based on our understanding of the corresponding
biology, which is described in the following paragraphs.
Numerical solutions of the model were obtained using
simulators generated by C Sharp. The resulting mecha-
nistic mathematical model was calibrated against existing
experimental data.
A genetic algorithmwas used to find parameter sets that

closely match the experimental data in [6]. Each parame-
ter set was modeled using an individual chromosome in
order to apply the algorithm to search in the parameter
space. For each generation, the impulsive ODE set was
solved using the Runge-Kutta method of order four for
each individual or parameter set [30]. The fitness function
value, or variance, was calculated using the sum of error
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squared between experimental data and corresponding
model predictions. To reduce the dependence of our
model predictions about optimal treatment strategies for
the combined therapy on any individual calibrated set
of parameter values, we generated an ensemble of 30
parameter sets for each phenotypic cohort (i.e., respon-
der, partial responder, and non-responder) that generated
similar good fits against the experimental data. The simu-
lation results using these ensemble of parameter sets were
characterized in terms of the median and upper and lower
bounds that enclose 90% of the predicted responses. Sim-
ulations start on day 0, which corresponds to the time of
tumor implantation. At the initial time point, we assume
that there is no activated tumor specific effector T cells
present in the blood and at the site of the tumor. The cal-
ibrated mechanistic model was then used to investigate
the long-term behavior through stability analysis. Details
of model development, parameter calibration, goodness
of fit, difference between major variables of immune
response of responder mice, partial responder mice, and
non-responder mice after the combination treatment,
and local stability analysis are discussed in the following
subsections.

Results
Amulti-scale model of tumor growth subject to IL-12 and
OXP therapy
Our mathematical model is based on the experimental
data presented byManuela Gonzalez-Aparicio and collab-
orators in [6] using the MC38Luc1 cell lines for murine
metastatic colorectal cancer. Using this mouse model,
OXP and IL-12 combination therapy eradicated pre-
existing liver metastases, established a protective immune
response against tumor re-challenge, and increased over-
all survival of animals. To better understand the dynamics
of the primary response to adenovirus-mediated induc-
tion of an anti-tumor immune response, we developed a
three-compartment mathematical model to quantify the
cytotoxic CD8+ T cell response to IL-12 and OXP com-
bined therapy and subsequent inhibition of tumor cell
growth, as shown schematically in Fig. 1. Model parame-
ters and their meanings are listed in Table 1.
Among these three compartments, we consider the

dynamics of fifteen state variables that are regulated
by the following governing biological processes and
assumptions:

1). Naïve CD8+ T cells (TN , units: cells per mm3).
We assume that naïve CD8+ T cells are produced at
a constant rate c1 from thymus and die naturally at a
rate kd1 · TN [31]. Naïve T cells are recruited and
activated by tumor antigens presented by APC1
(antigen-presenting cells in lymph node) at a rate
c2 · TN · APC1

APC1+g1 [32–34].

dTN
dt

= c1 − kd1 · TN − c2 · TN · APC1
APC1 + g1

(1)

2). Effector CD8+ T cells in lymph node (TE1, units:
cells per mm3). The increase in the rate of
concentration of effector CD8+ T cells in the lymph
node due to activation of naïve CD8+ T cells from
the blood stream is given by c2 · TNVolb

Volln · APC1
APC1+g1 ,

where Volb = 1.4 ∗ 103mm3 is the volume of the
blood compartment [35] and Volln = 0.25mm3 is
the volume of the lymph node compartment [36].
We assume that the natural death of effector T cells
in the lymph node is negligible. Effector CD8+ T
cells in the lymph node proliferate at a rate
proportional to TE1, a saturable term that represents
antigen presenting cells (APC) and defined by
APC1

APC1+g2 , and an immune checkpoint term defined
by α

α+T2
E1
, where α is the square root of the

saturation constant of TE1 [37]. We also assume that
influx rate of effector T cells from blood to lymph
node is a21 · TE2Volb

Volln , where TE2 is the concentration
of T effectors in blood, and a12 · TE1 is the efflux
rate. We assume that TE1 cells are killed by
chemotherapy agent OXP1 (Oxaliplatin in lymph
node) at the rate kd2 · TE1·OXP1

OXP1+g3 .

dTE1
dt

= c2 · TNVolb
Volln

· APC1
APC1 + g1

+ kp1 · TE1 · APC1
APC1 + g2

· α

α + T2
E1

+ a21 · TE2Volb
Volln

− a12 · TE1 − kd2

· TE1 · OXP1
OXP1 + g3

(2)

3). Antigen Presenting Cells in lymph node (APC1,
units: cells per mm3). We assume that APCs in the
lymph node have a natural death rate of kd3 · APC1
and the influx rate of APCs from tumor to lymph
node is b31 · APC3 · Volt

Volln , where APC3 is the
concentration of APCs in tumor, Volt = ε+C(t)

1−Vi·TE3
(since Volt = ε +C(t) +Vi · TE3 ·Volt , where TE3 is
the concentration of T effectors in tumor) is the
volume of the tumor compartment, ε is a small
positive constant representing a small volume of
tissue that excludes tumor and effector CD8+ T
cells in the tumor compartment, where C(t) is the
volume of tumor cells inmm3. The total volume of
tumor cells is comprised of the volumes of major
histocompatibility complex (MHC) class I positive
tumor cells (CMHCI+ ) and MHC class I negative
tumor cells (CMHCI− ). The average size of a T
effector cell (Vi) is equal to 10−7mm3 [38].
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Fig. 1 Schematic diagram illustrating the interactions among species present in the three compartments. State variables and transport relations are
shown in black. Parameters are in red while influence relationships are in blue. Naïve CD8+ T cells (TN) are activated and become CD8+ T effectors
(TE1) when they encounter tumor antigen presented by the antigen presenting cells (APC1) in the lymph node. Once activated, effector CD8+ T
cells circulate within the blood (TE2) and enter tumor microenvironment (TE3) where they are retained upon recognition of the corresponding
tumor-associated antigen. Effector CD8+ T cells secrete Interferon gamma (IFNγ ) which assist with the CD8+ T cell-mediated killing of tumor cells
(CMHCI+ and CMHCI− ) through increased presentation of tumor-associated antigens by Major Histocompatibility Complex protein class I (MHCI).
During this process, IL-12 (IL) helps promote T cell proliferation and suppresses regulatory T (TR) cells’ proliferation and immunosuppressive action
on effector CD8+ T cells. In addition, the chemotherapy drug Oxaliplatin in the lymph node and tumor (OXPi where i = 1, 3) will kill
fast-proliferating cells such as T effectors and tumor cells

dAPC1
dt

= −kd3 · APC1 + b31 · APC3 · Volt
Volln

(3)

4). Chemotherapy agent Oxaliplatin in lymph node
(OXP1, units: mg per kg). We assume that OXP
decays naturally at a rate kd4 · OXP1 and the influx
rate of Oxaliplatin (OXP) from blood to lymph node
is c21 · OXP2Volb

Volln , where OXP2 is the concentration of
OXP in blood.

dOXP1
dt

= −kd4 · OXP1 + c21 · OXP2Volb
Volln

(4)

5). Effector CD8+ T cells in blood (TE2, units: cells
per mm3). We assume the effector CD8+ T cells die
naturally in blood at a rate kd5 · TE2. The influx rate
of effector CD8+ T cells from lymph node to blood

is equal to a12 · TE1Volln
Volb and the efflux rate of effector

CD8+ T cells from blood to lymph node is equal to
a21 · TE2. The influx rate of CD8+ T effectors from
the tumor to blood is a32 · CMHCI−

ε+C(t) · TE3Volt
Volb , where

TE3 is the concentration of T effectors in tumor and
the efflux rate of CD8+ T effectors from blood to
tumor is a23 · TE2.

dTE2
dt

= −kd5 ·TE2 + a12 · TE1Volln
Volb

−a21 · TE2−a23 · TE2

+a32 · CMHCI−

ε + C(t)
· TE3Volt

Volb
(5)

6). Antigen Presenting Cells in blood (APC2, units:
cells per mm3). A logistic growth pattern
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Table 1 List of parameters in the model

Parameter Units Description

kd1 day−1 Naïve CD8+ T cell natural death rate constant

kd2 day−1 T effector (in lymph node or tumor) or tumor cell death rate constant due to OXP

kd3 day−1 APC (in lymph node or tumor) natural death rate constant

kd4 day−1 OXP natural decay rate constant

kd5 day−1 T effector (in blood) natural death rate constant

kd6 day−1 T effector (in tumor) natural death rate constant

kd7 day−1 Interferon γ natural death rate constant

kd8 day−1 IL-12 natural death rate constant

kd9 day−1 Regulatory T cell natural death rate constant

kd10 day−1 Tumor cell natural death rate constant

kd11 mm3 ∗ day−1 MHC class I positive tumor cell death rate constant due to T effector (in tumor) lysis

kp1 day−1 T effector (in lymph node) proliferation rate constant due to tumor antigens presented by APC in lymph node

kp2 day−1 T effector (in tumor) proliferation rate constant

kp3 ng ∗ mm−3 · day−1 Regulatory T cell proliferation rate constant due to tumor growth and proliferation of T effector in tumor

kp4 day−1 Tumor cell proliferation rate constant

a12 day−1 Rate constant for T cell flow from lymph node to blood

a21 day−1 Rate constant for T cell flow from blood to lymph node

a23 day−1 Rate constant for T cell flow from blood to tumor

a32 day−1 Rate constant for T cell flow from tumor to blood

b23 day−1 Rate constant for APC flow from blood to tumor

b31 day−1 Rate constant for APC flow from tumor to lymph node

c1 cell · mm−3 · day−1 Naïve T cell natural production rate constant

c2 day−1 Naïve T cell to T effector (in lymph node) transfer rate constant

c21 day−1 Rate constant for OXP flow from blood to lymph node

c23 day−1 Rate constant for OXP flow from blood to tumor

c4 pg · mm−3 · day−1 Interferon γ secretion constant

c5 pg · cell−1 · day−1 IL-12 production rate constant by APC in tumor

c6 cells · mm−3 · day−1 Regulatory T cell production rate constant

c7 day−1 MHC class I negative to positive tumor cells transfer rate constant

α (cell · mm−3)
2

T effector (in lymph node) saturation constant

K cell · mm−3 Carrying capacity of APC (in blood)

g1 cell · mm−3 APC (in lymph node) saturation constant

g2 cell · mm−3 APC (in lymph node) saturation constant

g3 mg · kg−1 OXP (in lymph node) saturation constant

g4 ng ∗ ml IL-12 saturation rate constant

g5 cell · mm−3 Regulatory T cell saturation constant

g6 mg · kg−1 OXP (in tumor) saturation constant

g7 ng · ml IL-12 saturation rate constant

g8 cell · mm−3 Regulatory T cell saturation rate constant

g9 cell · mm−3 T effector (in tumor) saturation rate constant

g10 ng · ml IL-12 saturation constant

g11 pg · mm−3 Cellular Interferon γ saturation constant

g12 mg · kg−1 OXP (in tumor) saturation rate constant

g13 cell · mm−3 Regulatory T cell saturation rate constant

g14 mg · kg−1 OXP (in tumor) killing MHC class I positive tumor cells saturation rate constant

g15 mg · kg−1 OXP (in tumor) killing MHC class I negative tumor cells saturation rate constant

r1 cell−1 · day−1 Constant in tumor logistic growth

r2 day−1 Growth rate constant of APC (in blood)
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r2 · APC2 ·
(
1 − APC2

K

)
is used for APCs in blood

where r2 is the growth rate constant and K is the
carrying capacity. We assume a b23 · APC2 efflux
rate of APCs from blood to tumor.

dAPC2
dt

= r2 · APC2 ·
(
1 − APC2

K

)
− b23 · APC2 (6)

7). Chemotherapy agent Oxaliplatin in blood
(OXP2, units: mg per kg). We assume that OXP
decays naturally at a rate kd4 · OXP2 and the efflux
rates of OXP from blood to lymph node and from
blood to tumor are c21 · OXP2 and c23 · OXP2,
respectively. The source of OXP is provided by each
administration whose dose and time are reflected by
the discrete Eq. (17).

dOXP2
dt

= −kd4 · OXP2 − c21 · OXP2 − c23 · OXP2 (7)

8). Effector CD8+ T cells in tumor
microenvironment (TE3, units: cells per mm3).
We assume that effector CD8+ T cells can
proliferate locally upon recognition of the
corresponding tumor antigen presented by MHC
class I positive tumor cells upon IL-12 stimulation
and subject to suppression from T regulatory cells at
a saturable rate equal to kp2 · CMHCI+

ε+C(t) · IL
IL+g4 · TE3

TR+g5 ,
where IL is the concentration of IL-12 and TR is the
concentration of regulatory T cells [39, 40]. The
influx rate of effector CD8+ T cells from the blood
to tumor is defined by a23 · TE2Volb

Volt . The efflux rate
of effector CD8+ T cells from the tumor to blood is
a32 · TE3 · CMHCI−

ε+C(t) . Effector T cells have a finite
lifespan and die within the tumor
microenvironment at a rate equal to kd6 · TE3. T
effector cells are assumed to be killed by
chemotherapy agent OXP (OXP3) at the rate
kd2 · TE3 · OXP3

OXP3+g6 in the tumor microenvironment.

dTE3
dt

= a23 · TE2Volb
Volt

− a32 · TE3 · CMHCI−

ε + C(t)
+ kp2

· CMHCI+

ε + C(t)
· IL
IL + g4

· TE3
TR + g5

− kd6 · TE3 − kd2

· TE3 · OXP3
OXP3 + g6

(8)

9). Interferon gamma (IFNγ , units: pg per mm3).
We assume that IFNγ is secreted solely by effector
CD8+ T cells within the tumor with stimulation
from IL-12 and inhibition from regulatory T cellsat a
rate of c4 · IL

IL+g7 · TE3
TR+g8 [41]. While this assumption

may not hold in all model systems, the presence of
IFNγ in the tumor was dependent on CD8+ T cell

activation [42]. IFNγ decays at a rate proportional to
its concentration with a rate constant kd7.
dIFNγ

dt
= −kd7 · IFNγ + c4 · IL

IL + g7
· TE3
TR + g8

(9)

10). Antigen Presenting Cells in tumor (APC3, units:
cells per mm3). We assume that APCs in the tumor
microenvironment have a natural death rate of
kd3 · APC3, the influx rate of APCs from blood to
tumor is b23 · APC2 · Volb

Volt and APCs take tumor
antigen in tumor microenvironment and migrate to
the lymph node to present tumor antigens to T cells
at the rate of b31 · APC3.

dAPC3
dt

= b23 ·APC2 ·VolbVolt
−b31 ·APC3−kd3 ·APC3 (10)

11). Interleukin-12 (IL, units: ng per ml). Interleukin-
12 (IL-12) is produced by APCs at a rate of c5 ·APC3
and decays naturally at a rate of kd8 · IL. The extra
IL-12 expression obtained through the combined
therapy is approximated using the discrete Eq. (16).

dIL
dt

= c5 · APC3 − kd8 · IL (11)

12). Chemotherapy agent Oxaliplatin in tumor
(OXP3, units: mg per kg). We assume that OXP
decays naturally at a rate kd4 · OXP3 and the influx
rate of OXP from blood to tumor is c23 · OXP2·Volb

Volt .

dOXP3
dt

= −kd4 · OXP3 + c23 · OXP2 · Volb
Volt

(12)

13). Regulatory T cells (TR, units: cells per mm3).
Regulatory T cells are produced at a constant rate c6
from thymus and die naturally at a rate kd9 · TR. We
assume that regulatory T cells proliferate at a rate of
kp3 · CMHCI−

ε+C(t) · TE3
TE3+g9 · TR

IL+g10 [3, 4, 6].

dTR
dt

= c6 − kd9 ·TR + kp3 · CMHCI−
ε + C(t)

· TE3
TE3 + g9

· TR
IL + g10

(13)

14). MHC class I positive tumor cells (CMHCI+ , units:
mm3). MHC class I positive tumor cells are
converted from MHC class I negative tumor cells
(CMHCI− ) with the assistance of IFNγ at a rate
c7 · IFNγ

IFNγ+g11 ·CMHCI− and the rate of effector CD8+
T cell-mediated killing of MHC class I positive

tumor cells is kd11 ·
(
1+ OXP3

OXP3+g12

)
· CMHCI+

ε+C(t) · TE3
TR+g13

[6, 31]. We assume that the dilution rate of MHC
class I positive tumor cells due to proliferation is
kp4 · CMHCI+ . The natural death rate of MHC class I
positive tumor cells is assumed to be kd10 · CMHCI+
and MHC class I positive tumor cells are killed by
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chemotherapy agent OXP in tumor at a rate
kd2 · CMHCI+ · OXP3

OXP3+g14 .

dCMHCI+

dt
= c7 · IFNγ

IFNγ + g11
· CMHCI− − kd10 · CMHCI+

− kd11 · CMHCI+

ε + C(t)
·
(
1 + OXP3

OXP3 + g12

)
· TE3
TR + g13

− kp4 · CMHCI+ − kd2 · CMHCI+ · OXP3
OXP3 + g14

(14)

15). MHC class I negative tumor cells (CMHCI− , units:
mm3). MHC class I negative tumor cells are
converted to MHC class I positive tumor cells with
the assistance of IFNγ at a rate of
c7 · IFNγ

IFNγ +g11 · CMHCI− . We assume that the
proliferation rate of MHC class I positive tumor
cells is equal to 2 · kp4 · CMHCI+ . As MHC class I
positive tumor cells proliferate, they lose MHC class
I expression and become MHC class I negative cells.
A logistic growth pattern is assumed for the number
of MHC class I negative tumor cells in the absence
of treatment. We assume that the natural death rate
of MHC class I negative tumor cells is kd10 · CMHCI−
and these cells are killed by chemotherapy agent
OXP in tumor at a rate kd2 · CMHCI− · OXP3

OXP3+g15 . The
difference in tumor volume caused by tumor
re-challenge is described by the discrete Eq. (18).

dCMHCI−
dt

= −c7 · IFNγ

IFNγ + g11
· CMHCI− − kd10 · CMHCI−

+ kp4 · CMHCI− − r1 · C2
MHCI− + 2 · kp4 · CMHCI+

− kd2 · CMHCI− · OXP3
OXP3 + g15

(15)

16). We use the difference Eqs. (16) and (17) to reflect
the abrupt changes in the concentrations of IL-12
and OXP caused by the therapies, respectively. The
sudden change in the volume of MHC class I
negative tumor cells due to tumor re-challenge is
described by the difference Eq. (18).

�IL(t) = ILk1, t = tk1, k1 = 1, 2, · · · , n1 (16)
�OXP2(t) = {OXP2}k2, t = tk2, k2 = 1, 2, · · · , n2

(17)
�CMHCI-(t) = Ck3, t = tk3, k3 = 1, 2, · · · , n3 (18)

where �IL(t) = IL(t+) − IL(t−) and
�OXP2(t) = OXP2(t+) − OXP2(t−) reflect the
abrupt changes of IL-12 and oxaliplatin at
administration times tk1 and tk2, while ILk1 and
{OXP2}k2 are the dosages of IL-12 and oxaliplatin at
the administration times tk1 and tk2 with
k1 = 1, 2, · · · , n1 and k2 = 1, 2, · · · , n2, respectively;

�CMHCI-(t) = CMHCI-(t+) − CMHCI-(t−)

represents the sudden changes in tumor size due to
tumor re-challenge with implantation size Ck3 mm3

at time tk3 with k3 = 1, 2, · · · , n3.

A schematic diagram summarizing this three-
compartment model is shown in Fig. 1. Model parameters
and their meanings are listed in Table 1.

Non-negativity of solutions to the model
For any mathematical model that has biological implica-
tions, it is important to make sure that solutions with
non-negative initial conditions remain non-negative all
the time. For the model comprised of Eqs. 1) - 18),
we can see that, with positive impulsive inputs ILk1,
{OXP2}k2, andCk3 at impulsivemoments tk1, tk2 and tk3 in
Eqs. (16) - (18), all solutions of the system of ODEs (1) -
(15) with non-negative initial conditions will remain non-
negative because dxi

dt ≥ 0 for xi = 0 and xj ≥ 0, where
i, j = 1, 2, · · · , 15 and i �= j.

Model calibration
Therapeutic use of IL-12 requires efficient methods to
control the plasma concentration of this potent immuno-
stimulatory cytokine in order to avoid toxicity [6]. It was
determined in an MC38 syngeneic tumor model that a
blood concentration of IL-12 less than 20 ng/ml has no
anti-tumor effect, while concentrations greater than 700
ng/ml are associated with toxicity [43]. For comparison,
the normal range of IL-12 in humans is around 7.5 pg/ml
[44]. Gonzalez-Aparicio and colleagues designed a new
induction protocol to keep IL-12 within this therapeutic
range [6]. Once the liver of a group of C57BL/6 mice was
transduced with the vector (typically 2.5*108 IU), a subop-
timal amount of Mif (125 μg/kg) is administered for the
first 2 days in order to prevent toxicity. The concentration
of IL-12 is measured in serum 10 h after the first induc-
tion, and based on this information, a stepwise increase in
Mif is scheduled to allow several cycles of sustained IL-
12 expression in mice treated with the HC-Ad/RUmIL-12
vector (Fig. 2). Before we start the calibration of model
parameters, we first quantified the IL-12 concentration
as a function of time in days (Fig. 2a) and Mifepris-
tone in μg/kg (Fig. 2b), respectively. Empirical functions
were used to represent the IL-12 as a function of time
and as a function of Mifepristone dose. These calibrated
functions are shown in Fig. 2, where they are compared
against the experimental data reported in [6]. Overall,
the curves show a good match between experimental
data and model predictions used to describe Mif-induced
IL-12 treatment effects. Since the authors [6] verified
the Mif-induction system is functional for more than 5
months with a slow decrease in the intensity of expres-
sion in each cycle, we used the same relationships for
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Fig. 2 Quantified Mif-induced IL-12 expression. Simulated IL-12 expression as a function of time and Mif (the green curves) was calibrated to (mean
+ s.d.) experimental data reported in Fig. 1a and b in [6] in (a) and (b), respectively.The HC-Ad/RUmIL-12 vector was administered at 2.5*108

IU/mouse in C57BL/6 mice by intrahepatic injection. A set of 8 mice received an adjusted protocol (red circles, n=8) that consisted of 125 μg/kg
Mifepristone days 1-2; 250 μg/kg days 3-5; 500 μg/kg days 5-7 and 1000 μg/kg days 9-11 in (a) and a single dose of Mifepristone (125; 250; 1000;
2000 or 4000 μg/kg) was administered intraperitoneally to different groups of animals (n=5) after 2 weeks in (b). The concentration of IL-12 in
serum was determined 10 h after induction at the indicated days. Experimental data in error bars represent mean+ s.d

repeated Mif-induced treatment cycles in our model for
simplicity.
We then calibrated model parameters in system

described by Eqs. 1) - 15) using two sets of experimental
data from [6]. The first sets of data are listed below:

• Total volume of MC38Luc1 tumor cells was
calibrated against data shown in Figs. 2b, c, and 3
(IL-12 + OXP group).

• Concentration of Interferon gamma was obtained
from Fig. 4b (IL-12 + OXP group).

• The ratio between CD8+ T lymphocytes and T
regulatory cells was obtained from Fig. 5b
(experimental results for IL-12 + OXP group in
tumor).

The model was calibrated against these data to reflect
the effects of the combination therapy with one treat-
ment cycle after tumor cell liver implantation (5 × 105
MC38Luc1) and the immunological protection against
cancer cells treated with the combination therapy after
a tumor re-challenge (106 MC38Luc1 cells 35 days after
the completion of the previous treatment). Calibration
results, including the median (solid blue curve), 90th per-
centile upper (dashed purple curve), and 90th percentile
lower responses (dashed green curve) of 30 good fits, are
included in Fig. 3a), where CMHCI−(0) = 1mm3 since
t0 = 0 is the day that 5 × 105 cells/mouse MC38Luc1
tumor cells were inoculated in the liver of C57BL/6 mice
[45, 46], TN (0) = 0.0714 cells permm3 (= 100

1.4∗103 as we

assume that the number of naïve CD8+ T cells in a mouse
is 100 and the volume of the blood system of a mature
mouse is 1.4 ∗ 103mm3), APC2(0) = 214.2857 (= 3∗105

1.4∗103 )
cells per mm3 according to [47]. Other initial values are
zero: TEi(0) = CMHCI+(0) = OXPi(0) = IFNγ (0) =
APC1(0) = APC3(0) = TR(0) = IL(0) = 0 for
i = 1, 2, 3. �CMHCI−(57) = 2mm3, �OXP2(s) = 5
mg/ kg with s = 10, 34, 100; �IL(t) follows f (t) =
13.6127∗(t−12)2+0.8606∗(t−12)+1
0.313∗(t−12)2−0.6216∗(t−12)+1 for 12 ≤ t ≤ 21 (see details

in Fig. 2a). The parameter values used in the simulations
are listed in Table 2 with biological meanings of each
parameter listed in Table 1.
To show the long-term management of colorectal can-

cer using the combined therapy, tumor growth of a group
of mice subjected to one cycle of treatment was calibrated
to data from Fig. 7(D) in [6]. In the combined therapy,
5 mg/kg OXP on day 100 and 10-day IL-12 induction
starting day 103, which follows the adjusted protocol as
described in Fig. 2 in [6], were administered after a tumor
re-challenge on day 75. This treatment occurred about
two weeks after the mice survived two cycles of com-
bined treatments with 10-day Mif-induced IL-12 (induc-
tion started on days 13 and 37) and OXP treatments (5
mg/kg on days 10 and 34), which in turn started on day
14. The experimental results were split into responders
(n= 2, Fig. 3b), partial responders (n = 2, Fig. 3c) and
non-responders (n = 3, Fig. 3d) groups. The mathemat-
ical model was calibrated separately to these different
response groups. Figure 3b - d with the median (solid blue
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Fig. 3 Comparison of model predictions with experimental measures of therapeutic response upon tumor re-challenge. a. Comparison of model
predictions with experimental measures of tumor volume, IFNγ and TE3/TR of mice subjected to tumor re-challenge after one cycle of IL-12 and OXP
treatment at day 57. The experimental data were acquired for a group of C57BL/6 mice with 5*105 MC38Luc1 cells inoculated in the liver on day 0
and subjected to one cycle of OXP (on day 9) and Mif-induced IL-12 (started on day 12 and continued 10 days) treatment. To check the
immunological protection against cancer cells in treated animals, the cured mice had a tumor re-challenge of 106 MC38Luc1 cells about one month
after completion of previous treatment. Experimental measures of tumor volume, IFNγ , and TE3/TR (crosses, represent average of n = 16) from Figs. 2
- 5 in [6] were compared to the model predictions (blue curve) generated using a genetic algorithm. b - d. The experimental data were acquired for
a group of C57BL/6 mice bearing hepatic tumors treated with the HC-Ad/RUmIL-12 vector and received two cycles of Mifepristone (Mif) induction
preceded by OXP (5 mg/kg, intraperitoneally). Animals cured from their hepatic tumors were subjected to a subcutaneous challenge with the same
tumor cells (MC38Luc1), and received a third cycle of IL-12 and OXP treatment starting on day 103. Experimental measures of tumor volume for
individual mice (squares, triangles, and crosses) from Fig. 7 in [6] were compared to the model predictions (blue curve) generated using a genetic
algorithm. Model predictions calibrated to tumor volume for responder, partial-responder, and non-responder mice treated with one cycle of
combined therapy after tumor re-challenge are shown in panels b, c, d, respectively. Each graph displays a collection of 30 good fits of model
predictions against experimental data. The solid blue curve provides the median model prediction of the 30 good fits, and the dashed purple and
green curves indicate the 90% upper and lower boundaries in the model predictions of 30 good fits, respectively. Example parameter values of
good fits in each panel are included in Table 2
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Fig. 4 Violin plots of normalized tumor size changes with 30 good fits of parameter sets for responders, partial-responders, and non-responders on
day 120. The sample set of parameter values for each group used in the plots are listed in Table 2



Wang et al. BMC Cancer           (2020) 20:26 Page 11 of 17

Fig. 5 Treatment strategies for partial-responders. The distribution in responses of 30 patients were sketched for each treatment strategy using 30
sets of good fits of calibrated parameters for partial responders (solid line represents median while dotted lines enclose 90% of the predictions). See
a sample set of parameter values used in the plots in Table 2. a. Effects of increased interleukin-12 (IL-12) dose from 1 time (1X, control) to 3, 5, 10
times (3X, 5X, 10X, respectively). b. Effects of moderately increased OXP dose from 1 time (1X, control) to 2, 4, 6 times (2X, 4X, 6X, respectively). c.
Effects of aggressively increased OXP dose from 1 time (1X, control) to 10, 100, 200 times (10X, 100X, 200X, respectively). d. Effects of increased
number of treatment cycles from 3 cycles to 4, 5, and 6 cycles

curve), 90th percentile upper (dashed purple curve), and
90th percentile lower responses (dashed green curve) of
30 good fits illustrate the results of our simulations com-
pared with the corresponding experimental data. Here, we
have �CMHCI−(75) = 2mm3, �OXP2(9) = 5 mg/kg;
�IL(t) follows IL(t) = 13.6127∗(t−a)2+0.8606∗(t−a)+1

0.313∗(t−a)2−0.6216∗(t−a)+1 for a ≤
t ≤ a+ 9 with a = 13, 37, 103. A sample set of parameter
values for each of the response groups of mice used in the
simulations are listed in Table 2.
Difference in treatment efficacy: non-responders versus res-

ponders While both the responders and non-responders
survived two cycles of combination therapy treatment
before tumor rechallenge and then underwent the third
cycle following the tumor re-challenge on day 75, the sim-
ulations in Fig. 3b - d suggest that the non-responders
show near zero concentration of IFNγ and near zero ratio
ofT effectors to regulatory T cells in the tumor all the time
comparing to a stable concentration of IFNγ and ratio of
T effectors to regulatory T cells in the tumor (at least 103
cells permm3 after the combination therapy treatment) in
responders and partial responders. The simulations also
indicate that whether the immune system can maintain a
high ratio of T effectors to regulatory T cells in the tumor
as well as generating a moderate but stable concentration

of IFNγ might be crucial to control tumor growth. This
finding is consistent with results from experimental stud-
ies [48–50]. In [48] and [49], Random forest (RF) machine
learning analysis of tumor infiltrating lymphocytes (TILs)
demonstrated that the top predictor of resistance, as mea-
sured by variable importance scores and selection, was
the CD8+CD44+ to Treg (CD8/Treg) ratio. The authors in
[50] indicated that the CD8/Treg ratio in resistant tumors
failed to increase after RT + anti-CTLA4 as it did in
sensitive tumors because CD8+CD44+ T cells did not
significantly expand despite reduction in Tregs.

Genetic algorithms
In this research, genetic algorithms are applied to find
good parameter sets in a high-dimensional parameter
space. To apply genetic algorithms, chromosomes are
encoded using parameter sets. For each generation, the
ODE set is solved for each individual and the fitness func-
tion value, or variance, is calculated. For each generation,
the chromosomes are sorted using fitness function val-
ues. The top half is passed to the next generation. The
best individual in each generation is free from mutation.
Pairing is done in the sorted sequence then crossover
is conducted to generate the next generation. Adaptive
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Table 2 Examples of calibrated parameter values against experimental data

Parameter Figure 3a. Figure 3b. Par.-Res. Figure 3c. Res. Figure 3d. Non-Res.

kd1 8.060 ∗ 10−2 4.613 ∗ 10−5 7.892 ∗ 10−6 7.629 ∗ 10−5

kd2 3.954 ∗ 10−2 9.923 3.286 8.370

kd3 5.738 ∗ 10−1 3.863 5.982 5.727 ∗ 10−1

kd4 1.760 2.658 1.924 ∗ 10−3 2.358

kd5 6.293 ∗ 10−3 3.312 ∗ 10−4 5.385 ∗ 10−1 6.170 ∗ 10−5

kd6 9.849 ∗ 10−3 5.026 ∗ 10−6 2.258 ∗ 10−2 5.988 ∗ 10

kd7 8.159 ∗ 10−2 3.390 ∗ 10−2 7.620 ∗ 10−2 5.603

kd8 6.097 ∗ 10−1 5.085 ∗ 10−6 4.692 ∗ 10−4 2.513 ∗ 10−7

kd9 4.382 ∗ 10−6 5.310 ∗ 10−6 2.206 ∗ 10−2 9.706 ∗ 10−7

kd10 2.116 ∗ 10−5 2.140 ∗ 10−6 7.795 ∗ 10−6 9.434 ∗ 10−6

kd11 7.956 ∗ 10−3 6.953 ∗ 10−6 7.047 ∗ 10−5 6.539 ∗ 10−5

kp1 2.188 ∗ 10 4.770 ∗ 104 9.808 ∗ 10 5.515 ∗ 102

kp2 6.445 ∗ 10−6 8.367 ∗ 10−7 1.687 ∗ 10−12 9.255 ∗ 10−7

kp3 5.015 ∗ 10−7 7.807 ∗ 10−9 4.276 ∗ 10−7 8.696 ∗ 10−7

kp4 5.800 ∗ 10−2 3.952 ∗ 10−1 3.297 ∗ 10−1 2.186 ∗ 10−1

a12 5.497 ∗ 10−1 9.636 3.031 ∗ 10−2 8.575 ∗ 10−2

a21 1.133 ∗ 10−4 9.984 ∗ 10−1 9.011 ∗ 10−4 1.614 ∗ 10−1

a23 7.254 ∗ 10−7 9.567 ∗ 10−6 2.431 ∗ 10−3 4.776 ∗ 10−11

a32 4.575 ∗ 10−3 9.246 ∗ 10−1 2.573 ∗ 10−3 7.638 ∗ 10−3

b23 9.581 ∗ 105 6.334 ∗ 10−9 1.406 ∗ 10−2 5.710 ∗ 10−13

b31 6.872 ∗ 10−7 8.489 ∗ 10−8 5.700 ∗ 10−10 3.980 ∗ 10−9

c1 8.563 ∗ 10−4 9.611 4.366 ∗ 10−4 4.108 ∗ 10−2

c2 7.360 ∗ 10−2 8.751 ∗ 10−2 3.373 ∗ 10 6.011 ∗ 10−2

c21 7.211 ∗ 10−8 5.684 ∗ 10−4 5.475 ∗ 10−2 9.907 ∗ 10−1

c23 3.648 ∗ 10−6 5.873 3.355 9.905 ∗ 10−1

c4 6.878 ∗ 10−2 8.671 ∗ 104 7.547 ∗ 102 2.327 ∗ 102

c5 5.263 ∗ 105 9.844 ∗ 10−9 7.279 ∗ 10−10 9.722 ∗ 10−11

c6 1.490 ∗ 10−2 3.260 ∗ 10−2 6.253 ∗ 10−4 7.635 ∗ 102

c7 8.842 ∗ 102 7.546 3.412 ∗ 102 9.289 ∗ 103

α 5.530 ∗ 109 3.647 ∗ 106 1.556 ∗ 107 9.834 ∗ 103

K 7.539 ∗ 104 9.292 ∗ 1012 3.116 ∗ 1011 4.964 ∗ 105

g1 7.971 ∗ 109 4.578 9.304 ∗ 102 3.445 ∗ 104

g2 2.441 ∗ 10−2 3.568 ∗ 10−10 6.108 ∗ 10−13 5.108 ∗ 10−12

g3 3.561 ∗ 10−7 1.081 ∗ 10−11 9.294 ∗ 10−12 5.325 ∗ 10−5

g4 6.740 ∗ 102 9.535 ∗ 104 1.518 ∗ 10 3.713 ∗ 10

g5 9.702 ∗ 107 2.440 ∗ 105 9.131 ∗ 10−3 8.235 ∗ 1011

g6 2.318 ∗ 105 8.034 ∗ 103 3.843 ∗ 106 6.932 ∗ 104

g7 9.387 ∗ 107 9.307 ∗ 108 9.040 ∗ 108 7.528 ∗ 108

g8 8.412 ∗ 10−5 7.079 ∗ 10−9 7.897 ∗ 10−7 5.385 ∗ 10−8

g9 3.757 ∗ 10−5 5.234 ∗ 10−3 5.185 ∗ 10−8 9.378 ∗ 10

g10 6.242 ∗ 10−5 9.338 ∗ 10−6 5.537 ∗ 10−6 5.110 ∗ 10−8

g11 2.183 ∗ 108 5.064 ∗ 1010 7.624 ∗ 106 4.565 ∗ 109

g12 3.229 ∗ 10−8 1.542 ∗ 10−11 1.930 ∗ 10−10 7.116 ∗ 10−9

g13 8.733 ∗ 106 2.273 ∗ 107 4.689 ∗ 107 9.747 ∗ 105

g14 5.981 ∗ 103 4.809 ∗ 109 4.799 ∗ 1010 3.855 ∗ 104

g15 3.068 ∗ 109 7.927 ∗ 105 8.642 ∗ 103 5.392 ∗ 106

r1 2.140 ∗ 10−10 2.448 ∗ 10−2 6.718 ∗ 10−2 7.260 ∗ 10−5

r2 8.065 2.780 ∗ 10−4 3.394 ∗ 10−9 2.793 ∗ 10−6
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versions of GAs were designed and implemented. Besides
variable initial values and parameter ranges, step size and
GA control parameters can also be specified. Adaptive
GAs are able to change the number of crossover points,
use random crossover points, use random mutation rates,
and dynamically evolve based on the simulation progress,
which is evaluated by the best fitness function value
achieved at the moment. Therefore, the search process
can move more efficiently in the large parameter space
and have smallerchances to get trapped in local minimums.

Goodness of fit
Descriptions of model parameters are shown in Table 1.
A couple of sample sets of estimated values of parame-
ters obtained through fitting predictions of the impulsive
ODE model 1) - 18) to data from a group of experi-
ments in [6] are listed in Table 2. Figure 3a illustrates
the comparison between model solutions and experimen-
tal measurements on tumor control and immunological
protection against cancer cells in animals treated with
IL-12 plus OXP. Experimental results for long-term man-
agement of colorectal cancer by observing cooperation of
IL-12 and OXP for the control of experimental relapses
in distant locations are compared against model predic-
tions in Fig. 3b, c, and d for responders, partial-responders
and non-responders, respectively. Trajectories of tumor
growth, IFNγ and ratio of TE3 to TR arising from the
model are extremely close to corresponding data from
the experiments. For each calibration, an excess of data
points (57, 65, 58, 84 for Fig. 3a - d, respectively) relative
to the number of parameters (48) suggests that the model
is identifiable in theory.

Model stability analysis
In this section, we discuss local stability of equilibria of the
model using linearized system evaluated at these points.
We found that system comprised of equations (1) - (15)
has a tumor-free equilibrium �X0, a second tumor free
equilibrium �X1 when APC2 growth rate is larger than the
rate constant for APC2 flowing from blood to tumor (i.e.,
r2 > b23), and a high tumor equilibrium �X2 when prolife-
ration rate of tumor cells is higher than natural death rate
of tumor cells (i.e., kp4 > kd10).
By setting the right hand sides of the equation system

(1) - (15) to zero and solving the equations simultaneously,
we obtain

�X0 = (
TN , TE1, APC1, OXP1, TE2, APC2, OXP2,TE3,

IFNγ , APC3, IL, OXP3, TR, C+
MHCI , C

−
MHCI

)T

=
(

c1
kd1

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
c6
kd9

, 0, 0
)T

,

�X1 = (
TN , TE1, APC1, OXP1, TE2, APC2, OXP2, TE3,

IFNγ , APC3, IL, OXP3, TR, C+
MHCI , C

−
MHCI

)T
=

(
TN , TE1 ,

b23VolbK(r2 − b23)
r2kd3Volln

, 0, TE2,
K(r2 − b23)

r2
,

0, TE3, IFNγ , APC3, IL, 0,
c6
kd9

, 0, 0
)T

,

where TE1 satisfies the following polynomial equation
a12kd5

a21 + kd5
T3
E1 + Volb

Volln
(kd1TN − c1)T2

E1

+ α

(
a12kd5

a21 + kd5
− kp1

APC1
APC1 + g2

)
TE1

+ α
Volb
Volln

(kd1TN − c1) = 0,

(Based on the Descartes’ rule, there is only one posi-
tive solution from the equation), TE2 = a12VollnTE1

(kd5+a21)Volb , TE3
satisfies the following quadratic equation

kd6ViT2
E3 + kd6εTE3 − a23VolbTE2 = 0

which has only one positive solution TE3 =
−εkd6+

√
(εkd6)2+4a23Vikd6VolbTE2

2Vikd6 , IFNγ = c4TE3IL
kd7(IL+g7)(TR+g8) ,

APC3 = b23APC2Volb
(kd3+b31)Volt , IL = c5APC3

kd8 , and

�X2 = (
TN , TE1, APC1, OXP1, TE2, APC2, OXP2, TE3,

IFNγ , APC3, IL, OXP3, TR, C+
MHCI , C

−
MHCI

)T
=

(
c1
kd1

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
c6
kd9

, 0,

kp4 − kd10
r1

)T
.

By simple calculation, thirteen of the fifteen eigen-
values of the Jacobian matrix of linearized system at
the equilibrium �X0 are given by {−kd1, −kd3, −b23 +
r2, −kd4, −kd4, −kd4 − c21 − c23, −kd6, −kd7, −b31 −
kd3, −kd8, −kd9, −kd10 − kp4, and −kd10 + kp4} with the
rest of the eigenvalues satisfying the quadratic equation
λ2+(kd5+a12+a21+a23)λ+a12(kd5+a23) = 0. It is easy
to see that both eigenvalues are in the left half of the com-
plex plane for a wide range of the parameters. Thus the
first tumor free equilibrium �X0 is stable if both r2 < b23
(i.e., APC2 growth rate is smaller than the rate constant for
APC2 flowing from blood to tumor) and kp4 < kd10 (i.e.,
tumor proliferation rate is less than tumor natural death
rate), otherwise it is unstable.
The second tumor free equilibrium �X1 exists when r2 >

b23 (i.e., APC2 growth rate is larger than the rate constant
for APC2 flowing from blood to tumor). Similar to the pre-
vious case, most of the eigenvalues of the Jacobian matrix
at �X1 are in the left-half of the complex plane. It is easy
to see that twelve of the fifteen eigenvalues are negative.
With respect to the remaining three, one is b23 − r2, and
the other two satisfies the following quadratic equation
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λ2 +
(

c7IFNγ

IFNγ + g11
+ kd11TE3

ε(TR + g13)
+ 2kd10

)
λ

+
(
−kd10 − kp4 − kd11TE3

ε(TR + g13)

)

×
(
−kd10 + kp4 − c7IFNγ

IFNγ + g11

)
− 2kp4

c7IFNγ

IFNγ + g11
= 0.

It is found that both eigenvalues are in the left-half of
the complex plane if kp4 < kd10. Hence this tumor-free
equilibrium point is locally stable if r2 > b23 and kp4 <

kd10; otherwise it is unstable.
The high tumor equilibrium �X2 exists when kp4 > kd10.

Twelve of the fifteen eigenvalues of the Jacobianmatrix are
found as {−kd1, −kd3, −kd4, −kd4, −b23+r2, −kd4−
c21 − c23, − kd7, − b31 − kd3, − kd8, − kd9, − kd10 −
kp4, and kd10 − kp4}. The other three eigenvalues are the
roots of the polynomial p(λ) = λ3+α1λ2+α2λ+α3, where

α1 = a12 + a21 + a23 + kd5 + kd6 + a32(kp4 − kd10)
r1ε + kp4 − kd10

,

α2 = kd6(kd5 + a12 + a21 + a23) + a12(kd5 + a23)

+ (kd5 + a12 + a21)
a32(kp4 − kd10)
r1ε + kp4 − kd10

,

α3 = a12kd5kd6 + a12a23kd6 + kd5a12
a32(kp4 − kd10)
r1ε + kp4 − kd10

.

Based on the list of the first twelve eigenvalues, the
high-tumor equilibrium is unstable if either r2 > b23 or
kd10 > kp4 is satisfied. Suppose r2 < b23 and kd10 < kp4,
it is easy to see that αi > 0, i = 1, 2, 3. According to
the Routh-Hurwitz criterion, p(λ) is a Hurwitz polyno-
mial if and only if α1α2 − α3 > 0, which is indeed the
case after simplifying the expression. Therefore, the high-
tumor equilibrium is stable if r2 < b23 (i.e., APC2 growth
rate is smaller than the rate constant for APC2 flowing
from blood to tumor) and kd10 < kp4 (i.e., tumor pro-
liferation rate is larger than tumor natural death rate),
otherwise it is unstable.
The stability conditions for tumor free equilibrium �X0

indicate that small tumors may not grow into a threaten-
ing size when tumor proliferation rate is less than tumor
natural death rate (kp4 < kd10) without any treatment
(r2 < b23 with all the APCi, OXPi, IL and TEi, i = 1, 2, 3
in �X0 be to zero). Under the combined IL-12 and OXP
treatment, MHC class I positive tumor cells will ultimately
be eliminated. Depending on effects of the combined
treatment (reflected by the remaining level of APCi and
TEi, i = 1, 2, 3 and whether r2 > b23), MHCI negative
tumor cells (CMHCI− ) will either be completely removed in
which case solutions of this dynamic approach the second
tumor-free equilibrium �X1 or the MHC class I negative
tumor cells eventually approach the carrying capacity.
This can occur when MHC class I positive tumor cells are
all killed by tumor infiltrating lymphocytes, which results

in the exhaustion of effector CD8+ T cells and cytokines
while naïve T cells and MHC class I negative tumor cells
remaining at constant levels.

Sensitivity of parameters
To test the impact of how the change of a certain param-
eter value (e.g. α) would affect tumor growth pattern for
responders, partial-responders, and non-responders, nor-
malized differences of tumor sizes yi = |ŷi−ȳi|

ȳi , (i =
1, 2, · · · , 30) on day 120 (8 days post the second treatment
cycle of the combination therapy after tumor re-challenge)
were used to draw the violin plots in Fig. 4 for each of
the 48 parameters for all three patient groups, where ŷi
is the predicted tumor size in mm3 using 0.1 × αi and
other parameters in the ith calibrated parameter set and
ȳi is the predicted tumor size in mm3 using αi and other
parameters in the ith calibrated parameter set and αi is
the calibrated value for parameter α in the ith calibrated
parameter set.
In general, we found that changing the value of each

of the 48 parameters barely affected the tumor growth
for non-responders. In addition, there are 10 (out of
48) parameters whose value changes greatly affect tumor
size of responders but not the size of non-responders
and partial-responders. These potentially OXP and IL-12
treatment important parameters include c23 (OXP flow
rate from blood to tumor), K (APC carrying capacity),
c4 - c6 (IFNγ , IL-12, and TR production rate constants,
respectively), g10 - g14 (IL-12, IFNγ , OXP3, TR, and C+

MHCI
killing by OXP3 saturation rate constants, respectively). In
addition, changes in the value of the following 7 param-
eters cause from zero for non-responders to increasing
changes in normalized tumor size from partial-responders
to responders: T cell flow rates from blood to lymph node
and from tumor to blood, a21 and a32, respectively; APC
flow rates from tumor to lymph node b31; production
rate constant of naive T cells c1; transfer rate constant
of naive T cell to T effector cell in lymph node c2; IL-12
natural death rate constant kd8, and APC growth rate con-
stant r2. We also note that no change in tumor size for
all three mice group (non-responders, partial-responders,
and responders) results from the value changes of fol-
lowing 5 parameters: C−

MHCI killing by OXP3 saturation
rate constant g15, natural death rate constant of naive T
cells kd1, killing rate constant of T effectors or tumor cells
by OXP kd2, APCs natural death rate constant kd3, and
natural decay rate constant of OXP kd4 (see Fig. 4).

Model simulations
In order to investigate potential ways to improve treat-
ment regimes for partial-responders and non-responders,
we simulated the following alternative treatment sce-
narios: changing the dose and frequency of chemother-
apy drug OXP administration, changing the strength of
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Mif-induced IL-12 expression, and changing the number
of combined treatment cycles.

Partial-responders
We note from Fig. 5 that increased number of treatment
cycles in the IL-12 and OXP combination therapy does
not seem to improve tumor control in the first 8 months
post treatment while increased dose of OXP alone would
achieve better tumor control and enhanced strength of IL-
12 expression alone would slightly reduce tumor sizemore
rapidly after the tumor reaches its maximum size.

Non-responders
From Fig. 6, we found that neither increased strength
of IL-12 expression nor moderately increased OXP dose
alone in the IL-12 and oxaliplatin (OXP) combination
therapy seems to improve tumor control for the median,
90th percentile lower and 90th percentile upper responses
for the 30 non-responder patients. Meanwhile, aggres-
sively increased OXP dose (for instance, 10+ times) in
the combination therapy shows reduced tumor size and
delayed time of tumor reaching its carrying capacity only
for the 90th percentile lower responses for the 30 patients.
The reduction of tumor size slows greatly when OXP dose

is increased tomore than 100 times. In addition, increased
number of treatment cycles in the IL-12 and OXP combi-
nation therapy reduced tumor size and delayed the time
of tumor reaching its carrying capacity only for the 90th
percentile lower responses for the 30 patients.

Discussion
Developing mathematical models that represent known
features of the biological system and that are calibrated
to experimental studies can help improve understand-
ing of the underlying biology targeted by drugs and
enables exploring therapeutic scenarios that may be dif-
ficult or costly to test experimentally. In this paper, we
developed a three-compartment mechanistic mathemat-
ical model to describe the clonal expansion of CD8+
T cells in a mouse model of metastatic colorectal can-
cer in response to a combined therapy of IL-12 plus
the chemotherapy drug Oxaliplatin. Based on the col-
lective knowledge of the underlying biology, the model
represents the primary CD8+ T cell response under a
boosting effect of IL-12 and OXP and the subsequent
impact on the growth of a tumor based on the syngeneic
MC38Luc1 mouse model for metastatic colorectal cancer,
where the observed response was characterized by three

Fig. 6 Treatment strategies for non-responders. The distribution in responses of 30 patients were sketched for each treatment strategy using 30 sets
of good fits of calibrated parameters for non-responders (solid line represents median while dotted lines enclose 90% of the predictions). A sample
set of parameter values used in the plots is listed in Table 2. a. Effects of increased interleukin-12 (IL-12) dose from 1 time (1X, control) to 3, 5, 10
times (3X, 5X, 10X, respectively). b. Effects of moderately increased OXP dose from 1 time (1X, control) to 2, 4, 6 times (2X, 4X, 6X, respectively). c.
Effects of aggressively increased OXP dose from 1 time (1X, control) to 10, 100, 200 times (10X, 100X, 200X, respectively). d. Effects of increased
number of treatment cycles from 3 cycles to 4, 5, and 6 cycles
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phenotypes: responders, partial responders, and non-
responders. Model parameters were calibrated against
published experimental data that describes the primary
response for these three phenotypes. The sensitivity anal-
ysis of parameters helped explain the differences in cal-
ibrated values of parameters between non-responders,
partial-responders, and responders. To reduce the depen-
dence of our model predictions on any single calibrated
set of parameter values, we generated an ensemble of
30 parameter sets for each phenotype that provided a
similar good fit against the experimental data and show
the distribution in phenotypic responses for those vir-
tual cohorts. Using the corresponding ensemble of model
predictions for non-responders, numerical simulation of
multiple OXP and IL-12 combination therapy suggest that
aggressively increasing the dose (between 10 and 100
times of the control) of OXP will improve tumor control
results while increasing the number of treatment cycles of
the combined therapy can decrease the tumor size as well.
We also found that only increasing the OXP dose in the
combination therapy can dramatically decrease the tumor
size for partial responders.

Conclusion
Overall, these results illustrate how mechanistic models
can be used to predict tumor growth response to antigen-
specific immuno-chemotherapies and screen in silico for
optimal therapeutic dosage and timing in treating patients
with metastatic colorectal cancer.
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