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Abstract

Background: The principle of loss of iodine uptake and increased glucose metabolism according to
dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely
applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still
lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid
cancer as well as papillary thyroid cancer (PTC).

Methods: We used RNA sequencing of 505 patients with PTC obtained from the Cancer Genome Archives and
microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and
glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with
tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic
profiles was performed for predicting recurrence-free survival.

Results: In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely
correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the
positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced
thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of
high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC.

Conclusions: As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism
features of thyroid cancer could be another biological progression marker different from differentiation and provide
clinical implications for risk stratification.

Trial registration: Not applicable.
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Background
Molecular imaging has been widely used for the bio-
logical characterization of thyroid cancer in the clinic.
Iodine and glucose metabolism have been respectively
identified by radioactive iodine imaging and 2-deoxy-
2-[18F]fluoro-D-glucose (FDG) positron emission tom-
ography (PET), which have played important role in

therapeutic plan [1, 2]. The fact that thyroid cancers with
poor differentiation have lower I-131 avidity and higher F-
18 FDG avidity have long been used to presume the
aggressiveness of thyroid cancer [3]. This ‘flip-flop
phenomenon’ was thought to have resulted from the loss
of I-131 concentration capacity with increasing demand
for glucose during the dedifferentiation of tumor cells [4].
As metabolic features of thyroid cancer could be associ-

ated with genomic alteration as well as tumor differenti-
ation, previous studies have revealed the trend of
relationship by using imaging studies and pathologic
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profiles [3, 5, 6]. Among the major cancer drivers of differ-
entiated thyroid cancers, B-type Raf kinase (BRAF) muta-
tion exclusively occurred in papillary thyroid cancer (PTC)
and PTC-derived anaplastic thyroid cancer (ATC) is associ-
ated with low iodine avidity [3]. Thyroid cancer with BRAF
mutation acquires more aggressive features through BRAF
mutation-associated silencing of thyroid-specific genes, dif-
ferentiation markers of iodine metabolism [6]. The dediffer-
entiation according to BRAF mutation leads to increased
glucose consumption of cancer cells [1], which is supported
by the finding that PTC with BRAF mutation showed a
trend of more FDG avidity [7]. In spite of these cross-
sectional studies using imaging, there is a lack of com-
prehensive understanding of the association between
tumor glucose metabolism, differentiation and BRAF
mutation. Meanwhile, recent comprehensive analyses
using next generation sequencing have revealed new in-
tegrative molecular subtypes as well as cancer drivers
[8]. In this regard, the integrative analysis of iodine and
glucose metabolism based on the systemic gene expres-
sion data is needed for the molecular background of
imaging and therapy of thyroid cancer.
The aim of this study is to identify the association be-

tween the glucose metabolism profile and the differenti-
ation of thyroid cancer using transcriptomic signatures. As
tumor glucose metabolism clinically assessed by FDG PET
is associated with the expression of glucose transporters
(GLUT) and glycolysis pathways [9–11], gene signatures of
GLUT and glycolysis were used for defining glucose meta-
bolic profiles of the tumors. We investigated whether the
glucose metabolic profiles were correlated with tumor dif-
ferentiation and BRAF mutations in advanced thyroid can-
cer as well as PTC. We also investigated whether these
metabolic profiles were associated with clinical outcome,
and eventually aimed to redefine the biological progression
of thyroid cancer in terms of glucose metabolism as well as
differentiation related with iodine uptake.

Methods
Subjects and data acquisition
RNA sequencing data of well differentiated papillary thy-
roid cancers (THCA) were obtained from The Cancer
Genome Atlas (TCGA) which was publicly available.
The gene expression data of 21,022 genes and clinical
information from 505 patients with PTC were down-
loaded from the TCGA portal (http://portal.gd.cancer.
gov/) using ‘TCGABiolinks’ R/Bioconductor package.
Microarray data of poorly differentiated thyroid cancer
(PDTC) and ATC were also obtained in NCBI’s Gene
Expression Omnibus (GEO) Series accession number
GSE76039. Clinical information of PDTC/ATC patients
was downloaded from cBioPortal (http://www.cbioportal.
GSE76039org/public-portal). Data from patients with
PTC and PDTC/ATC were all collected from primary

tumor, except 7 samples from recurred or metastatic tu-
mors of PDTC/ATC (6 samples from recurred tumor,
one sample from metastatic tumor).

Glucose metabolic profiles
We normalized mRNA transcripts counts to adjust GC-
content effects and between-lane distributional differ-
ence. Using normalized gene counts, we calculated the
enrichment scores of glucose metabolic signatures for
GLUT and glycolysis. Glycolysis signatures were defined
by Reactome pathway [12]. To estimate the enrichment
score of glycolysis, a single sample gene set enrichment
analysis (ssGSEA) was performed using the curated gene
sets of glycolysis signatures [13]. This analysis was per-
formed with GSVA R/Bioconductor package [14]. For
estimating GLUT score, the sum of log-expression
values of GLUT1 and GLUT3 was used as FDG uptake
is dependent on these two GLUT subtypes [15]. Tumor
differentiation score (TDS) were also calculated by ex-
pression values of a set of specific genes [8]. Notably, the
set of genes to calculate TDS did not include genes re-
lated to glucose transporters and glycolysis.

Statistical analysis
Student’s t-test was used to analyze whether the signa-
tures of glucose metabolism were significantly different
according to the genetic mutation status of BRAFV600E.
Pearson’s correlation test was performed to evaluate the
associations between TDS and signatures of glucose me-
tabolism. The difference between two correlation coeffi-
cients regarding BRAFV600E was calculated by Fisher z-
transformation. In addition, the difference between two
correlation coefficients according to the histologic cell
types was calculated by Fisher z-transformation. The ef-
fect of the signatures of glucose metabolism on patients’
recurrence-free survival was analyzed using the Cox pro-
portional hazard model. Patients were divided into two
groups; lower or higher than the median value of GLUT,
and glycolysis unit. Kaplan-Meier survival curves were
demonstrated to compare recurrence-free survival be-
tween two groups. The statistical significance was evalu-
ated using the Log rank test. The differences between
groups were considered statistically significant at p-value
< 0.05. All statistical analyses were performed with R
3.4.1 (https://www.r-project.org/).

Results
To evaluate the association between tumor differenti-
ation and glucose metabolism in the thyroid cancer, we
used two cohorts, PTC samples of TCGA and PDTC/
ATC samples obtained by GEO (GSE76039). The clinical
and pathological characteristics of PTC patients and
PDTC/ATC patients are summarized in Table 1 and
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Table 2. Notably, there were unavailable clinical data
such as race.
Firstly, GLUT and glycolysis enrichment scores were

estimated by gene expression data of the two cohorts
and associated with the mutation status, BRAFV600E.
The enrichment scores of GLUT and glycolysis were sig-
nificantly different in PTC according to BRAFV600E
mutation status (Fig. 1). BRAFV600E positive PTC have
higher GLUT signature and lower glycolysis signature
(BRAFV600E positive group 20.53 ± 1.08 vs. BRAFV600E
negative group 19.13 ± 1.46, t = − 12.09, p < 0.0001 for
GLUT; BRAFV600E positive group − 0.28 ± 0.77 vs.
BRAFV600E negative group 0.24 ± 1.11, t = 6.06, p <
0.0001 for glycolysis) than BRAFV600E negative PTC
(Fig. 1).
To evaluate the tumor differentiation, we employed

tumor differentiation score, TDS, calculated by sixteen
genes related to thyroid functions. The TDS was com-
pared with glucose metabolic profiles. In PTC group, the
TDS was negatively correlated with GLUT signature, but
positively correlated with glycolysis signature (r = − 0.59,

p < 0.0001 for GLUT; Fig. 2a, r = 0.33, p < 0.0001 for gly-
colysis; Fig. 2b). We divided PTC into two subgroups ac-
cording to the BRAFV600E mutation status. PTC
without BRAFV600E showed a negative correlation be-
tween TDS and GLUT (r = − 0.57, p < 0.001), while it
showed a positive correlation between TDS and glycoly-
sis (r = 0.35, p < 0.001). PTC with BRAFV600E showed a
trend of negative correlation between GLUT and TDS
(r = − 0.18, p = 0.065) and no significant correlation be-
tween glycolysis and TDS. These correlations were sig-
nificantly stronger in BRAFV600E negative group than
positive group (z = 5.22 for GLUT, z = − 4.48 for glycoly-
sis, and p < 0.001 for both GLUT and glycolysis; Fig. 2c-
f). In PDTC/ATC group, the relationship between the
TDS and GLUT signature showed a significant negative
correlation (r = − 0.68, p < 0.0001; Fig. 2g). The TDS also
showed a significant negative correlation to the glycoly-
sis signature (r = − 0.38, p = 0.019; Fig. 2h). We also
evaluated whether different cell types of PTC were asso-
ciated with glucose metabolic signatures. Classical cell
type PTC have higher GLUT signature and lower

Table 1 Clinicopathological characteristics of the 505 PTC included in the study

Variables PTC No. of available data

Gender (M:F) 136: 369 505

Age (years, mean ± SD) 46.89 ± 15.84 (15.38–89.54) 505

Race

White / Asian / Black / Etc. 334 / 51 / 27 / 1 413

Histology

Classical / Follicular / Tall cell / Other 323 / 99 / 34 / 9 465

BRAFV600E (Positive:Negative) 235: 270 505

Stage

1 / 2 / 3 / 4 284 / 52 / 112 / 55 503

Recurrence-free survival time (months) 14.26 (0–158.71) 423

PTC Papillary Thyroid Cancer
Data in parentheses are ranges

Table 2 Clinicopathological characteristics of the 10 PDTC and 27 ATC included in the study

Variables PDTC/ATC No. of available data

Gender (M:F) 10: 27 37

Age (years, mean ± SD) 69 ± 13.74 (27–87) 37

Histology

Papillary / Follicular / Tall cell / Other 14 / 5 / 5 / 5 29

BRAFV600E (Positive:Negative) NA

Stage

1 / 2 or 3 / 4 1 / 5 / 24 30

Recurrence-free survival time (months) 10.3 (0.23–223.49) 35

PDTC/ATC Poorly-Differentiated Thyroid Cancer/Anaplastic Thyroid Cancer
Data in parentheses are ranges
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glycolysis signature than follicular cell type PTC (Clas-
sical cell type 20.13 ± 1.32 vs. Follicular cell type 18.42 ±
1.20, t = 11.55, p < 0.001 for GLUT; Classical cell type −
0.13 ± 0.94 vs. Follicular cell type 0.52 ± 1.12, t = − 5.65,
p < 0.001 for glycolysis; Additional file 1: Figure S1A, B).
The negative correlation between TDS and GLUT
and the positive correlation between TDS and glycoly-
sis were found in both cell types, classical and
follicular types. The strength of their correlations
showed no significant difference when we compare
the correlation coefficients by Fisher z-transformation
(Classical cell type: r = − 0.47, p < 0.001 for GLUT, r =
0.23, p < 0.001 for glycolysis; Follicular cell type: r = −
0.43, p < 0.001 for GLUT, r = 0.34, p = 0.001 for gly-
colysis; Additional file 1: Figure S1C, D). Individual
genes that constitute TDS and glucose metabolic
pathway were represented by heatmaps (Fig. 3).
We assessed the association between signatures of glu-

cose metabolism and patients’ prognosis. Kaplan-Meier
survival curves of both PTC and PDTC/ATC patients with
low glycolysis signature showed significantly better
recurrence-free survival than the other group (p = 0.045
and 0.015, respectively, estimated by log-rank tests; Fig. 4a,
b). The glycolysis signature of the primary tumor showed
a significant correlation with the N-stage (N negative
group 0.13 ± 1.03 vs. N positive group − 0.24 ± 0.89, t =
3.86, p = 0.0001), but not with the M-stage (M negative
group − 0.08 ± 1.03 vs. M positive group − 0.16 ± 0.89, t =
0.22, p = 0.823; Additional file 2: Figure S2). We then
assessed the predictive value of glycolysis signature for

recurrence using a cox proportional hazard model. The
hazard ratios (H.R.) of the influence of the glycolysis sig-
nature on the recurrence of PTC are estimated by uni-
and multi-variate analyses (Table 3). In PTC, a univariate
cox hazard proportional model revealed that the high gly-
colysis signature alone had a significant influence on the
recurrence-free survival (H.R. = 1.50; C.I. = 1.03–2.17; p =
0.033). The adjustment for age and gender maintained its
influence on the recurrence-free survival (H.R. = 1.50; C.I.
= 1.04–2.16; p = 0.031). Additional adjustment for T-stage
and N-stage still demonstrated worse prognosis on PTC
patients with high glycolysis (H.R. = 1.92; C.I. = 1.22–3.00;
p = 0.005). Although TDS itself did not influence the
recurrence-free survival (H.R. = 0.76; C.I. = 0.55–1.06; p =
0.102), the adjustment for TDS as well as age, gender, T-
stage, and N-stage maintained the influence of glycolysis
signature on the recurrence-free survival (H.R. = 1.98; C.I.
= 1.26–3.10; p = 0.003). The clinicopathological character-
istics between PTC patients with low glycolysis and PTC
patients with high glycolysis showed no significant differ-
ence except for age (Table 4). GLUT score showed no sig-
nificant correlation with PTC patients’ prognosis (p = 0.85;
Fig. 4c). On the contrary, we found that PDTC/ATC pa-
tients with low GLUT signature have significantly longer
recurrence-free survival than the other group (p = 0.0063;
Fig. 4d).

Discussion
In this study, we used transcriptome data of thyroid can-
cers of two cohorts, PTC and PDTC/ATC to evaluate

Fig. 1 Box and whiskers plot of GLUT and glycolysis signatures by BRAFV600E mutation in PTC. The line across each box represent the median,
and the top edge, and the bottom edge represents the first quartile, and the third quartile, respectively. Student’s t-test showed significant
difference of signatures of GLUT and glycolysis, between BRAFV600E positive and negative groups (BRAFV600E positive group 20.53 ± 1.08 vs.
BRAFV600E negative group 19.13 ± 1.46, t = − 12.09, p < 0.0001 for GLUT; BRAFV600E positive group − 0.28 ± 0.77 vs. BRAFV600E negative group
0.24 ± 1.11, t = 6.06, p < 0.0001 for glycolysis). (*** = p < 0.001)
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glucose metabolic profiles and tumor differentiation. In
PTC, a trend of higher GLUT and lower glycolysis was
found in tumors with BRAFV600E mutation and those
with relatively poor differentiation. There is a
controversy regarding the correlation of BRAFV600E,
GLUT1, and tumor differentiation genes according to
several previous reports [16–18]. Our results are con-
sistent with other results of higher GLUT1 in less

differentiated thyroid cancer [16] and negative correl-
ation between BRAFV600E mutation and tumor differ-
entiation genes in PTC [17, 18]. The results of TDS
positively correlated with glycolysis and negatively cor-
related with GLUT were particularly found in PTC
without BRAFV600E mutation. Moreover, the high gly-
colysis enrichment was significantly associated with
poor clinical outcome, even it was associated with well

Fig. 2 Scatter plot of TDS versus GLUT and glycolysis signatures in PTC and PDTC/ATC. (a, b) Pearson’s correlation analysis showed that
negative correlation was shown between TDS and GLUT (r = − 0.59, p < 0.0001), while positive correlation was shown between TDS and
glycolysis (r = 0.33, p < 0.0001). (c, d) GLUT and glycolysis signatures of BRAFV600E positive group showed no significant correlation with
TDS (r = − 0.18, p = 0.065 and r = − 0.03, p = 0.605, respectively). (e, f) GLUT and glycolysis signatures of BRAFV600E negative group were
significantly correlated with TDS in PTC (r = − 0.57, p < 0.001 and r = 0.35, p < 0.001, respectively). (g, h) Pearson’s correlation analysis
showed that signatures of GLUT and glycolysis both have negative correlation with TDS in PDTC/ATC (r = − 0.68, p < 0.0001 and r = − 0.38,
p = 0.019, respectively)
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differentiation in PTC. However, this paradoxical op-
posite direction of correlation was not found in PDTC/
ATC cohorts, which showed both GLUT and glycolysis
were negatively correlated with TDS and associated
with poor clinical outcome.
We have found that thyroid cancers with poor dif-

ferentiation showed higher GLUT expression (Fig. 2).
Cancer cells demand a higher amount of energy ac-
cording to the progression, which is associated with
enhanced aerobic glycolysis in the advanced cancer
[19]. The glucose demand of cancers cause overex-
pression of GLUT1 and/or GLUT3 to increase glu-
cose influx [20]. Our results were compatible with the
previous studies since poorly differentiated thyroid can-
cers would need higher glucose uptake through GLUT ex-
pression [21]. On the other hand, glycolysis signatures of
thyroid cancers with poor differentiation were inconsistent
between PTC and PDTC/ATC (Fig. 2). In PTC, relatively
well-differentiated tumors, glycolysis was positively associ-
ated with TDS. In PDTC/ATC, a negative correlation was
shown between TDS and glycolysis. Considering PTC of
TCGA data are relatively well-differentiated tumors com-
pared with PDTC/ATC cohort, the association between
the differentiation and glycolysis might have ‘U shape’ pat-
tern; high glycolysis signatures were shown in ATC and
some types of well-differentiated PTC. Moreover, in-
creased glycolysis was associated with poor clinical
outcome in spite of high TDS. It implies that the differen-
tiation of thyroid cancer may not be the only factor that
reflects the biological progression of thyroid cancer. In-
stead, in addition to differentiation, glucose metabolic
profiles represented by glycolysis should be further

considered to infer the progression of thyroid cancer, par-
ticularly for the specific subtypes of PTC, BRAFV600E
negative and/or follicular variants.
Our results demonstrated that the signatures of

GLUT and glycolysis can act as prognostic factors in
predicting recurrence-free survival of thyroid cancer
patients (Fig. 4). The multivariate analysis revealed
that the two variables, N-stage and the glycolysis sig-
nature, were significantly associated with the recur-
rence. As N-stage has been regarded as an important
conventional biomarker related to prognosis which
can be confirmed by surgical exploration, our results
emphasized again the importance of the lymph node
status in thyroid cancer as postoperative risk stratifi-
cation. In terms of another prognostic marker in our
results, glycolysis signature, it is notable that glucose
metabolism profiles can be noninvasively estimated by
FDG PET. GLUT score, calculated by GLUT1 and
GLUT3, was reported as the major deterministic fac-
tor for the FDG uptake in various studies [10, 15, 21,
22], while a recent study showed a moderate correl-
ation between FDG uptake and GLUT regarding a
complex mechanism of glucose metabolism [23]. Fur-
thermore, glycolysis activity is also associated with
FDG uptake in vivo [22, 24]. According to the kinetic
model of FDG, glycolysis activity is associated with
FDG retention, which can be visualized by dual-time
FDG PET [25, 26]. In general, poorly differentiated
thyroid cancers are known to have a worse outcome
as compared to well differentiated thyroid cancers
[27]. However, a subset of well-differentiated carcin-
oma shows relatively poorly outcome in tumors with

Fig. 3 Heatmaps of genes related to glucose metabolism and TDS in PTC and PDTC/ATC. Glycolysis signature with TDS, BRAFV600E mutation
status, and gene expression data for sixteen genes constituting TDS, two genes for GLUT (SLC2A1, SLC2A3), and two genes for hexokinase (HK)
are shown in PTC (a) and PDTC/ATC (b)
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Fig. 4 The Kaplan-Meier survival curve for recurrence-free survival of thyroid cancer patients. The patients were divided into two groups, based
on the median value of each signature of glucose metabolism. PTC patients with low glycolysis signature have significantly less recurrence than
the other group (a, p = 0.045). PDTC/ATC patients with low glycolysis signature showed better prognosis (b, p = 0.015). GLUT signature showed
no significant correlation with recurrence-free survival in PTC patients (c, p = 0.85). PDTC/ATC patients with low GLUT signature showed better
prognosis (d, p = 0.0063)

Table 3 Univariate and multivariate analysis of influence on the recurrence of PTC

Variables (The first group is the reference
group)

Univariate analysis Multivariate analysis

H.R. (95% C.I.) p-value H.R. (95% C.I.) p-value

Age (Continuous variable) 1.01 (0.99–1.04) 0.351 1.01 (0.99–1.04) 0.265

Gender (Female vs. Male) 1.56 (0.71–3.45) 0.272 1.98 (0.83–4.71) 0.124

T-stage (T1 + T2 vs. ≥T3) 1.36 (0.63–2.95) 0.435 1.41 (0.61–3.21) 0.420

N-stage (N0 vs. ≥N1) 3.76 (1.40–10.09) 0.008 4.24 (1.50–11.96) 0.006

TDS (Continuous variable) 0.76 (0.55–1.06) 0.102 0.83 (0.58–1.18) 0.293

Glycolysis signature (Continuous variable) 1.50 (1.03–2.17) 0.033 1.98 (1.26–3.10) 0.003

PTC Papillary Thyroid Cancer; H.R Hazard Ratio; C.I Confidence Interval; TDS Tumor Differentiation Score
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increased glycolysis with well-differentiated type. As
GLUT and glycolytic activity were differently associated
with TDS, noninvasive characterization using FDG PET
and radioactive iodine imaging could play a role in risk
stratification when considered with other prognostic fac-
tors as well as biological characterization of the tumor. As
a future work, more specifically, dual-time FDG PET
could be used for estimating glycolysis activity, which
might identify a subtype of the tumor with enhanced gly-
colysis and well-differentiation.
Although, we analyzed glucose profiles of thyroid

cancer in the two different cohorts with different dif-
ferentiation, there are some limitations. Firstly, the
PDTC/ATC sample size was small. Though we found
the expected role of GLUT and glycolysis on the
prognosis of PDTC/ATC patients, further studies with
a larger group are needed. Another limitation was
that the transcriptome data from two cohorts were
not be combined and analyzed since those data were
obtained from different resources, RNA sequencing
and microarray. For PDTC/ATC patients, a few sam-
ples were acquired from recurred or metastatic tu-
mors (recurred tumors for 6 samples and one sample
from metastatic tumor), which might affect our ana-
lysis though recurred and metastatic tumors have
similar glucose metabolic profiles with their primary
tumors. Furthermore, noninvasive imaging biomarkers
using iodine scan and FDG PET integrated with tran-
scriptomic data could clarify our results of the associ-
ation of differentiation and glucose metabolic profiles.
We could expect the clinical application of our results
as a future study, such as the estimation of glycolysis
score based on gene expression profiles in fine-needle
aspiration samples. In addition, according to our re-
sults, the expression of genes related to glycolysis
may be examined by tissue samples in the clinic to
stratify patients’ outcome, even though further studies
focusing on clinical outcomes and clinical decision ac-
cording to the glycolysis are needed.

Conclusions
According to the integrative analysis of iodine and
glucose metabolism based on the systemic gene

expression data, metabolic profiles were not simply
associated with tumor differentiation. Cancer cellular
GLUT expression was negatively associated with
tumor differentiation in both PTC and PDTC/ATC.
The enrichment of glycolysis was positively associated
with the differentiation in well-differentiated PTC,
while it was negatively associated with the PDTC/
ATC. Overall, there might be ‘U-shape’ pattern for
the association of the differentiation and glycolysis.
Furthermore, increased glycolysis was poor prognosis
in spite of the well-differentiated tumor. We antici-
pate that the biological and prognostic characteristics
of glucose metabolic profiles could provide insight for
biomarker using FDG PET and appropriate thera-
peutic plan.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-019-6482-7.

Additional file 1 Figure S1. Plots for GLUT and glycolysis signatures in
PTC with different cell types. (A) Box and whiskers plot of GLUT signature
in PTC according to cell type (Classical cell type 20.13 ± 1.32 vs. Follicular
cell type 18.42 ± 1.20, t = 11.55, p < 0.001) (B) Box and whiskers plot of
glycolysis signature in PTC according to cell type (Classical cell type −
0.13 ± 0.94 vs. Follicular cell type 0.52 ± 1.12, t = − 5.65, p < 0.001) (C)
Scatter plot of TDS versus glucose metabolism signature in classical cell
type PTC (r = − 0.47, p < 0.001 for GLUT; r = 0.23, p < 0.001 for glycolysis)
(D) Scatter plot of TDS versus glucose metabolism signature in follicular
cell type PTC (r = 0.43, p < 0.001 for GLUT; r = 0.34, p = 0.001 for glycolysis)

Additional file 2 Figure S2. Box and whisker plot of glycolysis
signatures by N-stage or M-stage in PTC. The line across each box repre-
sent the median, and the top edge, and the bottom edge represents the
first quartile, and the third quartile, respectively. Student’s t-test showed
significant difference of signatures of glycolysis between N positive and
N negative groups (N negative group 0.13 ± 1.03 vs. N positive group −
0.24 ± 0.89, t = 3.86, p = 0.0001). No significant difference of signatures of
glycolysis were found between M positive and M negative groups (M
negative group − 0.08 ± 1.03 vs. M positive group − 0.16 ± 0.89, t = 0.22,
p = 0.82). (*** = p < 0.001)

Abbreviations
ATC: Anaplastic thyroid cancer; BRAF: B-type Raf kinase; C.I.: Confidence
Interval; FDG: 2-deoxy-2-[18F]fluoro-D-glucose; GEO: Gene Expression
Omnibus; GLUT: Glucose transporter; H.R: Hazard ratio; HK: Hexokinase;
PDTC: Poorly differentiated thyroid cancer; PET: Positron emission
tomography; PTC: Papillary thyroid cancer; ssGSEA: Single sample gene set
enrichment analysis; TCGA: The Cancer Genome Atlas; THCA: Well
differentiated papillary thyroid cancer; TSD: Tumor differentiation score

Table 4 Clinicopathological characteristics of the 423 PTC

Variables PTCs with low glycolysis signature PTCs with high glycolysis signature χ2* or t† or H.R.§/ p-value

Gender (M:F) 59:153 50:161 0.74*/0.389

Age (years) 43 (15–89) 47 (19–83) 3.06†/0.002

Stage

1 / 2 / 3 / 4 131 / 15 / 45 / 20 119 / 23 / 48 / 20 0.995‡

Recurrence-free survival time (months) 14.59 (0–158.71) 14.06 (0–157.03) 1.50§/0.033
‡ p-value from Analysis of Variance
PTC Papillary Thyroid Cancer; H.R Hazard Ratio
Data in parentheses are ranges
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