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Abstract

Background: Lung adenocarcinoma (LUAD) is one of the most common cancer types, threatening the human
health around the world. However, the high heterogeneity and complexity of LUAD limit the benefits of targeted
therapies. This study aimed to identify the key prognosis impacting genes and relevant subtypes for LUAD.

Methods: We recognized significant mutations and prognosis-relevant genes based on the omics data of 515
LUAD samples from The Cancer Genome Atlas. Mutation significance was estimated by MutSigCV. Prognosis
analysis was based on the cox proportional hazards regression (Coxph) model. Specifically, the Coxph model was
combined with a causal regulatory network to help reveal which genes play master roles among numerous
prognosis impacting genes. Based on expressional profiles of the master genes, LUAD patients were clustered into
different sub-types by a consensus clustering method and the importance of master genes were further evaluated
by random forest.

Results: Significant mutations did not influence the prognosis directly. However, a collection of prognosis relevant
genes were recognized, where 75 genes like GAPDH and GGA2 which are involved in mTOR signaling, lysosome or
other key pathways are further identified as the master ones. Interestingly, the master gene expressions help separate
LUAD patients into two sub-types displaying remarkable differences in expressional profiles, prognostic outcomes and
genomic mutations in certain genes, like SMARCA4 and COL11A1. Meanwhile, the subtypes were re-discovered from
two additional LUAD cohorts based on the top-10 important master genes.

Conclusions: This study can promote precision treatment of LUAD by providing a comprehensive description on the
key prognosis-relevant genes and an alternative way to classify LUAD subtypes.
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Background
Lung cancer is one of the most frequent malignant neo-
plasm, and one of the major causes of cancer death
among both males and females around the world [1, 2].
Lung cancer is a highly heterogeneous and complex dis-
ease which includes many subtypes. Histologically, lung
adenocarcinoma (LUAD) is the most common one. Re-
cently, molecular targeted therapies have improved the
treatments for LUAD, particularly for patients with

specific mutations in EGFR [3], ALK [4, 5], RET [6] and
ROS1 [7]. Meanwhile, promising novel targets like KRAS
[8] and MET [9] are being studied. However, the high
heterogeneity and complicated molecular patterns of
LUAD limit the benefits of these targeted therapies to
only specific patients, leaving large amount of LUAD pa-
tients without effective therapeutic drugs. It is essential
to obtain a more comprehensive view on the molecular
mechanism of LUAD, rather than solely focusing on the
therapeutically targeted mutations.
Owing to the advantage of high-throughput omics

technology, large scale descriptions on the molecular

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: lyu17709872529@163.com
The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning
116000, People’s Republic of China

Lv and Lei BMC Cancer           (2020) 20:56 
https://doi.org/10.1186/s12885-019-6462-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-019-6462-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lyu17709872529@163.com


characters of LUAD have been achieved [10]. Accord-
ingly, the potential complicated molecular mechanism
underlying LUAD has been more extensively explored
by mining the LUAD relevant omics data [11] [12].
These omics based studies help identified a series of
prognosis or diagnosis relevant biomarkers which can
provide novel and promising treatment targets. How-
ever, the omics-based cancer investigations, which
mainly depend on mutation significance examination,
differential analysis, or expression-based survival ana-
lysis, will generate a larger number of interesting items,
either in gene or protein level [10]. It is unquestionable
these genome- or proteome-wise identifications generate
certain mechanical or clinical meaningful biomarkers
[13, 14]. However, human body is a complex organism,
these interesting items must function in a collective way
rather than individually. A big challenge is how to
understand the mutual associations among these most
functional items and recognize the most functional
multi-item sets from the interesting items. Besides, the
consistency of the identified molecular patterns across
different datasets is also an important issue.
Here, we put-forward a causal network based frame-

work to systematically investigate on the prognosis-
relevant genes and their mutual association patterns
underlying LUAD. Through this study, a causal regula-
tory network among prognosis relevant genes will be
constructed. Based on this network, we can identify the
master prognosis impacting genes and the prognosis-
meaningful LUAD subtypes can be recognized.

Methods
The Cancer genome atlas (TCGA) data
The mutation and RNA-seq data for LUAD were ob-
tained from TCGA [15]. Firstly, we downloaded both
kinds of data for 33 types of cancers from the National
Cancer Institute’s Genomic Data Commons (GDC)
(https://gdc.cancer.gov/about-data/publications/panca-
natlas). The mutational data were saved in mutation an-
notation format [16], and the RNA-seq data were saved
in a tab file. The maf data was processed by the R pack-
age maftools, and the RNA-seq data were preprocessed
based on the voom algorithm [17] in the R package
limma [18]. For this study, we extracted the data corre-
sponding to LUAD patients.

Pathway data
Pathway information were integrated from two databases
including Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Molecular Signatures Database (MsigDB,
http://software.broadinstitute.org/gsea/msigdb) [19], and
pathway names as well as genes belonging to each path-
way were extracted from the databases.

Identification of significant somatic mutated genes
(SMGs)
MutSigCV(version 1.3.4) [20] was applied on the the
maf mutation file to recognize significant SMGs where
the significance threshold was set as q-value < 0.1. Then,
we utilized the maftools to visualize the mutation infor-
mation of these significant SMGs among TCGA LUAD
patients.

Survival analysis based on gene expressions
The clinical information of all TCGA-LUAD patients
was also obtained from the GDC. For the mRNA expres-
sion data, we removed genes with more than 70% of zero
values, and analyzed the prognosis impacts for the
remained genes. For each such gene, we utilized a Cox
proportional hazards (Coxph) regression model in the R
package “survival” [21] to examine whether the expres-
sion level of this gene has a significant influence on the
survival rate. According to the Coxph results, genes with
p-values less than 0.05 were regarded as prognosis-
relevant, and if the regression coefficients are larger than
0, then higher expression levels will correspond to worse
survival rates, otherwise, higher expression levels will
correspond to better survival rates.

Identification of master prognosis impacting genes by a
causal regulatory network
According to the Coxph-based survival analysis results,
genes with p-values less than 0.01 and absolute coefficient
values larger than 0.2 were taken as the prognosis relevant
genes. Then, based on the mRNA expression profiles of
these genes, we computed the bi-weight mid-correlations
[22] among all pair-wise genes. To recognize the most
likely causal correlations, we further estimated a causal
regulatory network based on the correlation matrix. This
causal regulatory network was a directed acyclic graph de-
scribing the conditional independence relationships. It
was estimated by the PC-algorithm (named after its inven-
tors Peter Spirtes and Clark Glymour) in R package pcalg
[23]. Since this causal regulatory network was directed, a
summarized node degree was calculated as the number of
all out-going edges minus the number of all in-coming
edges (i.e., out degree - in degree). Then nodes were taken
as the master prognosis impacting genes if the absolute
values of their summarized degrees were larger than cer-
tain threshold.

Unsupervised clustering of patients based on SMG
relevant genes and pathways
We clustered the LUAD patients into two groups
based on the mRNA-level expression matrix of the
master prognosis regulating genes. This expression
matrix was scaled by subtracting the mean level and
being divided by the standard derivation with respect
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to each individual gene. Based on the scaled expres-
sion matrix, we applied a consensus clustering method
in the R package “ConsensusClusterPlus” [24] to clus-
ter the patients into 2 clusters where “partitioning
around medoids” was chosen as the basic clustering
algorithm.
To further examine the significance of the prognosis

effects generated by the two clusters, we also repeated
the clustering processes 100 times, where each time we
clustered the LUAD based on the expression profiles of
randomly-selected genes (with the same number of the
prognosis-relevant genes). Thus, we obtained the distri-
bution of the log-rank p values for randomly conditions.

Evaluate the importance of genes for the clustering
results
After clustering the patients into 2 clusters, we used the
random forest (RF) [25] algorithm to evaluate the im-
portance of all genes in the input expression matrix for
predicting the accurate cluster labels. These genes were
ranked by the importance score. Besides, we also exam-
ined enrichment significance of the top-50 important
genes in each pathway based on the hypergeometric
distribution.

Estimate the relevance between the prognosis relevant
genes and SMGs
For each SMG, we separated the samples into mutated
and wild type sets, and utilized T-test (un-paired, two-
sides) to identify which genes were differentially expressed
between mutated and wild type set in the transcriptomics
data, then genes with FDR less than 0.1 were regarded as
the SMG relevant.

Predicting and validating the LUAD subtypes based on
the other independent lung cancer cohorts
The mRNA expression matrix and the corresponding clin-
ical information for two lung cancer cohorts (GSE30219
and GSE31210) were downloaded from Gene Expression
Omnibus (GEO) database by the R package ‘GEOquery’
[26]. We constructed a cluster-label predictor based on
the TCGA-LUAD expression matrix of the top-10 import-
ant genes. This predictor was trained by a lasso and
elastic-net regularized generalized linear model (termed as
glmnet, implemented by the R package “glmnet” [27]).
Firstly, we estimated the leave-one-out validation accuracy
of the top-10 important genes in predicting the subtypes
based on the LUAD transcriptomics data. During leave-
one-out validation, each individual sample was respect-
ively taken out as a testing sample, and the other samples
were taken as the training samples, then a glmnet-based
subtype-predictor was trained and tested by the training
and testing samples, when all samples were utilized as a
testing sample for once, the ratio of corrected predicted

times was regarded as the model accuracy. Then, we used
the TCGA LUAD data to train a final predictor and ap-
plied this predictor on the GEO datasets to predict the
corresponding cluster-labels for each patient, and survival
differences of the two predicted clusters were tested by
Coxph model and the corresponding survival curves were
estimated by the Kaplan-Meier method.

Drug and gene interactions
All drug and gene interaction information were obtained
from the DGIdb [28] which included both the known
and reported drug-gene interactions.

Statistical analysis
The statistical analysis and relevant computations were
implemented by R. Detailed information was described
in corresponding method sections.

Results
Significant somatic mutations in LUAD
According to the gene mutation data of 515 LUAD pa-
tients in TCGA [29], we identified 20 significant SMGs
by MutSigCV (q-value < 0.1, Fig. 1). Most of these SMGs
like TP53, KRAS, KEAP1, STK11, EGFR, NF1, BRAF,
SMARCA4, etc. have already been identified in the other
studies, especially the study conducted on the previously
collected 230 TCGA-LUAD patients [10]. The signifi-
cant mutations of COL11A1 (q-value = 8.8e-06, mutation
rate = 21%) is rarely identified in the previous LUAD
studies. However, expressions of COL11A1 have shown
associations with prognostic factors, pathological stages,
and lymph node metastasis in non-small cell lung cancer
(NSCLC) in some previous studies [30–33]. The muta-
tions of COL11A1 might also be one of the driven fac-
tors for LUAD.
To evaluate the most direct mutational effects, we

compared the expressions of these SMGs in the mutated
and wild type samples. We found that some of the
SMGs can lead to significant expressional alterations
(Table 1). For instance, the mutations of RBM10 will sig-
nificantly reduce its expressions while mutations of
EGFR might improve the expression levels (see Add-
itional file 1). However, only three of the expressional al-
terations (SMAD4, CDKN2A and TCEAL5) can lead to
significant prognosis influence (see Additional file 1). Be-
sides, we also examined whether the mutations can
affect the expressions of the other genes. We found that
most of the mutations were related with significant ex-
pressional alterations of various genes (see Add-
itional file 2), e.g., KEAP1 mutations are related with the
up-regulated mRNA expressions of G6PPD, TRIM16,
GCLM, etc., implying that these mutations may lead to
remarkable down-stream alterations in the mRNA level.
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Genome-wide identification of prognosis relevant genes
for LUAD
The genomic mutations can not only influence the
functions of the mutated genes, but may also generate
remarkable effects on down-stream cascades, thus
leading to the final impacts on clinical phenotypes,
like the prognostic outcomes. To gain a comprehen-
sive understanding on the prognosis impacts, we
attempted to get a genome-wide estimation of the
prognosis relevant genes for LUAD based on a Coxph
model (see Methods). Through this analysis, we ob-
served that a great number of genes were associated
with LUAD prognosis (Fig. 2a). The high expression
levels of some genes like USP4, DTNBP1 may con-
tribute to better survival rates (these genes were
termed as favourable ones), while some of the others
(termed as un-favourable ones) such as AHSA1 and

MESDC2 may lead to worse survivals (Fig. 2a and b).
AHSA1 is a co-chaperone of HSP90AA1, and a previ-
ous study has revealed that it is involved in the
proliferation, migration, and invasion processes of
osteosarcoma [34]. Here, we observed that higher ex-
pression of AHSA1 was associated with a worse sur-
vival rate (Fig. 2b). USP4 is a deubiquitinating
enzyme which may inhibit p53 by deubiquitinating an
important p53 ubiquitin ligase ARF-BP1 [35]. Corres-
pondingly, many studies have identified the oncogene
effects of USP4 [36]. Here, on the contrary, we found
that higher expressions of USP4 in LUAD may lead
to better prognosis. This may be caused by the highly
heterogeneity of cancers and the alternative deubiqui-
tinating substrates for USP4. Consequently, the
prognosis effects of these identified genes may be
conditional.

Fig. 1 Significant somatic gene mutations in lung cancer. Different colors stand for different mutation types
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Meanwhile, although more favourable genes were ob-
served than un-favourable ones, both kinds of genes ex-
hibited a large exploring space (Fig. 2c). This indicates
the complicated molecular patterns underlying LUAD
pathology and implies the importance to identify the
most meaningful genes which may play the master roles
in regulating the disease progression.

Construction of a potential causal regulatory network for
prognosis-relevant genes
To understand the relations among all of the prognosis
relevant genes and to help identify the master prognosis-
influencing genes, a potential causal regulatory network
was estimated (see Methods). Nodes in the network
were all with significant prognostic impacts (P < 0.01 and
| coef | > 0.2 based on Cox survival analysis) (Fig. 3a).
The causal structure of this network was inferred from
the transcriptional expressions of genes across TCGA-
LUAD patients, where directed edges describe the iden-
tified direct causal effects, and bi-directed edges repre-
sent uncertainty in the constructed network [23].
According to this network, we found that most of the
nodes with the same type of prognosis impacts (either
favourable or un-favourable) gathered together while
nodes with reversed impacts were relatively separated in

the network. Since the network described the potential
causal structure, the survival impacts of many nodes
may be in-directly generated from their up-stream or
down-stream items. Consequently, it is more important
to identify which prognosis-relevant genes play the mas-
ter roles rather than just examining the prognosis
relevance.
To distinguish the master regulators, we further investi-

gated on the node importance in the causal network. Here
we calculated the summarized node degree by subtracting
the number of in-coming edges from the number of out-
coming edges for certain node. We found that the sum-
marized degrees for a large portion of nodes were within
the range of − 5 to 5 (Fig. 3b). The other nodes which
were with larger absolute values of summarized degrees
were hub nodes of the network (only names of the hub
nodes were displayed on Fig. 3a). These nodes are more
likely to play master roles in influencing LUAD prognosis,
since the expression alterations of multiple prognosis rele-
vant genes were highly associated with these hub nodes.
For instance, GAPDH, CCNA2, WWP2 and PSMD2 were
all hub nodes (summarized degree > 5 or summarized de-
gree <− 5), and they may lead to remarkable prognosis in-
fluences by either passing its alteration to a series of
down-stream partners (see sub-graphs for GAPDH and
CCNA2, Fig. 3c) or gathering the influences from a collec-
tion of up-stream elements (see sub-graphs for WWP2
and PSMD2, Fig. 3c). The network structure may also in-
dicate potential regulatory relationships between nodes.
GAPDH, ALDOA and PKM2 all play functions in glycoly-
sis [37], here, we also observed that they aggregated in the
same sub-graph, implying that the data-driven network
may suggest meaningful biological associations.

Clustering analysis reveals LUAD-subtypes
To understand the whole molecular and prognostic
impact generated by the above identified master
prognosis impacting genes, we clustered the LUAD
patients into two groups (termed as C1 and C2 re-
spectively) based on the mRNA-level expressions of
all of the hub nodes in the causal regulatory network.
We further evaluated the importance of each master
gene, the top-10 important master genes for the two
subtypes included CCNA2, CBX7, TMEM48, SPC25,
GAPDH, WDHD1, PSMD2, ERO1L, DDX52, ARNTL2
(Fig. 4a, only the top-50 important genes were shown
in the central heat map). These two clusters showed
significantly different expressional patterns, especially
for genes in the mTOR signaling pathway, lysosome,
and PPRA signaling pathways (Fig. 4b).
Meanwhile, potential SMGs which may be related with the

expressional differences between the two identified clusters
were also identified. Mutations of SMARCA4, KEAP1, TP53
or COL11A1 were significantly enriched in C1 (Fig. 4a).

Table 1 The expressional alterations of mutated genes

Gene Fold Change P-value

KRAS 1.09 1.5E-16

SMAD4 0.92 8.4E-4

SMARCA4 0.86 1.2E-4

STK11 0.92 3.1E-7

EGFR 1.24 3.0E-13

KEAP1 1.04 4.2E-7

TP53 0.96 2.1E-3

RB1 0.93 2.9E-4

RBM10 0.79 5.5E-12

COL11A1 1.26 1.4E-2

NF1 0.94 3.4E-3

SETD2 0.97 1.2E-2

CDKN2A 1.93 9.8E-7

ARID1A 1.00 0.85

B2M 0.96 0.26

BRAF 1.02 0.32

TCEAL5 1.06 0.97

ZFP36L1 1.04 0.15

MGA 0.95 0.097

ZNF679 0.93 0.16

Note: Fold change: examine the fold change in mRNA expression level of one
gene between samples with mutated and wild type gene status; P-value:
Wilcox-test, unpaired, two sided
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These mutations were related with the significantly differen-
tial expressions for specific genes across the two clusters. For
instance, GAPDH was highly expressed in C1, and its expres-
sion levels in patients with mutations in TP53, KEAP1 or
SMARCA4 were significantly higher than wild type patients
(Fig. 4a). Notably, we also observed that patients in C1 were
with significantly worse prognosis than C2 (Fig. 5a, P-value =
2.9*10− 8), and the significance was more remarkable than
those obtained from random gene sets with the same num-
ber of genes (Fig. 5b). Taken together, the master prognosis
regulating genes help identify two meaningful subtypes for
LUAD which showed significantly differential patterns in
genomic and transcriptional levels.

Validating the prognosis differences between the
identified LUAD subtypes
To estimate the reliability and robustness of the identified
LUAD subtypes, we also utilized additional two GEO data-
sets to further validate the expressional and prognostic pat-
terns of these two subtypes. Firstly, we estimated the
accuracy of top-10 genes in predicting the subtypes by
leave-one-out cross-over validation based on the
glmnet algorithm. The leave-one-out validation showed
these top-10 items can help predict the subtypes with a
90% accuracy (see Additional file 3). Accordingly, a subtype
predictor was trained based on the expressional profiles of
the identified top-10 important master genes in the TCGA-

Fig. 2 Genome wide prognostic analysis results. a A volcano plot showing the genome wide prognosis analysis results. The vertical and
horizontal axis respectively represent the –log10 (p) and regression coefficient value (coef) got from the Coxph survival analysis. Each data point
represents the Coxph analysis result of one gene in the mRNA level. Coef < 0 means hazard ratio (HR) < 1 and coef > 0 means HR > 1. Strictly,
only genes with p < 0.01 and coef > 0.2 were regarded as unfavourable for prognosis while genes with p < 0.01 and coef <− 0.2 were regared as
favourable. b The number of significant favourable and unfavourable genes. c Survival curves for examples of favourable and unfavourable genes

Lv and Lei BMC Cancer           (2020) 20:56 Page 6 of 12



LUAD cohorts (see details in Methods). Based on this pre-
dictor, other patients having similar expressional profiles
with C1 or C2 will be annotated with the corresponding
sub-type labels. Then, this predictor was applied on two in-
dependent LUAD cohorts (GSE30219 and GSE31210).
Thus, patients in the independent cohort were also anno-
tated into the two subtypes (C1 and C2) based on their ex-
pressional profiles, and survival analysis showed these two
groups were also with significantly differential survival out-
comes just as observed in TCGA-LUAD, where C1 was
with significantly worse prognosis than C2 (Fig. 5c and d).
This verifies the robustness of the identified expression-
based LUAD subtypes in independent cohorts.

Promising drugs for the identified LUAD-subtypes
Since the survival differences were highly related with
the expressional alterations in the identified clusters,
drugs targeting on the most important genes for clas-
sifying the two subtypes may generate distinctive ef-
fects on the two subtypes. Based on this hypothesis,
we attempted to obtain potential drug-gene interac-
tions for the top-30 important genes (see Methods).
As results, we found a collection of drugs like Estriol,
Ethinyl and Folic acid [28] may be associated with
genes like GAPDH, CCNA2 and PSMD2 (Fig. 5e, and
three of them were among the top-10 important
genes for the two subtypes) which may be highly

Fig. 3 A causal regulatory network for prognosis relevant network. a The prognosis relevant causal regulatory network, where nodes represent
genes and edges represent potential causal correlations. For clarity, only nodes with degrees larger than 5 are displayed. b Degree distribution of
the nodes. c Representative sub-graphs
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contributable to the survival differences between the
two identified subtypes. For LUAD patients, more at-
tention should be paid on these drugs since patients
from different subtypes may have distinctive responses
to these drugs.

Discussion
LUAD is one of the most common cancer types, threat-
ening the human health around the world. The develop-
ment of targeted therapies, especially those targeting on
EGFR [3] and ALK [5], have promoted the treatment of

Fig. 4 Clustering patients into subtypes based on high degree nodes in the causal regulator network. (A) A heatmap showing the expression
profiles of the top-50 important genes for the clustering results. Above the heatmap, annotations about the clustering labels and SMGs which
showed significant enrichment in one of the cluster were shown. On the right side of the heatmap, the first column represents the importance
score of each gene, and the other columns stand for the relevancies between the genes and SMGs where a green grid means that expressions
of the gene is with significant difference between the SMG mutated and wild type samples. (B) Pathway enrichment analysis results for the top-
50 important genes

Lv and Lei BMC Cancer           (2020) 20:56 Page 8 of 12



some LUAD patients, however, the highly heterogeneity
of LUAD makes the benefits of these therapies limited
to few patients. Through this study, prognostic meaning-
ful lung adenocarcinoma subtypes which are independ-
ent of EGFR and ALK mutations and the relevant
mutational and expressional profiles were identified. We
provide an alternative way to classify the LUAD subtypes
which showed differential transcription profiles and re-
markable prognosis differences, and provide promising
prognostic biomarkers for the subtypes.
With the development of high-throughput biological

and chemical technology, a great deal of omics-data is
accumulated to help describe the molecular mechanisms
of different types of cancers. Owing to omics-data

measured for LUAD cohorts [15, 34, 38], a large number
of significantly mutated, prognosis-relevant or differen-
tially expressed genes (e.g., EGFR, TP53, KRAS) for
LUAD can be identified. However, the high heterogen-
eity and complicated molecular patterns of LUAD makes
it insufficient only fucosing on these limited hallmark
genes. It is essential to obtain a more comprehensive
view on the molecular mechanism of LUAD, rather than
solely focusing on the hallmark mutations. Omics data
provide a valuable resource to identify potential progno-
sis relevent genes. However, tranditional survival analysis
always led to a large number of statistically significant
genes where many indirect ones were mixed in. In this
study, we not only identified the prognosis-relevant

Fig. 5 alidate prognosis relevant expression profiles in independent LUAD cohorts. a A Kaplan-Meier (KM) plot of the survival curves for the two
estimated clusters. b Distribution of the –log10 transformed log-rank p-values for comparing the survival rates between two clusters identified
based on randomly-selected genes. The red line represents the –log10 (p) got in (a). (c-d) Kaplan-Meier (KM) plots of the survival curves for two
predicted patient clusters in GSE31210 (c) and GSE30219 (d). (e). Drug interaction network. Blue and yellow nodes respectively represent drugs
and genes. Edges mean the gene/protein is one of the reported targets for the connected drug

Lv and Lei BMC Cancer           (2020) 20:56 Page 9 of 12



genes, most of which are independent of the LUAD hall-
mark mutations (e.g., EGFR, KRAS, ALK), but also con-
structed the potential causal regulating structures
among these genes, thus identifying which genes are
more likely to play master roles in influencing the LUAD
patients’ prognosis in the transcriptional level, providing
more new promising therapeutic targets for the hetero-
geneous LUAD patitens. Based on these master genes,
we also identified two potential LUAD subtypes. The
poor survival rate of one sub-type may be related with
mutations in SMARCA4, KEAP1, TP53 and COL11A1.
Low expression of SMARCA4 has been reported to be
significantly associated with poor prognosis and can be
served as a predictive biomarker of increased sensitivity
to platinum-based therapies [39]. Here, the significant
mutations of SMARCA4 were also related with the poor
survival rate of one LUAD subtype (Fig. 4), and the mu-
tations may lead to decreased expressions of SMARCA4
(see Additional file 1). Similarly, KEAP1 [40], TP53 [41]
and COL11A1 [33] have all been reported to play roles
in LUAD. Co-occurrence of these SMGs in the poor sur-
vival subtype implies that the differential prognosis be-
tween the two subtypes is not simply the result of one
specific gene but a collection of meaningful genes. Sim-
ply targetting on one specific SMG is not sufficient to
resist the disease progression, alternative treatment tar-
gets, like key downstream elements, should also be con-
sidered. Accordingly, a collection of drugs like Estriol,
Ethinyl and Folic acid [28] are identified as promising
drugs for the identifed poor prognosis subtypes, these
drugs can target on genes which may be highly contribu-
table to the survival differences between the two identi-
fied subtypes like GAPDH, CCNA2 and PSMD2.
Meanwhile, the molecular mechanism underlying the
two sub-types is associated with multiple down-stream
pathways, e.g., mTOR signaling pathway and lysosome.
An important issue of omics-based cancer studies is

whether the revealed results can be re-discovered in the
other independent cohorts despite cancer heterogeneity
or sample biases. Here, based on the expressional profile
of master genes, the two identified subtypes were con-
sistent in multiple independent cohorts, confirming the
robustness of the identified subtypes which showed sig-
nificant differences both molecularly and clinically. The
robustness of the subtypes also imply that the causal
regulatory network based method help identify the most
influential genes. These results can provide an alterna-
tive way to classify LUAD patients and supply valuable
references on selecting the most beneficial treatments
for specific type of LUAD.
A limitation of this study is that most of the calculated

relationships were significant in the statistical level. It is
unavoidable that false positives are mixed into these
statistical relations, e.g., the causal regulating effects.

However, these findings still provide remarkable data re-
sources, which may promote the discovery of promising
molecular mechanisms underlying LUAD in a less time-
and resource-consuming way. In the future research,
more efforts will be put into validating these potential
relations.

Conclusions
This study provides a comprehensive description on the
key prognosis-relevant genes for LUAD. We not only
identify which genes are related with the LUAD prog-
nostic outcomes, but also construct a potential causal
gene regulatory network which may promote the under-
standing of meaningful biological associations among
the numerous prognosis-relevant genes. We also put for-
ward an alternative way to classify LUAD subtypes. This
redefined LUAD subtyping strategy, validated by various
independent cohorts, can help promote LUAD precision
treatment. Taken together, this study describes the com-
plicated molecular patterns underlying LUAD pathology
to some degrees and provides guidance on the potential
prognosis and subtyping biomarkers as well as future
therapeutic targets for LUAD.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-019-6462-y.

Additional file 1: Expressional alterations and clinical impacts of the
significantly mutated genes. A. Boxplots of the expressions of SMGs in
mutated and wild type tissues. B. Km-plots of SMGs with significant im-
pacts on LUSC.

Additional file 2: Top-ranked differentially expressed genes between
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