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Abstract

Background: Increasing evidence indicates an etiological role of human papillomavirus (HPV) in head and neck
cancers, particularly oropharyngeal squamous cell carcinoma (OPSCC). However, the association between HPV and
other cancers, including esophageal and tongue remains unclear. This study delineated the molecular
characteristics of HPV18 E6 and E7 in esophageal (EC109 and EC9706) and tongue (Tca83) cancer cell lines with
reference to cervical cancer (Hela).

Methods: We analysed the HPV transcription profiles of esophageal and tongue cancer cells through Next-
generation RNA sequencing, and the role of HPV18 E6 and E7 in these cells was assessed via siRNA approach,
Western blotting and immunofluorescence assays.

Results: Overall, the HPV transcription profiles of esophageal and tongue cancer cells mimicked that of cervical
cancer cells, with notable disruption of E2, and expression of E6, spliced E6 (E6), E7, E1 and L1 transcripts. As with
cervical cancer cells, p53 and its downstream transactivation target, p21, were found to be the major targets of E6
in esophageal and tongue cancer cell lines. Intriguingly, E7 preferentially targeted p130 in the two esophageal
cancer cell lines, instead of pRb as in cervical cancer. Tca83 exhibited an E7 to E6 transcript ratio comparable to
Hela (cervix), targeted the ERK1/2 and MMP2 pathways, and was dependent on E6 and E7 to survive and
proliferate. In contrast, both the esophageal cancer cell lines were distinct from Hela in these aspects.

Conclusions: This is the first study that delineates transcript expression and protein interaction of HPV18 E6 and E7
in esophageal and tongue cancer cell lines, suggesting that HPV plays a role in inducing these cancers, albeit via
distinct pathways than those observed in cervical cancer.

Keywords: HPV18, Esophageal squamous cell carcinoma, Tongue squamous cell carcinoma, E6, E7

Background

Head and neck cancers (HNC) and esophageal cancers
(EC) are ranked the seventh and sixth most common
causes of cancer death worldwide, respectively [1]. HNC
incidence poses a worrisome increment in many geo-
graphical regions. It was estimated that the incidence of
oropharyngeal cancers might further increase in the
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United States and European countries [2—4]. Meanwhile,
esophageal squamous cell carcinoma is highly prevalent
in the so-called “esophageal cancer belt”, including
Northern Iran, Central Asia, North-Central China, along
the Rift Valley in East Africa, and South Africa [5].
Among these countries, China is the most affected, par-
ticularly in rural areas such as the Henan province [5].
Both HNC and EC appear to share similar risk factors, in-
cluding poverty, alcohol and tobacco consumption [6, 7],
diet and nutrition [8, 9], as well as exposure to environmen-
tal carcinogens such as polycyclic aromatic hydrocarbons
(PAHs) [10, 11]. Human papillomavirus (HPV), mainly
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HPV16 followed by HPV18, is now recognized as a cause
of a fraction of oropharyngeal cancers [12—14]. However,
the etiological role of HPV in tongue and esophageal can-
cers is still controversial [15—18]. HPV-induced carcinogen-
esis is mainly driven by the viral oncoproteins, E6 and E7,
which are essential in maintaining tumor phenotype. E6
and E7 are multi-functional proteins involved in several cel-
lular processes, including caspase-mediated apoptosis, cell
cycle progression and signaling pathways. E6 mediates
downregulation of p53 [19-21] and PSD95/Dlg/ZO-1
(PDZ) proteins [22—24], leading to perturbed p21 functions
and cell polarity, respectively. Whilst E7 downregulates ret-
inoblastoma protein (pRB) and its related pocket proteins,
including p130 and p107 [25-27], leading to transactivation
of E2F response promoter genes [28]. In addition, HPV
oncoproteins can deregulate AKT [29], ERK [30] and
metalloproteases (MMPs) [31, 32], leading to cancer forma-
tion and progression. All these are classical molecular tar-
gets of HPV oncoproteins in cervical cancer.

Observations at molecular level from established can-
cer cell lines could improve our understanding on the
role of HPV in esophageal and tongue squamous cell
carcinoma (SCC). In this study, we analyzed the tran-
script expression profiles and functions of E6 and E7 to
delineate the role of HPV18 in esophageal (EC109 and
EC9706) and tongue (Tca83) cancers based on cell lines
established from Chinese.

Methods

Cell lines

Esophageal squamous cell carcinoma (SCC) (EC109
and EC9706) and tongue SCC (Tca83) cell lines were
derived from patients in China. We included HeLa cells
(HPV18-positive) originally derived from cervical can-
cer, and HKESCO1 (HPV-null) from an esophageal can-
cer patient of Chinese origin, as references. HeLa cell
line was purchased from the American Type Culture
Collection (ATCC). The EC109, EC9706 and Tca83 cell
lines were generous gifts from Prof. Zeng Yi, the Na-
tional Institute for Viral Disease Control and Preven-
tion of Chinese Center for Disease Control and
Prevention in 2012. The HKESCO1 cell line was a gen-
erous gift from Prof. Chi Hin Cho, the Chinese Univer-
sity of Hong Kong in 2017. All these cell lines have
been authenticated using Short Tandem Repeat (STR)
profiling this year. These mycoplasma-free cells were
maintained in Dulbecco’s Modified Eagle Medium
(DMEM), supplemented with 10% FBS in a 37°C hu-
midified incubator containing 5% CO,.

Next-generation RNA sequencing and bioinformatics
analysis

Total RNA of each cell line was extracted using RNeasy
Mini Kit (Qiagen), treated with DNase, and prepared for
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Next-generation sequencing library using TruSeq Stranded
Total RNA LT (Illumina), according to the manufacturer’s
instructions. Briefly, libraries were run on an Illumina
HiSeq4000 for paired-end 100 bp sequencing. The RNA-
seq data were analyzed according to the HISAT?2-
StringTie-Ballgown pipeline [33]. In brief, high-quality
reads filtered by Trimmomatic V0.38 were mapped to the
human genome index (GRCh38) using HISAT2 v2.1.0 with
default parameters. A read coverage table was generated
using StringTie v1.3.5 against a GRCh38 gtf annotation file,
following the normalization procedure using Fragments per
kilobase of transcript per million reads mapped (FPKM).
We also built a HISAT2 transcript index and a gtf annota-
tion file for HPV18 [34]. The R package Ballgown was used
to create differential expression tables and plot gene tran-
script patterns. The RNA sequence data have been depos-
ited in the NCBI Gene Expression Omnibus database
(GEO, http://www.ncbi.nlm.nih.gov/geo/) and are access-
ible through GEO Series accession number (SRA Acces-
sion: PRINA530677).

Downregulation of HPV18 E6 and E7

Approximately 2 x 10° of all the cells were seeded into
6-well plates. After 24 h, HPV18 E6 and E7 expression
were ablated by transfecting the cells with small interfer-
ing RNA (siRNA) against HPV18 E6/E7 (5CAU UUA
CCA GCC CGA CGA Q@) (siE6/E7) using Lipofectamine
LTX reagent (Invitrogen) for 72 h, according to protocol
recommended by the manufacturer. Simultaneously, an
independent set of cells were transfected with siControl
(Dharmacon) to serve as a non-targeting siRNA negative
control.

Western blotting
Total cell extracts were obtained by lysing the cells directly
using 2x SDS-PAGE sample buffer. Western blotting and
processing were then performed as described previously
[35]. The following antibodies were used: mouse monoclo-
nal anti-human pRB (BD Pharmingen); rabbit polyclonal
anti-MMP2 and MMP9 (Abcam); rabbit monoclonal p21
(12D1), rabbit polyclonal phospho-Akt (Ser473), rabbit
monoclonal pan Akt (Cell Signaling), mouse monoclonal
anti-p53 (DO-1), mouse monoclonal anti-B-actin, mouse
monoclonal anti-SAP97 (2D11) (Dlg), rabbit polyclonal
p130 (C-20) and p107 (C-18), mouse monoclonal p-ERK1/
2 (12D4), and ERK1/2 (C-9) were from Santa Cruz.
Immunoblots were developed using Clarity™ Western
ECL Substrate (Bio-Rad) and images were captured
using the ChemiDoc™ Imaging System (Bio-Rad). Protein
band intensities were quantified using ImageJ] and nor-
malized with the levels of B-actin, which serves as a
loading control.
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Immunofluorescence

Approximately 2 x 10° cells were plated onto coverslips.
After overnight incubation, cells were transfected with
siRNA against HPV18 E6 and E7 (siE6/E7) or siControl,
as described above. After 72 h, cells were fixed with ice-
cold absolute methanol. Cells were then incubated with
specific primary antibodies against Ki67 (Santa Cruz)
and p53 (Cell signaling), followed by relevant Alexa
Fluor®568-conjugated anti-rabbit and Alexa Fluor°488-
conjugated anti-mouse secondary antibodies (Thermo-
Fisher Scientific), and counterstained with 4’,6-diami-
dino-2-phenylindole (DAPI). Cells were examined under
a fluorescence microscope (Leica).

Data availability statement

As mentioned above, the RNA sequence data is access-
ible through GEO Series accession number (SRA Acces-
sion: PRJNA530677). Data can be made available upon
request.

Results

Esophageal and tongue cancer cell lines shared similar
expression profile with cervical cancer cells, but exhibited
different E7/E6 ratios

Viral genome integration resulting in disruption and loss
of viral transcripts are remarkable features of HPV-
mediated oncogenesis. Therefore, we examined the HPV
transcription profiles in esophageal (EC109 and EC9706),
tongue (Tca83) and cervical (HeLa) cancer cell lines. Rela-
tive abundance of HPV transcripts was presented in parts
per million (ppm). Overall, all these cell lines expressed
E6, spliced E6 (E6*), E7, E1 and L1 transcripts (Fig. la).
However, we noted that E1 transcripts were partially
expressed in both EC109 and EC9706. Other HPV tran-
scripts (E2, E4, E5, E8 and L2) were not detected in all the
cell lines. These HPV genome profiling results were con-
sistent with previous reports [36, 37].

Although relative abundance of transcripts originating
from actively expressed regions of the viral genome were
similar among these cell lines, differences in E6 and E7
transcript levels among cells were noted based on FPKM
values. HeLa cells exhibited the highest level of HPV18
E6 transcripts (115,690), followed by Tca83 (98,246),
EC9706 (71,897) and EC109 (70,874) (Table 1). Whilst
spliced E6 variant I (E6*I) and E7 were markedly higher
in EC109, EC9706 and HelLa (E6*L: 412,299 - 491,899;
E7: 599,610 - 626,397) compared to Tca83 (E6*L: 293,
362; E7: 457,654) (Table 1). Furthermore, the E7 to E6
ratios in EC109 and EC9706 were nearly doubled rela-
tive to those in HeLa and Tca83 (Fig. 1b), whereas HeLa
and Tca83 showed nearly doubled E6:E6*I ratios com-
pared to EC109 and EC9706. Overall, these data revealed
that while HPV18 genomes exhibited similar expression
profiles in the esophageal, tongue and cervical cell lines
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examined, subtle differences in E6 and E7 expression
patterns were noted.

HPV18 E6 in EC109, EC9706 and Tca83 targets p53 and its
downstream targets in a similar manner

Following the differential expression of HPV18 oncopro-
teins reported above, we next examined whether E6 and
E7 oncoproteins in esophageal (EC109 and EC9706) and
tongue (Tca83) cancer cells target key cellular proteins
in a similar manner to cervical cancer cells, such as
HeLa. The cells were transfected with siRNA against
HPV18 E6 and E7 (sil8E6/E7). After 72 h, total protein
was extracted and the levels of proteins targeted by E6,
including p53, p21 and hDIg, were analyzed via Western
blotting.

We found that HPV18 E6 in all tested cell lines be-
haved similarly in perturbing its major target, p53, but
not PDZ protein. We found that, like HeLa [Fig. 2a and
b (i)], downregulation of HPV18 E6 in all the esopha-
geal (EC109 and EC9706) and tongue (Tca83) SCC cell
lines resulted in a significant rescue of p53 as well as its
downstream transactivation target, p21 [Fig. 2a and b
of hDlg (a PDZ protein), in HeLa cells [Fig. 2a and b
(i)] upon depletion of E6, but not in the esophageal and
tongue SCC cell lines examined [Fig. 2a and b (ii, iii
and iv)].

PRB is not the major target of HPV E7 in EC109, EC9706
and Tca83

As expected, we observed that downregulation of HPV18
E6 and E7 oncoproteins led to rescue of E7 targets (pRB,
p130 and p107) in HeLa cells [Fig. 2a and b (ii, iii, iv)].
However, there was no significant change in the levels of
pRB when E7 was downregulated in the esophageal
(EC109 and EC9706) and tongue (Tca83) cell lines [Fig.
2a and b (ii, iii, iv)]. We observed significantly increased
levels of p130 in both EC109 [Fig. 2a and b (ii)] and
EC9706 [Fig. 2a and b (iii)], and increased p107 was only
found in EC9706 [Fig. 2a and b (iii)]. Furthermore, down-
regulation of E7 in Tca83 did not affect the levels of pRB
and its related pocket proteins [Fig. 2a and b (iv)].

RB1, RB2 and p53 transcripts were not mutated in EC109,
EC9706 and Tca83

As we found that downregulation of HPV18 E6 and E7
had no effect on the E7 major target protein, pRB, in
esophageal (EC109 and EC9706) and tongue (Tca83) cell
lines, we further analyzed our RNA-seq data to look at
FPKM values of RB1 (encoding for pRB), RB2 (encoding
for p130) and TP53 (encoding for p53) transcripts in
HeLa, EC109, EC9706 and Tca83. As shown in Table 1,
expression of RB1, RB2 and TP53 in all these cell lines
were comparable for all these HPV-positive cells.
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We further examined whether these transcripts
harbored mutations that could potentially lead to
amino acid alterations, and subsequently affect E7-
PRB recognition in EC109, EC9706 and Tca83 com-
pared to HeLa. We observed that RB2 harbored
same-sense mutations, corresponding to amino acid
positions at T694, R679 and T864, while no exonic
mutation was detected within RB1 (Additional file
1). On the other hand, we found all the cell lines
carried the most common TP53 polymorphism con-
verting Proline at amino acid codon 72 to Arginine
(P72R) (Additional file 1), which is consistent with
previous reports [38-40].

Tca83 cells, but not EC109 and EC9706, resemble Hela

cells in targeting ERK1/2 and MMP2 signaling pathways

It is known that HPV18 oncoproteins can exert their
oncogenic properties through targeting AKT [29], extra-
cellular signal-regulated kinase (ERK) [30] and metallo-
protease (MMP) [31, 32] pathways in cervical cancer
cells, leading to cell survival, proliferation and metasta-
sis. To date, the involvement of HPV18 oncoproteins in
perturbing these pathways in esophageal and tongue
SCC cell lines has not been clearly defined. This
prompted us to look at the levels of AKT, ERK 1/2,
MMP2 and MMP9 activities in esophageal (EC109 and
EC9706) and tongue (Tca83) cells. In general, we
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**P <0.01, ¥*P <0.001)

Fig. 2 Effects of downregulation of HPV18 E6 and E7 on p53, pRB and its related pocket proteins in EC109, EC9706 and Tca83 cells. These cells
were transfected with siRNA against control (—) or against HPV18 E6 and E7 (+). After 72 h, total lysate was collected and the levels of E6 and E7
target proteins were analyzed by Western blotting for the proteins as indicated. HelLa and HKESCO1 cells were included as positive and negative
controls, respectively. a. Representative immunoblots showing levels of E7 (pRB, p103 and p107) (navy blue-colored bars) and E6 (p53, p21 and
hDIg) (light blue-colored bars) target proteins. 3-actin was included as a loading control. b. Bar graphs show quantitation of the levels of target
proteins against control (siCtrl) in (i) Hela, (ii) EC109, (iii) EC9706, (iv) Tca83 and (v) HKESCO1 cells. Quantitation was performed using ImageJ
software and statistical analysis was performed using Prism. Error bars represent mean + standard deviation (SD) (n =4). (*P < 0.05,

observed a higher basal level of both total and phosphor-
ylated AKT at position S473 [pAKT(S473)], ERK 1/2
phosphorylated at position T202/Y204 [pERK1/2(T202/
Y204)], MMP2 and MMP9 in EC109, EC9706 and
Tca83 compared to HeLa cells (Fig. 3a). Despite this, we
found that Tca83 cells had similar behavior to HeLa
cells in targeting ERK and MMP2 pathways, while both
EC109 and EC9706 cells were distinct in targeting these
pathways through HPV18 oncoproteins.

When HPV18 E6 and E7 in Tca83 cells were depleted
using siRNA, we observed significant reduction in
pERK1/2 (T202/Y204) and MMP2, together with a sig-
nificant elevation in ERK1/2 in Tca83 [Fig. 3a, b (iii-v)].
These changes were also observed in HeLa cells. While
MMP9 was markedly increased in HeLa cells, no signifi-
cant change was observed in Tca83 cells [Fig. 3a, b (vi)].

Meanwhile, EC109 and EC9706 cells appeared to be
different from HeLa cells. Downregulation of E6 and E7
resulted in a dramatic reduced level of AKT in EC109,
but not in the other cells [Fig. 3a, Fig. 3b (i) and (ii)]. In
addition, E6 and E7 downregulation had no significant
effect on ERK activity, MMP2 and MMP9 levels in
EC109 and EC9706. These results revealed that Tca83
had similar behavior to HeLa cells in regulating ERK1/2
activity and MMP2, and both esophageal SCCs were dis-
tinct from Tca83 and HeLa cells. Nevertheless, HPV18
oncoproteins appeared to perturb AKT activity in EC109
cells.

Both Tca83 and Hela cells require HPV18 oncoproteins to
regulate the caspase pathway and proliferate

HeLa cells are addicted to HPV oncoproteins to survive
[41], partly through suppression of the caspase pathway
[42, 43]. We investigated whether this was reproducible
in esophageal (EC109 and EC9706) and tongue (Tca83)
cells using afore described siRNA approach to deplete
E6 and E7.

We first looked at the levels of initiator (caspases 8
and 9) and effector (caspase 3) caspases. It has been
shown that caspase 8 and 9 respond to extracellular
apoptotic stimuli [44] and intracellular apoptosomes, re-
spectively. This, in turn, leads to proteolytic and activa-
tion of effector caspases, including caspase 3 [45]. Our
results showed that ablation of E6 and E7 in HeLa led to

a significant increased levels of full length caspases 8, 9
and 3 [Fig. 4a, b (i), (iii) and (v)], as well as cleaved cas-
pases 8 and 9 [Fig. 4a, b (iv) and (vi)]. Interestingly, we
also observed increased levels of full length and cleaved
caspases 8 and 9 in Tca83 upon depletion of HPV onco-
proteins, indicating activation of caspases 8 and 9 [Fig.
4a, b (iii) to (vi)]. However, we did not observe activation
of these initiator and effector caspases in EC109 and
EC9706 (Fig. 4a and b). These results indicated that, like
HeLa cells, E6 and E7 can suppress the caspase cascade
in Tca83, but not in EC109 and EC9706.

We then wanted to know if esophageal and tongue
SCC cells are dependent on HPV oncoproteins to prolif-
erate. After E6 and E7 were depleted, we performed im-
munofluorescence assays to study the levels of Ki67
expression, a commonly used proliferation biomarker for
cervical cancer. We also co-stained the cells with p53 as
a measure of siRNA efficiency against HPV18 E6 and
E7. Consistently, we observed a significant increased
level of p53 upon depletion of HPV18 E6 and E7 in all
HPV18-positive cells [Fig. 5a and b (ii)]. We observed a
significant reduction in Ki67 expression in Hela,
EC9706 and Tca83, but not in EC109 upon ablation of
E6 and E7 [Fig. 5a and b (i) and (ii)]. It is worth noting
that Ki67 expression was relatively lower in HKESCO1
than in other HPV-positive cells. Our results indicated
that E6 and E7 promote proliferation of EC9706 and
Tca83. Surprisingly, ablation of E6 and E7 was not ad-
equate to initiate activation of caspase pathway in both
EC109 and EC9706, as well as did not affect proliferation
of EC109.

Overall, our data showed that, alike HeLa cells, Tca83
cells depend on HPV oncoproteins to attenuate initiator
caspases and proliferate. In contrast, EC109 and EC9706
cells did not depend on HPV18 E6 and E7 to stimulate
apoptosis. However, EC9706 cells require HPV oncopro-
teins to proliferate.

Discussion

The fact that high-risk HPV infection is associated with
cancers of the uterine cervix, oropharynx, anus, vulvar
and penis has been proven beyond doubt. However, the
etiological role of HPV in cancers arise from esophageal
and tongue remains controversial [15-18]. In this study,
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*¥P <001, **P<0.001)

Fig. 3 Effects of downregulation of HPV18 E6 and E7 on AKT, ERK1/2, MMP2 and MMP9 activity in EC109, EC9706 and Tca83 cells. These cells
were transfected with siRNA against control (—) or against HPV18 E6 and E7 (+). After 72 h, total lysate was collected and the levels of E6 and E7
target proteins were analyzed by Western blotting for the proteins as indicated. HelLa and HKESCO1 cells were included as positive and negative
controls, respectively. a. Representative immunoblots showing levels of AKT phosphorylated at $437 [pAKT(S437)], pan-AKT, ERK1/2
phosphorylated at T202 and Y204 [pERK1/2(T202/Y204)], MMP2 and MMP9. -actin was included as a loading control. b. Bar graphs show
quantitation of the levels of target proteins against control in (i) HelLa (blue-colored bars), (i) EC109 (magenta-colored bars), (i) EC9706
(magenta-colored bars), (iv) Tca83 (blue-colored bars) and (v) HKESCO1 (black-colored bars) cells. Quantitation was performed using Image)J
software and statistical analysis was performed using Prism. Error bars represent mean + standard deviation (SD) (n =4). (*P < 0.05,

we provided for the first time, a comparative molecular
analysis among SCC cell lines originated from esopha-
gus, tongue and uterine cervix to delineate their similar-
ities and differences in terms of E6 and E7 transcript
expressions and cellular targets.

Since viral integration with loss of E2 transcript is a
hallmark of HPV-mediated oncogenesis, we first exam-
ined HPV transcription profiles in these cell lines. Our
RNA-seq data showed partial expression of HPV gen-
ome in esophageal cell lines (EC109 and EC9706), which
supports previous observations that integration of HPV
genome has occurred [46]. Furthermore, we also ob-
served a similar expression profile in the tongue cell line
(Tca83), which suggests that viral integration has oc-
curred. Interestingly, while the expression profiles of
HPV genomes were similar among the three types of
cancers, the relative ratios of E6, E7 and spliced E6 iso-
form I (E6T) were different. Both EC109 and EC9706
expressed relatively higher levels of E7 and E6'I, while
HeLa and Tca83 expressed relatively higher levels of E6.
This expression pattern might reflect a functional resem-
blance of Tca83 to HeLa, and EC109 to EC9706, how-
ever, this does not necessarily reflect their respective
ability in targeting known cellular proteins.

When we downregulated HPV18 E6 and E7 using
siRNA approach, we expected to observe a rescue of E6
and E7 commonly targeted proteins for degradation:
p53, p21 and hDIg by E6; pRB and its related pocket
proteins, p130 and pl07 by E7. In the esophageal and
tongue cancer cell lines, E6 appeared to play the ex-
pected classical role in downregulating p53 and its
downstream target p21 in a similar manner. This is most
likely owing to the presence of similar p53 variant con-
taining Arginine residue at codon 72 in all the cell lines
examined, which is a form preferably degraded by E6
[39]. However, E6 did not degrade hDIg in esophageal
and tongue cancer cell lines. As we did not measure
other protein targets, the effect on PDZ proteins like
hScribble [24] and MAGIs [23] remains to be clarified.

E7 might target different pathways in esophageal and
tongue cancer cells compared to cervical cancer. Classic-
ally, pRB appears to be a better E7 degradation target in
relative to p130 and pl07. Intriguingly, we found that
p130 was preferentially targeted by E7 in esophageal

cancer cell lines. However, this was not observed in the
tongue cancer cell line. This could be partly related to
its lower E7 transcript expression than that of HeLa,
EC109 and EC9706.

HPV-positive cells require HPV oncoproteins to sur-
vive and proliferate, which can occur through perturb-
ation of signaling pathways, including AKT [29], ERK
[30], suppression of the caspase cascade [42, 43], and
MMPs for migration [31, 32]. AKT is known to possess
a pro-survival role [41, 47], while ERK1/2 appears to be
a dual-faced protein: anti- or pro-apoptotic kinase [48].
Activation of ERK1/2 was found to either activate or
dampen caspase 8 and 9 [49, 50]. Its activation can also
activate MMPs [51]. In this study, we found that, con-
sistent with expression patterns of HPV transcripts,
tongue cancer cells had similar behavior to cervical can-
cer cells. In our hand, HPV oncoproteins in these two
cells preferentially target the ERK1/2 pathway. This
might occur through inactivation of the ERK1/2 up-
stream protein, mitogen-activated protein/extracellular
signal-regulated kinase (MEK), as a result of feedback
regulation by ERK1/2 [52]. This might in turn lead to in-
activation of initiator caspase 8 and 9, increased prolifer-
ation and MMP2-mediated migration.

The role of HPV oncoproteins in EC109 and EC9706 in
cellular targeting are indeed distinct from that in HeLa
and Tca83. Although these cells share certain degrees of
similarity, EC109 and EC9706 can differ from each other
in term of HPV18 genome transcripts and subset of cellu-
lar proteins targeted by HPV oncoproteins. Both esopha-
geal cancer cell lines do not depend on HPV18
oncoproteins to perturb ERK1/2, caspases and MMPs
pathways. The higher basal levels of ERK1/2 and MMPs
compared to HeLa cells are sufficient to drive carcinogen-
esis independent of HPV18 oncoproteins. As both these
cells were isolated from different patients, on top of HPV
infection, these cells might be exposed to different co-
factors, such as environmental factors and genetic predis-
position, causing cells to undergo multi-steps carcinogen-
esis differently. At the molecular level, we found in EC109
that HPV18 oncoproteins can upregulate AKT activity, as
reported previously [29], a process essential for cells to re-
sist caspase-dependent apoptosis, proliferate and migrate
independent of MMPs. Although EC9706 cells appeared
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Fig. 4 Effects of downregulation of HPV18 E6 and E7 on caspase-dependent apoptotic pathway in EC109, EC9706 and Tca83 cells. These cells

were transfected with siRNA against control (—) or against HPV18 E6 and E7 (+). After 72 h, total lysate was collected and the levels of E6 and E7
target proteins was analyzed by Western blotting for the proteins as indicated. HeLa and HKESCO1 cells were included as positive and negative
controls, respectively. a. Representative immunoblots showing the levels of caspase 3, caspase 8, caspase 9 and their respective cleaved forms. 3-
actin was included as a loading control. b. Bar graphs show quantitation of the levels of the (i) caspase 3 and (i) cleaved caspase 3, (iii) caspase 8
and (iv) cleaved caspase 8, (v) caspase 9 and (vi) cleaved 9, against control in Hela (blue-colored bars), EC109 (magenta-colored bars), EC9706
(magenta-colored bars), Tca83 (blue-colored bars) and HKESCO1 (black-colored bars). Quantitation was performed using ImageJ software and
statistical analysis was performed using Prism. Error bars represent mean + standard deviation (SD) (n =4). (*P < 0.05, **P < 0.01, ***P < 0.001)
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do not require HPV oncoproteins to manipulate signaling
and apoptotic pathways examined in this study, they re-
quired HPV oncoproteins to proliferate. This could occur
through perturbation of transforming growth factor-p1
(TGF-P1) signaling, which is important for epithelial-
mesenchymal transition (EMT) of EC9706 [53], and sub-
sequently leading to inactivation of Fas-mediated apop-
tosis [54] in a caspase-independent fashion. However, this
remains unknown and deserves further investigation.

Overall, in line with the model of HPV-mediated cer-
vical carcinogenesis, p53 is the major target of E6 in the
esophageal and tongue cancer cell lines examined, whilst
p130 is preferentially targeted in esophageal cancer cells.
In tongue cancer cells, ERK1/2 and MMP2 pathways ap-
peared to be crucial, but not E7-pRB and AKT pathways.
In esophageal cells, a high basal level of AKT, ERK1/2
and MMP activity compared to HPV-null esophageal
and HPV-positive cervical cancer cells could be essential
for multi-steps cancer progression. Nonetheless, our
studies were bound to limitation. In our study, patient-
derived cell lines were used to elucidate the role of
HPV18 oncoproteins in a monolayer culture system.
Physiological relevant models, such as 3-dimensional
(3D) culture and animal models should be employed to
gain a better understanding on how HPV18 oncopro-
teins interact with tumour microenvironment and drive
cancer progression.

Conclusion

In conclusion, our findings support that HPV could play
an etiological role in esophageal and tongue cancers
upon presence of other essential co-factors, such as en-
vironmental and genetic predisposition. Yet, the molecu-
lar pathways mediated by HPV oncoproteins could be
different and are likely determined by tissue specific fac-
tors. Further studies focusing on esophageal and tongue
cancers are needed to elucidate the full spectrum of
HPV-associated cancers, and thus the potential benefits
offered by HPV vaccines and treatment.
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