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Abstract

Background: To discover biomarker panels that could distinguish cancers (BC and RCC) from healthy controls (HCs)
and bladder cancers (BC) from renal cell carcinoma (RCC), regardless of whether the patients have haematuria. In
addition, we also explored the altered metabolomic pathways of BC and RCC.

Methods: In total, 403 participants were enrolled in our study, which included 146 BC patients (77 without haematuria
and 69 with haematuria), 115 RCC patients (94 without haematuria and 21 with haematuria) and 142 sex- and age-
matched HCs. Their midstream urine samples were collected and analysed by performing UPLC-MS. The statistical

methods and pathway analyses were applied to discover potential biomarker panels and altered metabolic pathways.

Results: The panel of a-CEHC, B-cortolone, deoxyinosine, flunisolide, 11b,17a,21-trihydroxypreg-nenolone and glycerol
tripropanoate could distinguish the patients with cancer from the HCs (the AUC was 0.950) and the external validation
also displayed a good predictive ability (the AUC was 0.867). The panel of 4-ethoxymethylphenol, prostaglandin F2b,
thromboxane B3, hydroxybutyrylcarnitine, 3-hydroxyphloretin and N*-formylkynurenine could differentiate BC from RCC
without haematuria. The AUC was 0.829 in the discovering group and 0.76 in the external validation. The metabolite

panel comprising 1-hydroxy-2-oxopropyl tetrahydropterin, 1-acetoxy-2-hydroxy-16-heptadecyn-4-one, 1,2-
dehydrosalsolinol and L-tyrosine could significantly discriminate BC from RCC with haematuria (AUC was
0.913). Pathway analyses revealed altered lipid and purine metabolisms between cancer patients and HCs,
together with disordered amino acid and purine metabolisms between BC and RCC with haematuria.

Conclusions: UPLC-MS urine metabolomic analyses could not only differentiate cancers from HCs but also discriminate
BC from RCC. In addition, pathway analyses demonstrated a deeper metabolic mechanism of BC and RCC.
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Background

Genitourinary cancers include cancers of the bladder, kid-
ney, prostate and testicles. Other genitourinary cancers,
such as adrenal, penile, ureteral and urethral cancers, are
relatively rare. Among these cancers, bladder cancer (BC)
and renal cell carcinoma (RCC) are, respectively, the first
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two commonly occurring genitourinary cancers in China
and the second and third most common genitourinary
cancers in Europe and North America, respectively [1].
Currently, cystoscopy and cytology are the standard pro-
cedures for the initial diagnosis and recurrence of BC, but
limitations exist. Cystoscopy may fail to visualize certain
areas within the bladder and may also fail to detect all
cancers, particularly some cases of in situ carcinoma [2].
Cytology has high specificity and selectivity for high grade
tumours but fails to provide strong predictive value for
low grade tumors [3]. Regarding RCC, computed tomog-
raphy, magnetic resonance imaging, and positron emission
tomography are commonly used imaging diagnostic
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techniques [4]. However, even with the combined use of
the above three techniques, early tumours remain difficult
to be detected because of their small size [5]. Therefore,
developing novel and convenient techniques for the detec-
tion of BC and RCC with high sensitivity and specificity
are urgently required.

Recently, an increasing number of studies have used
metabonomic analyses to diagnose a number of patholo-
gies [6—8] and elucidate the clinical pathogenesis of vari-
ous diseases [9, 10]. Metabonomics has several major
advantages, which include the readily availability and
relatively ease of analysis of biofluids, such as urine and
plasma, and the derived metabolite profiles are sensitive
to both environmental and genomic influences affecting
the pathogenesis and progression of disease [11].

Urine is a particularly suited biofluid concerning blad-
der cancer and renal carcinoma due to its intimate con-
tact with the urinary system [12]. Therefore, urine
metabolomics is a promising approach for BC and RCC
detection and marker discovery.

There are several studies on urine metabolomics ana-
lysis for discovering bladder cancer biomarkers. In 2011,
Huang et al. [13] found that a combined urinary bio-
marker composed of carnitine C9:1 and an unknown
metabolite had high sensitivity and specificity in discrim-
inating 27 BC patients from 32 healthy controls (HCs).
In 2014, Jin et al. [14] applied LC/MS to profile urinary
metabolites of 138 patients with BC and 121 control
subjects. The study identified 12 putative markers that
were involved in glycolysis and beta-oxidation. Witt-
mann et al. [15] applied LC/MS to profile urinary me-
tabolites of 66 BC and 266 non-BC subjects. They
suggested that metabolites related to lipid metabolism
may be potential BC markers. In 2017, Zhou et al. [16]
applied a urinary pseudo-targeted method based on GC-
MS for a BC metabolomics study. The study identified a
combinatorial biomarker panel consisting of four differ-
ential metabolites that could be used for diagnosing BC
and early-stage BC.

Metabolomics has also been widely applied to research
on renal carcinoma biomarker discovery. In 2011,
Kim et al. [17] used the UHLC/MS and GC/MS plat-
form to perform urine metabolomics against 29 kidney
cancer patients and 33 control patients. The study identi-
fied 13 significantly differentially expressed metabolites. In
2016, Monteiro et al. [12] analysed the urine metabolome
of 42 RCC patients and 49 controls using NMR. A 32-
metabolite/resonance signature, including 2-KG, N-methyl-
2-pyridone-5-carboxamide (2-Py), bile acids, galactose,
hypoxanthine, isoleucine, pyruvate, succinate, etc., was able
to successfully distinguish RCC patients from controls in a
principal component analysis. In 2017, Falegan et al. [18]
applied NMR and GC/MS platform to perform urine and
serum metabolomics against 40 RCC patients and 13
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benign patients. The results showed alterations in the
detected levels of glycolytic and tricarboxylic acid
(TCA) cycle intermediates in RCC relative to benign
masses.

These studies have unveiled potential disease bio-
markers in urine. However, most metabolic markers
were discovered based on small pilot studies. The lim-
ited study cohort or lack of effective validation restricts
further clinical applications of these biomarkers [19].
Moreover, to our knowledge, few studies have addressed
the occurrence of false positives with these approaches,
e.g., the diagnosis of certain types of genitourinary can-
cer in patients with other genitourinary cancers or uro-
logic disorders that present similar clinical symptoms
[5]. For example, patients with BC usually present with
haematuria, but haematuria can also be present in pa-
tients with other genitourinary cancers. Haematuria can
be a serious confounding variable. Therefore, in our
study, a urine metabolomics approach using ultra-
performance LC-MS (UPLC-MS) was carried out. A
total of 403 urine samples, including 146 samples from
patients with BC (77 patients without haematuria and 69
patients with haematuria), 115 samples from patients
with RCC (94 patients without haematuria and 21 pa-
tients with haematuria) and 142 samples from sex- and
age-matched healthy controls were assessed. Multivari-
ate statistical analysis and biomarker analysis were used
to discover and externally validate the biomarker panel.
Previous studies have reported that haematuria may
greatly affect the outcomes of metabolic analyses. There-
fore, BC patients without and with haematuria were dis-
tinguished from RCC patients by biomarker panels from
urine metabolomics that may be used for the differential
diagnosis of BC and RCC.

Methods

Inclusion and exclusion criteria

The criteria for inclusion and exclusion in our research
are as follows: 1) early-stage RCC patients (namely,
pathological T1 and T2 stages); non-muscle invasive BC
patients; and healthy controls were chosen from the
health examination centre; 2) all patients were diagnosed
by postoperative pathology; 3) all hepatic functions
(ALT, AST, Dbil, Thil, etc.) and renal functions (Cr,
BUN, eGER, etc.) were within the normal range; 4) none
of the patients received any other kind of therapy before
the operation; 5) preoperative routine examinations and
the medical history collection did not suggest other ma-
lignant tumours or metabolism-related diseases, such as
diabetes mellitus and hyperlipidaemia.

Sample collection
This study was approved by the Institutional Review
Board of the Institute of Basic Medical Sciences and
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Peking Union Medical College Hospital, Chinese Acad-
emy of Medical Sciences, and all human subjects pro-
vided informed consent before participating in this
study. Both the urine samples from cancer patients and
healthy controls were collected from Peking Union Med-
ical College Hospital. Midstream urine was collected in
the morning at 07:00 a.m. —09:00 a.m. after an overnight
fast to eliminate the disturbance of diet. Then, all sam-
ples were immediately stored in a-80°C freezer and
thawed on ice before analysis. A total of 403 urine sam-
ples, including bladder cancer (BC, n =146), renal cell
carcinoma (RCC, n=115) and healthy controls (HCs,
n = 142), were assessed.

Sample preparation

First, each mixture made up of acetonitrile (200 pl) and
urine sample (200 pl) was vortexed for 30s and centri-
fuged at 14,000xg for 10 min. Samples were dried under
vacuum, and the supernatant was then blended with
200 pl of 2% acetonitrile. Before being transferred to the
autosamplers, 10 kDa molecular weight cut-off ultracen-
trifugation filters (Millipore Amicon Ultra, MA) were
applied to separate urinary metabolites from larger mol-
ecules. Samples were prepared by mixing aliquots of two
hundred representative samples, and the QC samples
were injected every ten samples throughout the analyt-
ical run to assess the method stability and repeatability.

UPLC-MS analysis

The Waters ACQUITY H-class LC system coupled with
an LTQ-Orbitrap mass spectrometer (Thermo Fisher
Scientific, MA. USA) was launched to perform the ultra-
performance LC-MS analyses of urine samples. We sep-
arated urinary metabolites with a 17 min gradient on a
Waters HSS C18 column (3.0x 100 mm, 1.7 um), and the
flow speed was 0.5 ml/min. Mobile phases A and B were
0.1% formic acid in H,O and acetonitrile, respectively.
The gradient was described as follows: 0—1 min, 2% solv-
ent B; 1-3 min, 2-15% solvent B; 3—6 min, 15-50% solv-
ent B; 6-9 min, 50-95% solvent B; 9-9.1 min, 95-100%
solvent B; 9.1-12min, 100% solvent B; 12—12.1 min,
100-2% solvent B; and 12-17 min, 2% solvent B. The
temperature of the process was 50 °C. Scans from 100 to
1000 m/z at a resolution of 60 K were used to acquire
the Full MS. The automatic gain control (AGC) target
was 1x 10°% and the maximum injection time (IT) was
100 ms. Then, UPLC targeted-MS/MS analyses of the
QC sample were conducted to identify the differential
metabolites. A resolution of 15 K with an AGC target of
5% 10°, a maximum IT of 50 ms, and an isolation win-
dow of 3 m/z was obtained. In terms of every target with
higher-energy collisional dissociation (HCD) fragmenta-
tion, 20, 40 and 60 were set as the optimal collision
energies.
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Data processing

Referring to the published identification strategy [20,
21], we use the Progenesis QI (Waters, Milford, MA,
USA) software to analyse the data. In the Additional file 3:
QI data handling and metabolite identification processes
can be found. We established various statistical tech-
niques, such as missing value estimation, log transform-
ation and Pareto scaling; thus, the features could be
more comparable in MetaAnalyst 4.0 (http://www.meta-
boanalyst.ca). Any variables lost in 50% samples were
discarded. The significance of variables was assessed by
non-parametric tests. An adjusted P-value (FDR) <0.05
was regarded as significant. We use SIMCA 14.0 (Ume-
trics, Sweden) software to carry out pattern recognition
analyses (principal component analysis, PCA; orthogonal
partial least squares discriminant analysis, OPLS-DA).
Any differential variables that fulfil all the limitations
were considered significant: 1) fold change > 1.5; 2) ad-
justed P-value < 0.05; and 3) VIP value above 1. We used
the MetaAnalyst 4.0 platform to launch a ROC analysis
and an external biomarker validation to test the predic-
tion accuracy.

Quality control

A strict quality control assessment is of great signifi-
cance for the metabolomic analysis because some other
factors, such as the sample collection, preparation or
even the analytic procedures, may tremendously affect
the outcomes. To eliminate the technical errors involved
in our study, the samples were randomly distributed in
the discovery or external validation group, and our QC
samples were also analysed to assess the stability. The
injected QC samples in our study showed only a small
variation ranging within 2 SD (Additional file 1: S1A),
conforming to the stability and reproductivity of our
data, as the tight clustering further demonstrated (Add-
itional file 1: S1B). The above analysis indicated that
analytical differences may arise from the internal meta-
bolic variation within the samples rather than from the
technical bias.

Results

Subjects

The workflow of this study is shown in Fig. 1. A total of
403 participants were enrolled in our study: 146 BC pa-
tients (77 without haematuria and 69 with haematuria),
115 RCC patients (94 without haematuria and 21 with
haematuria) and 142 sex- and age-matched healthy con-
trols. The baseline clinical information of all enrolled
subjects is shown in Table 1. All the pathological diag-
noses of the BC and RCC patients were confirmed after
surgery by more than two professional pathologists in
our hospital. Since the control samples enrolled did not
have haematuria, the cancer (including BC and RCC)
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samples without haematuria were explored to identify
cancer biomarkers. First, a pilot differential analysis on
urine metabolomics was performed to discriminate can-
cer patients from healthy subjects. Cancer biomarkers
were discovered based on metabolic profiling analysis of
98 age- and sex-matched health subjects, 53 BC patients
and 64 RCC patients. The potential biomarkers were
further externally validated using an independent batch
of cancer patients (24 BC patients and 30 RCC patients)
and 44 healthy control samples. Additionally, a pilot
differential analysis was performed to discriminate urin-
ary metabolic profiling between BC and RCC without
haematuria. The potential biomarkers were further ex-
ternally validated using an independent batch of 24 BC
patients and 30 RCC patients. Furthermore, to find a
promising biomarker panel that could distinguish BC
and RCC from haematuria, the samples of 21 RCC
patients and 69 BC patients with haematuria were differ-
entially analysed (Table 2).

Untargeted metabolomics could distinguish Cancer (BC &
RCC) from healthy controls

To identify the biomarkers between the cancer (BC and
RCC) and healthy controls, an unsupervised PCA analysis
was used to identify metabolic profiling differences. The re-
sults are shown in Additional file 2: Figure S2A. The score
plot showed a significant difference between the two groups.
Furthermore, to better show the difference between the can-
cer and healthy control groups, a supervised OPLS-DA model

was launched (Fig. 2a). Based on the value of the important
plot (VIP) value (VIP > 1), a total of 37 statistically differen-
tially expressed metabolic molecules were selected (Additional
file 3: Table Sla). According to Additional file 3: Table Sla, a
heatmap was launched to discover the metabolic disturbance
(Fig. 2b), from which we could easily draw the conclusion:
compared with the healthy controls, the lipid metabolism
pathway was upregulated while the purine metabolism and
acetaminophen metabolism pathways were downregulated in
the cancer group. To further explore the separating capacity
of each metabolite, an ROC curve was applied to each mol-
ecule, and the results are presented in Additional file 3: Table
S1b. As depicted in the table, 8 metabolites show a good dis-
tinctive ability, with an AUC above 0.8, along with 22 metab-
olites above 0.7. Furthermore, a multivariant ROC curve-
based exploratory analysis (http://www.metaboanalyst.ca/
faces/up-load/RocUpload View.xhtml) was used to discover
the panel with the best predictive ability. As a result, a panel
containing a-CEHC, B-cortolone, deoxyinosine, flunisolide,
11b,17a,21-trihydroxypreg-nenolone and glycerol tripropano-
ate was selected. In our testing data, the AUC was 0.95 and
0.933 for 10-fold cross-validation (Fig. 2c). Our external valid-
ation data were used to test the predictive ability of the panel,
and the AUC was 0.867 (Fig. 2d).

Untargeted metabolomics could distinguish BC from RCC
without haematuria

To detect the differential metabolites between the BC
and RCC groups, PCA was applied, and the results are
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Table 1 The baseline information of all enrolled subjects in the study

[tems Without hematuria With hematuria
Discovery group Validation Group BC RCC
BC RCC HC RCC HC

Cases(n) 53 64 98 30 44 69 21

Agelyrs) 62 53 55 60 51 67 52
(33-87) (14-82) (20-91) (28-92) (20-75) (24-77) (40-90) (32-78)

Gender (M/F) 2112 48/16 58/40 18/6 24/6 35/9 50/19 10/11

shown in Additional file 2: Figure S2B. The picture sug-
gested a significantly differential ability. Then, a super-
vised OPLS-DA model was launched (Fig. 3a), and we
selected a sum of 32 metabolites with a cut-off VIP value
of 1 (Additional file 3: Table S2a). The ROC curve was
later used to evaluate the predictive precision. Among
the differential molecules, 3 metabolites showed poten-
tial diagnostic ability with an AUC above 0.7, and 26
metabolites had an AUC above 0.6 (Additional file 3:
Table S2b). The multivariant ROC curve-based explora-
tory analysis revealed that a metabolite panel including
4-ethoxymethylphenol, prostaglandin F2b, thromboxane
B3, hydroxybutyrylcarnitine, 3-hydroxyphloretin and N
"-formylkynurenine possessed the best predictive ability.
The AUC under the discovery data was 0.829 and 0.784
for 10-fold cross-validation (Fig. 3b). In addition, the
AUC of external validation was 0.76 (Fig. 3c). The panel
showed a good ability to distinguish 16 BC patients from
24 BC patients correctly, and the rate was 24/30 for the
RCC (Fig. 3d).

Untargeted metabolomics could distinguish BC from RCC
with haematuria

Similarly, a PCA analysis was first applied to explore the
difference between the BC and RCC patients with
haematuria, and the results are shown in Additional file 2:
Figure S2C. From the figure, we could clearly observe
that there was an apparent separation between the two

subgroups. Then, the OPLS-DA model was structured
(Fig. 4a). Based on the VIP of OPLS-DA (VIP > 1), 59
metabolic molecules in total were identified as signifi-
cant differential metabolites between the two groups
(Additional file 3: Table S3a). From the metabolites, it is
not difficult to conclude that the metabolism concerning
nitrogen metabolism, D-glutamine and D-glutamate me-
tabolism, purine metabolism, and aspartate and glutam-
ate metabolisms were significantly altered between the
two groups. Pathway power analysis revealed that the
distinguishing metabolism could aid in the separation
(Fig. 4b). According to the ROC curve, 3 metabolites
showed good performance in separating the BC patients
from the RCC patients, with an AUC above 0.8, and the
other 33 metabolites showed an AUC above 0.7 (Add-
itional file 3: Table S3b). Further analysis indicated that
a panel made up of 1-hydroxy-2-oxopropyl tetrahydrop-
terin, 1-acetoxy-2-hydroxy-16-heptadecyn-4-one, 1,2-
dehydrosalsolinol and L-tyrosine exhibited the best cap-
acity to distinguish the independent subgroups. The
AUC of the panel is 0.913 for the discovery group and
0.870 for 10-fold cross-validation (Fig. 4c).

Discussion

Through the high-throughput measurement of endogen-
ous metabolites, metabolomics has shown enormous
prospects in discovering diagnostic cancer biomarkers in
the field of renal cell carcinoma and bladder cancer.

Table 2 Results of logistic regression model based on different biomarker panels

Groups AUC

Sensitivity Specificity

'Cancers(BC&RCQ) vs controls
0.950(0.942-0.958)
0.933(0.902-0.925)

discovery group

10-fold cross-validation
2BC vs RCC without hematuria
0.829(0.802-0.855)
0.784(0.695-0.874)

discovery group

10-fold cross-validation
*BC vs RCC with hematuria
0.913(0.885-0.942)
0.870(0.754-0.986)

discovery group

10-fold cross-validation

0.868(0.846-0.891)
0.857(0.857-0.926)

0.875(0.855-0.895)
0.880(0.822-0.939)

0.832(0.801-0.862)
0.802(0.802-0.908)

0.706(0.666-0.747)
0.698(0.575-0.822)

0.847(0.795-0.898)
0.857(0.857-1.00)

0.953(0.937-0.970)
0.913(0.847-0.980)

'The biomarker panel: a-CEHC, B-cortolone, deoxyinosine, flunisolide, 11b,17a,21-trihydroxypreg-nenolone and glycerol tripropanoate
2The biomarker panel: 4-ethoxymethylphenol, prostaglandin F2b, thromboxane B3, hydroxybutyrylcaritine, 3-hydroxyphloretin and N'-formylkynurenine
3The biomarker panel: 1-hydroxy-2-oxopropyl tetrahydropterin, 1-acetoxy-2-hydroxy-16-heptadecyn-4-one, 1,2-dehydrosalsolinol and L-tyrosine
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However, to the best of our knowledge, although many can-
cer markers have been found in bladder cancer, most studies
only focused on the differentiation between cancers and
healthy subjects, thus ignoring the discrimination within ma-
lignant tumours. As we know, our study is the first to explore
the differential metabolites between BC and RCC patients,
with or without haematuria. As a result, by comparing the
BC, RCC and HCs, we found that i) a panel composed of -
CEHC, B-cortolone, deoxyinosine, flunisolide, 11b,17a,21-tri-
hydroxypreg-nenolone and glycerol tripropanoate could well
distinguish the cancer patients (BC and RCC) from the
healthy controls, and this result may provide significant in-
formation about the dysregulated metabolic pathways of ma-
lignant urinary tumours. ii) a panel consisting of 4-

ethoxymethylphenol, prostaglandin F2b, thromboxane B3,
hydroxybutyrylcarnitine, 3-hydroxyphloretin and N’-for-
mylkynurenine shows a good ability to differentiate BC
patients from RCC patients without haematuria. iii) since
previous studies have already indicated that haematuria may
statistically affect the analytic outcomes of metabolomics, we
also performed an exclusive experiment to certify the bio-
marker panel. As the result suggested, a panel comprising 1-
hydroxy-2-oxopropyl tetrahydropterin, 1-acetoxy-2-hydroxy-
16-heptadecyn-4-one, 1,2-dehydrosalsolinol and L-tyrosine
could significantly discriminate BC patients from RCC pa-
tients among patients with haematuria.

The clustering heatmap between cancer patients and
healthy controls suggested that lipid metabolism was
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upregulated in these cancers; this result was in accord-
ance with the classical Warburg effect, demonstrating
that cancer cells prefer to use glycolysis rather than aer-
obic oxidation even in the presence of oxygen [22]. The
dysregulated lipid and phospholipid metabolisms showed
great significance in cell mortality, cell invasion and
tumour metastasis, and this result may produce enor-
mous tumour biomarkers [23]. In previous studies, the
disturbance of lipid metabolism has been reported in
various studies, including BC and RCC patients. By ana-
lysing the global lipidomic profiles of 165 bladder-
derived tissues, Piyarathna, et al. found that compared
with benign tissues, the urothelial cancer of the bladder
had higher levels of phospholipids and fatty acids and re-
duced levels of triglycerides, suggesting that reduced tri-
glycerides may be used for producing energy, while the

changed phospholipid may play an active role in mem-
brane structure or signal transduction [24]. By perform-
ing comparative UPLC-MS of two isogenic human T24
bladder cancer cell lines, Young Lee et al. discovered
that there was a statistically distinguished lipid species
between cisplatin-sensitive and cisplatin-resistant cancer
cells, suggesting that lipid-targeted new drugs may im-
prove the prognosis of cisplatin-resistant patients [25].
For the RCC, an article reported that many fatty acids
were downregulated in nonmetastatic RCC tissues as a
result of overactive fatty acid oxidation. In addition, they
also discovered that in metastatic RCC, lipid metabolism
was upregulated, which may be related to tumour pro-
gression [26]. In some other studies, metabolites of car-
nitine metabolism, which are responsible for the
transportation of fatty acids into the mitochondria, have
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Fig. 4 Analysis of metabolic anlysis between BC and RCC with hematuria. (@).Metabolic score plot of OPLS-DA. (b).Pathway analysis of the differential
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been found to be increased in high-grade tumour tissues,
blood serum or urine [27-29], which may be a conse-
quence of improved fatty acid PB-oxidation to sustain
higher rates of cell division and growth.

In addition, 2,5,7,8-tetramethyl-2 (2'-carboxyethyl)-6-
hydroxychroman (also known as a-CEHC), is an end-
product of a-tocopherol, which is one group of vitamin E
generated through a set of enzymatic reaction [30]. As we
know, vitamin E is a potent lipid-soluble antioxidant that
could help strengthen the immune system, inhibit cell
proliferation and several inflammation pathways caused
by infection or tumour progression [31, 32]. In our study,
a-CEHC was upregulated in cancer patients compared to
that in the healthy controls, and the fold change was 4.38,

which confirms an accelerated vitamin E metabolism. To
the best of our knowledge, our study is the first to dis-
cover the upregulation of vitamin E metabolism in bladder
caners, which may be caused by inflammation secondary
to tumours. Concerning renal cell carcinoma, Catchpole
et al. observed an increased level of a-tocopherol in RCC
tumour tissues compared with normal renal cortex tissue,
consistent with the findings of Nikiforova et al. [26, 33]. In
addition, analysing 66 invasive ovarian carcinomas and 9
borderline tumour tissues by gas chromatography/time-
of-flight mass spectrometry, Denkert, et al. discovered that
a-tocopherol 2 was elevated in cancers, and the fold
change (of cancer vs borderline tumour) was 2.5 [34]. As
all the vitamins in our bodies are obtained through
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digestion, we still cannot rule out the possibility that the
increased vitamin metabolism may be just a superficial
phenomenon of an increased uptake of lipids, rather than
caused by cancer.

A disturbance of purine metabolism has also been
detected in our study not only in the panel of cancer patients
vs healthy controls but also in the group of BC vs RCC pa-
tients. However, contrary to previous studies, our research
showed that compared with the controls, deoxyinosine, one
of the most common precursors of DNA, was decreased in
the cancer groups. In 2007, Sahu et al. enrolled 96 patients
(including 72 urothelial carcinoma patients and 24 normal
patients) and analysed their differential metabolites by per-
forming UHPLC-MS/MS. As a result, both the purine and
the purine metabolites were increased in urothelial cancer,
suggesting the accelerated synthesis and degradation of nu-
cleotides [35]. In a meta-analysis of 11 articles, the levels of
guanine, cytosine, thymine, hypoxanthine, uracil and ribose
were found to be elevated in the urine of BC patients, indi-
cating a higher level of nucleotide metabolism [36]. Concern-
ing the RCC, few studies have reported the differential
metabolites of purine metabolism, making our study the first
to demonstrate an inner mechanism. Compared with BC,
the purine metabolism of RCC was upregulated slightly,
which suggested a higher nucleic acid metabolism. However,
it is necessary to stress that the lower purine level may be
due to a much more obvious degradation together with en-
hanced synthesis.

N-formylkynurenine, one metabolite of the tryptophan-
kynurenine pathway, was elevated in RCC compared with
BC without haematuria (listed in Additional file 3: Table
S2a), suggesting altered tryptophan metabolism in RCC pa-
tients. Catalysed by indoleamine 2,3-dioxygenase 1 (IDO1)
and tryptophan 2,3-dioxygenases (TDO), the tryptophan
(TRP) was first transformed into N-formylkynurenine (NFK)
and then hydrolysed into kynurenine (KYN) by kynurenine
formamidase [37]. Several studies have already revealed that
IDOL1 expression in a large number of cancers could lead to
the depletion of TRP and accumulation of NRK and KYN,
which inactivates T effector cells and thus suppresses im-
munity [38, 39]. The high level of NFK in the urine of RCC
patients may be a symbol of local tumour immune deficiency
and may facilitate tumour growth, but the deeper mechan-
ism remains to be explored. Furthermore, a perturbation of
the metabolism of other amino acids, namely, alanine, aspar-
tate, glutamate and D- glutamine metabolism, has also been
revealed between the group of cancer patients (BC vs RCC
with haematuria), which suggested a distinguished protein
metabolism between BC and RCC patients. In addition, ele-
vated prostaglandin F2b and thromboxane B3 occurred in
BC patients, and these molecules are biologically active sig-
nalling components of the COX and LOX pathways. The
COX and LOX pathways are closely associated with the
functions of inflammatory cell regulation, tumourigenesis,
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cell proliferation, and angiogenesis. Our results were sup-
ported by a previous metabolomic analysis of urothelial car-
cinoma [35], illustrating hyperactive tumour metabolism and
consequent inflammation.

There also exist some limitations in our study. First,
the sample scale in our study is relatively small and is
single-centre study, making the data less convincing.
Therefore, increasing the samples and enrolling more
medical centres would be necessary in our further ana-
lyses. Second, our study focused on the discrimination of
BC and RCC patients and revealed a deeper mechanism
under the surface. However, due to the complete heter-
ology of BC and RCC, it remains a question whether
these cancer patients are comparable. Third, because of
the epidemic differences between BC and RCC, the diag-
nostic age of BC patients is older than that of RCC
patients, there is also a possibility that the metabolic dis-
turbances between BC and RCC may be caused by the
distinguished age between the two groups rather than by
the cancer. Last but not least, due to the limitations of
time and conditions, we merely used one method, meta-
bolomics, to predict the potential altered metabolism;
thus, we focused only on the small metabolites in urine.
Therefore, a combination of proteomics, transcriptomics
and genomics in the future could help us better under-
stand the deeper mechanism of BC and RCC.

Conclusions

In conclusion, based on a highly sensitive metabolomics
approach, we discovered three independent early diag-
nostic biomarker panels that could distinguish RCC pa-
tients, BC patients and healthy controls, which may
significantly benefit BC and RCC patients and thus im-
prove their prognosis. Many altered metabolic pathways
have been identified by comparative metabolomics, in-
cluding lipid, vitamin E, purine, amino acid and eicosa-
noid metabolisms.
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