
RESEARCH ARTICLE Open Access

Potential genetic modifiers for somatic
EGFR mutation in lung cancer: a meta-
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Abstract

Background: Accumulating evidence indicates inherited risk in the aetiology of lung cancer, although smoking
exposure is the major attributing factor. Family history is a simple substitute for inherited susceptibility. Previous
studies have shown some possible yet conflicting links between family history of cancer and EGFR mutation in lung
cancer. As EGFR-mutated lung cancer favours female, never-smoker, adenocarcinoma and Asians, it may be argued
that there may be some underlying genetic modifiers responsible for the pathogenesis of EGFR mutation.

Methods: We searched four databases for all original articles on family history of malignancy and EGFR mutation
status in lung cancer published up to July 2018. We performed a meta-analysis by using a random-effects model
and odds ratio estimates. Heterogeneity and sensitivity were also investigated. Then we conducted a second
literature research to curate case reports of familial lung cancers who studied both germline cancer predisposing
genes and their somatic EGFR mutation status; and explored the possible links between cancer predisposing genes
and EGFR mutation.

Results: Eleven studies have been included in the meta-analysis. There is a significantly higher likelihood of EGFR
mutation in lung cancer patients with family history of cancer than their counterparts without family history,
preferentially in Asians (OR = 1.35[1.06–1.71], P = 0.01), those diagnosed with adenocarcinomas ((OR = 1.47[1.14–
1.89], P = 0.003) and those with lung cancer-affected relatives (first and second-degree: OR = 1.53[1.18–1.99], P =
0.001; first-degree: OR = 1.76[1.36–2.28, P < 0.0001]). Familial lung cancers more likely have concurrent EGFR
mutations along with mutations in their germline cancer predisposition genes including EGFR T790 M, BRCA2 and
TP53. Certain mechanisms may contribute to the combination preferences between inherited mutations and
somatic ones.

Conclusions: Potential genetic modifiers may contribute to somatic EGFR mutation in lung cancer, although
current data is limited. Further studies on this topic are needed, which may help to unveil lung carcinogenesis
pathways. However, caution is warranted in data interpretation due to limited cases available for the current study.
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genes, EGFR T790 M, BRCA, TP53, DNA repair, Lung cancer aetiology
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Background
Lung cancer is the most frequently diagnosed cancer
and also the leading cause of cancer-related deaths over
the world [1]. Despite advances in molecular, patho-
logical and biological research, the pathogenesis of lung
cancer has not yet been fully elucidated. Though the
predominant risk factor, smoke exposure has widely dif-
fering attribution to lung cancer risk across different
ethnicities, e.g. over 80% in both males and females in
the US [2] and UK [3], but only 57.5% in males and
11.5% in females in China [4]. These significant differ-
ences indicate lung cancer aetiology is significantly im-
pacted by other risk factors including inherited
susceptibility.
Family history is a simple substitute for genetic sus-

ceptibility, easily assessed and less technologically de-
manding (although limited by societal differences in
family size). Multiple epidemiological studies [5–9] dem-
onstrated that family aggregation of malignancies would
increase individuals’ lung cancer risk. Some critics ar-
gued that the family aggregation of lung cancer might
have resulted from a shared environment, such as smok-
ing exposure among family members; because most of
the cancers clustering in probands’ families are smoking-
related [10], and gene-smoking interactions could not be
neglected in lung tumorigenesis [11]. However, evidence
on the heritability of lung cancer is also accumulating.
Epidemiologically, family history of lung cancer still had
a significantly increased risk in never-smoker probands
[7], especially in Asians after adjusting confounders in-
cluding smoking [9, 12]. Genetically, recent genome-
wide association studies (GWAS) or sequencing studies
of lung cancer unveiled a role of inherited susceptibility
component overriding that of smoking behaviour [13].
Some significant risk loci have been found to be
genome-wide significantly associated with never-smoker
lung cancers [14, 15].
Recently, many potential cancer predisposition genes

(CPGs) or susceptibility loci have been revealed by in-
vestigating familial lung cancers or lung cancer-
clustering families. However, the currently uncovered
CPG mutations have been estimated to attribute to only
~ 3% of all cancers [16]. Relevant evidence on CPGs is
much more limited compared to somatic mutations in
the era of whole-genome sequencing [16, 17].
Since its first discovery in lung adenocarcinoma in

2004, somatic EGFR mutation - one of the most import-
ant and targetable driver mutations found in non-small
cell lung cancer (NSCLC) - has been extensively vali-
dated as an effective indicator of sensitivity to EGFR
tyrosine kinase inhibitors (TKIs), as well as a prognosti-
cator for patients [18]. It is confirmed that exon 19 dele-
tion and L858R point mutation in exon 21 are the most
frequently mutated subtypes (the “common mutations”),

accounting for 45 and 35% of all the EGFR-mutated
NSCLC cases, respectively [19]. Rare mutations have less
evidence on TKI sensitivity and clinical responsiveness
than the common ones, while some consensus has been
achieved via individual or selective analysis: mutations
occurring within exons 18 to 21 usually confers sensitiv-
ity to EGFR TKIs, except those within exon 20, such as
T790M and exon 20 insertions [18]. It’s of note, EGFR-
mutated lung cancers generally have a different epi-
demiological profile from the EGFR wild-type ones, the
former more likely to be non-smokers (vs smokers:
37.6%~ 62.5% vs 8.4%~ 35.9% varying by ethnicity), East
Asians (vs Westerns: 47.9% vs 19.2% in ADCs) and lung
adenocarcinomas (vs SCCs: 47.9% vs 4.6% in Asians)
[20–22], which may indicate distinct modulations of
relevant variables in tumorigenesis.
Since lung cancers with a family history may indicate a

potentially differed genetic background from sporadic
cases, it is interesting to investigate if there is a relation-
ship between family history of cancer and EGFR muta-
tions in lung cancer patients, both of which participate
in tumorigenesis. To date, observational studies reported
conflicting relationships, either positive or neutral, be-
tween family history and the presence of EGFR mutation
in lung cancer patients. Given the contradictory epi-
demiological findings and the potential implication in
lung carcinogenesis, we conducted a meta-analysis to
pool the risk estimates from previous studies focusing
on family history of cancer and somatic EGFR mutation;
then by a second literature research, we summarized fa-
milial lung cancer cases with both potential CPGs and
somatic EGFR mutation status reported to help to throw
a light on this topic.

Methods
Meta-analysis of family history on somatic EGFR mutation
We followed the guidelines of the Meta-analysis of Ob-
servational Studies in Epidemiology (MOOSE) group for
reporting [23]. We searched PubMed, EMBASE, Web of
Science and Cochrane Library by using a combination of
free text and medical subject heading (MESH) terms re-
lated to lung cancer, EGFR and family history (Detailed
searching strategies in Additional file 1: Table S1). Hand
searching the bibliography of relevant articles was also
used.
Our inclusion criteria were as follows: [1] Case-control

study, cohort study and other studies of lung cancer pa-
tients with EGFR mutation status detected/reported [2];
Odds ratios (in case-control studies), relative ratios (in
cohort studies) reported relative to a family history of
cancer, or of sufficient information to calculate them. If
there were several eligible publications derived from the
same dataset, the one with the largest sample size was
included. Studies with limited or incomplete data

Cheng et al. BMC Cancer         (2019) 19:1068 Page 2 of 17



including case studies, studies with only EGFR mutant
cases or incomplete information associating with both
EGFR mutation status and family history were excluded.
Two independent authors (YIC and YCG) first

reviewed all the titles/abstracts to find the potentially re-
lated studies, then had a full view of these potentially re-
lated studies and selected the eligible studies based on
the inclusion/exclusion criteria above. Any discrepancies
were resolved by consensus after discussion.
The two reviewers independently extracted information

concerning study design, year of publication, study size,
study duration, inclusion/exclusion criteria, subjects’ char-
acteristics (age, gender, ethnicity, lung cancer histology,
smoking status, family history of lung cancer/other cancer
in first/second-degree relatives) at the diagnosis of lung
cancer, EGFR mutations and detection methods, odds ra-
tio (OR) or risk ratio estimates and the corresponding
95% CIs. The Newcastle-Ottawa scale was used to assess
the quality of each included study [24].
Forest plots were generated for meta-analytic estimates

by using Mantel-Haenszel (MH) method and random-
effects models. Inverse Variance (IV) method was used
when only estimates and their standard errors were
available in the original studies. Heterogeneity was
assessed by using Cochran’s Q and I2-statistic. To test
the robustness of the estimates, we performed a sensitiv-
ity analysis by subgrouping studies. Publication bias was
evaluated by applying the funnel plot [24]. We used Rev-
Man 5.3 to perform all the analysis.

Literature research for underlying mechanisms on
somatic EGFR mutation
To further elucidate the topic, we searched PubMed and
Web of Science Core Collection using a combination of
keywords and/or MeSH terms associating with “lung
cancer”, “family history” and “germline mutation” (de-
tailed searching strategies in Additional file 1: Table S2).
Then we concluded current papers associating with lung
cancer-clustering families which reported their tumour
somatic EGFR mutation status. Our inclusion criteria
were: 1) potential CPGs were investigated and reported
in the index case of lung cancer; 2) CPGs were also de-
tected and validated in other family members besides
the proband; 3) somatic EGFR mutations were reported
in the lung tumours in the probands and/or other family
members. No ethical approval was needed for the
current study.

Results
Meta-analysis
After removing duplicates and the initial screening of ti-
tles and abstracts, 120 papers were potentially related
and undergone through a full-text review. Ninety-two
papers had incomplete or limited data, fifteen were

meeting abstracts, one was non-English, and another
studied the same population as one of the eligible papers
(more detailed information in the latter). Thus, 11 ori-
ginal studies were included (Fig. 1). Quality assessment
results of each study were shown in Additional file 1:
Tables S3-S4.
Table 1 showed the main characteristics of the studies

included in the current meta-analysis [25–35]. Ten of
them were cohort studies and one was a case-control
study. Most of the studies focused on non-small cell
lung cancers (NSCLCs) or lung adenocarcinomas
(ADCs). There were quite a number of differences in
definitions of EGFR positive mutation and family history,
detection methods and composition of the study popula-
tion. Due to a very high heterogeneity by pooling all the
studies (I2 = 78%, P < 0.000), we performed the funnel
plot and excluded the outlier study by Cheng et al.
(2015) [25] in our analysis afterwards (Additional file 1:
Figures S1-S2).
Figure 2 provided the “overall” likelihood of EGFR mu-

tation status in lung cancer patients with family history
of any cancer (FH_Any) compared to those without
from the remaining ten studies. “Overall” estimates of
FH_Any here referred to the total effects by pooling the
studies without differentiating family history of all can-
cers, lung cancer or other non-lung cancers. There was
a marginal significance (OR = 1.23[1.00–1.50], P = 0.05)
with an intermediate heterogeneity among studies (I2 =
47%, P = 0.05). When restricted to Asian countries (eight
studies), the difference became significant (OR =
1.35[1.06–1.71], P = 0.01) (Fig. 2a). In lung adenocarcin-
oma (ADC) patients with FH_Any, EGFR was more
likely mutated than those without (OR = 1.47[1.14–1.89],
P = 0.003) (Fig. 2b). Marginal significance was also ob-
served in patients with cancer in their first-degree rela-
tives than their FH_Any-absent counterparts (OR =
1.37[0.99–1.89], P = 0.06) (Fig. 2c). However, there were
no significant findings when limiting patients to females,
never-smokers or those having FH_Any yet with both
their first- and second-degree relatives included, possibly
due to much less data in these subgroups.
There was a significantly higher proportion of EGFR

mutation in patients with family history of lung cancer
(FHLC) than those without (OR = 1.53[1.18–1.99], P =
0.001) (Fig. 3a), including in analyses limited to those
who had lung cancer in their first degree relatives (OR =
1.76 [1.36–2.28], P < 0.0001) (Fig. 3a). The association
between EGFR mutation and FHLC-positive cases
remained significant when limited to those diagnosed as
NSCLCs (OR = 1.86[1.35–2.57], P = 0.0001) (Fig. 3b).
Only one study reported data of EGFR mutation specif-
ically in ADC patients with FHLC, which indicated a sig-
nificantly higher possibility of mutation than those
absent of FHLC (OR = 1.51[1.04–2.19], P = 0.03). The
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association between the two variables was not altered
greatly if only Asian patients were included (Data not
shown since neither of the two excluded non-Asian
studies showed significant results). Further subgroup
analysis of EGFR mutation status in patients with/with-
out FH of all cancers or other non-lung cancers did not
demonstrate any remarkable difference between sub-
groups tested (Data not shown).

Results of the second literature search
In total, there were 41 lung cancer cases in 29 fam-
ilies eligible for our second analysis (Tables 2 and 3).
The median onset age was 57 years-old (range 22–78).
Females (31/41, 75.6%) and never-smokers (24/41,
58.5%) predominated in the curated cases. Almost all
(35/41, 85.3%) of the histology in lung cancer patients
were ADCs; the remaining five patients were diag-
nosed as NSCLCs (uncategorized) and another one
was SCC. In this dataset, there were eight White and
seven Asian families. Five of the White families inher-
ited the EGFR gene; while CPGs in the Asian families

were more scattered (but report bias could not be ex-
cluded here).
Fourteen families (of 29, 48.3%) reported germline

EGFR mutations, and eight of them carried the T790M
mutation [36–42]. Other germline EGFR mutations in-
cluded R776H [43] and V769M [44] in exon 20, and
V834 L [47] and V843I [45, 46] in exon 21. Nine index
patients (of 29, 31.0%) had inherited TP53 mutations,
among whom two had another concurrent germline mu-
tation, respectively (Case No. 38 and Case No. 40)
(Table 2).
Ten (of 29, 34.5%) families had multiple lung cancers

diagnosed or multiple lung nodules found in the pro-
bands or among their family members, which made in
total over 78 tumours across the dataset. Specifically, six
families (of 14, 42.9%) with multiple lung lesions har-
boured inherited EGFR mutations.
Among all the 78 tumours, fifty-four (~ 69.2%) of these

tumours carried a subsequent positive somatic mutation.
In the subgroup of inherited EGFR mutations, a second-
ary activating mutation occurred in 70.2% (33/47) of the

Fig. 1 Flowchart of study design for the meta-analysis
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germline EGFR mutation carrier lung cancer cases;
similarly, in lung cancers diagnosed in germline
T790 M mutation carriers, the proportion of a sec-
ondary activating mutation was 73% [40]. Both of
the concurrence rates above were higher than that

reported in the sporadic NSCLCs (10%~ 35%) [61].
About a half of them were EGFR L858R mutation;
48.1% (26/54) in all the curated inherited lung can-
cers and 57.6% (19/33) in the inherited EGFR sub-
group (Table 3).

Fig. 2 Forest plots for family history of any cancer and the risk of EGFR positive mutation. a Overall and by country: b in lung adenocarcinoma
patients; and c patients with family history of any cancer in first-degree relatives. FH, family history; IV, Inverse Variance method. CI,
confidence interval
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Discussion
Based on our study, a significant association between
family history of malignancy and EGFR mutation in lung
cancer has been observed in Asians, patients diagnosed
as ADCs/NSCLCs or those with lung cancer-affected
(first-degree) relatives. Individuals with family history of
lung cancer among first-degree relatives have a high risk
of lung cancer, bearing an OR ranging 1.51–1.63 after
adjustment of other potential confounders [7, 8]; Asians
have the highest risk compared to the White and Black/
African Americans (adjusted OR: 2.38, 1.46 and 1.67, re-
spectively) [8]. Besides, somatic EGFR mutations occur
more frequently in Asians, ADCs, females and never-
smokers [20–22], a preferential subpopulation partly
overlapping with that in our findings.
Family history is a substitute for inherited susceptibil-

ity. Recent studies have revealed some germline loci

significantly contributing to the likelihood of EGFR mu-
tation in lung cancer, e.g. 3q28 (rs7636839, TP63),
5p15.33 (re2736100 and rs2853677, TERT), 6p21
(rs2495239, FOXP4; rs3817963, BTNL2; rs2179920,
HLA-DPB1), 6q22.2 (rs9387478, ROS1/DCBLD1) and
17q24.3 (rs7216064, BPTF) in Asians [62–64]. These
findings suggest underlying genetic modifiers responsible
for a predisposition to somatic EGFR mutation in lung
cancer. Thus, it will be interesting to investigate the po-
tential role of CPGs in the pathogenesis of somatic
EGFR mutation in lung cancer.
We summarized the potential CPGs and mutated sites

reported in familial lung cancers where somatic EGFR
mutation status was available. Almost all the publica-
tions reported the predisposition genes by case-studying
one or several lung cancer-clustering families. Some lung
cancers complicated or fell within the spectrum of

Fig. 3 Forest plots for family history of lung cancer and the risk of EGFR positive mutation. a Overall and according to relatives and b in non-
small cell lung cancer patients. FHLC, family history of lung cancer; M-H, Mantel-Haenszel method; CI, confidence interval
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clinical manifestations of familial cancer syndromes.
Though limited, the curated data may help to shed light
on genetic mechanisms in modifying somatic alterations.
About a half of the families in our curated dataset

have reported germline EGFR mutation among family
members, mostly T790M and in the White families.
Germline EGFR mutations are very rare, less than 1/
7500 (0.01%) in the general population [40]; the pro-
portion is higher in sporadic lung cancers, namely 1/
555 (0.18%) of lung ADCs from TCGA (mostly
White) [65] and 14/12,833 (0.11%) of Chinese lung
cancers [66]. In two small datasets of familial cases

lately, none of the patients has been detected as posi-
tive [67, 68].
As the most reported germline mutation, T790M

accounted for 1.0% (5/503) in EGFR-mutated lung can-
cers from the US. Comparably, the proportion of germ-
line T790M mutation was much lower in Asians, i.e. 0/
627 in Japanese NSCLCs [40] and 1/12,833 in Chinese
lung cancers [66], notwithstanding their substantially
higher somatic EGFR mutation rate in the tumours.
Therefore, there is inherited susceptibility difference
across ethnicities, which may explain the potentially
preferential distribution of cancer predisposition genes
in our curated families.
Most of the cases with inherited EGFR mutation in

our investigation had concurrent activating mutations in
their tumours. Generally, the germline EGFR mutations
reported could be oncogenic if alone [42–44, 46, 69];
and the growth potential would be enhanced dramatic-
ally when co-occurring with a secondary activating mu-
tation [42–44, 46, 69], which may indicate a ‘second-hit’
proliferative advantage in the tumours [42, 70]. Second
somatic activating mutations non-randomly occurred in
cis to the inherited mutations [36, 43, 46, 47]. Specific-
ally, EGFR T790M, the mutation responsible for over
50% of the acquired resistance post-TKI in EGFR-mu-
tated lung cancers [61], emerges in cis with the initial
drug-sensitizing EGFR mutation in the tumour as well
[71]. T790M has a modest oncogenic effect, which may
be the explanation that it is tolerated in humans as a
germline mutation [72]. In a cis configuration with the
activating mutation, T790M mutation could dramatic-
ally enhance EGFR catalytic activity, and thus, achieve a
significant gain of function in transformation and
tumour aggressiveness [36, 71, 72]. The increased prolif-
erative advantage of the dual mutations has been ob-
served in experimental conditions [73] as well as in
clinical practice [74]. The evidence concerning the
mechanisms of the mutual interactions between concur-
rent double mutations is limited. Presumably, the germ-
line mutation carrier may more likely predispose to lung
cancer or develop in a more aggressive nature following
the subsequent second somatic mutation; and of note, it
is not rare that these carriers have multiple apparently
independent lung cancers or lung nodules, the later
possibly associated with precancerous or pre-invasive le-
sions [40].
The distribution of secondary somatic mutations was

not typically concordant across family members or mul-
tiple lung cancers in the same patient, similar to a previ-
ously reported small familial cohort [28]. However, there
are some exceptions in our study. Familial cases with
germline mutation V769M had the somatic mutation at
codon 719 [44]. Specifically, energy balance could be an
explanation for the phenomenon: V769M alone or with

Table 3 Clinical characteristics of familial lung cancer cases
curated in Table 2

Characteristics All Germline EGFR carrier

Case No. 41 22

Age at diagnosis

Median (range) 57 (22-78) 57 (29–78)

Gender

Male 10 (24.4%) 5 (22.7%)

Female 31 (75.6%) 17 (77.3%)

Smoking Status

Smoking a 11 (26.8%) 8 (36.4%)

Non-smoking 24 (58.5%) 10 (43.5%)

Not reported 6 (14.6%) 4 (18.1%)

Family No. 29 14

Ethnicity 29 (100.0%) 14 (100.0%)

White 8 (27.6%) 5 (35.7%)

Asian 7 (24.1%) 2 (14.3%)

Other 4 (13.8%) 2 (14.3%)

Not reported 10 (34.5%) 5 (35.7%)

Multiple lung tumours 10 (34.5%) 6 (42.9%)

Lung tumour No. b ≥78 47

Histology (by tumour)

Adenocarcinoma 72 (~ 92.3%) 41 (87.2%)

Other c 6 (~ 7.7%) 6 (12.8%)

Somatic co-occurring EGFR mutation status

Mutatedd 54 (69.2%) 33 (70.2%)

L858R 26 (48.1%) 19 (57.6%)

Exon 19del 11 (20.4%) 4 (8.5%)

Other 12 (22.2%) 10 (30.3%)
aIncluding both light smokers and smokers in Table 2
bDetailed number of lung tumours were not available in some cases
diagnosed with “multiple lung cancers”, thus we recorded their number as ≥2
per case. The tumour number in Case #9 in Family #7 was recorded as one
due to incomplete information regarding other pre-cancerous and pre-invasive
lesions in the lung
cIncluding five non-small cell lung cancers and one squamous cell lung cancer
dWe recorded the mutated tumours in Case #29 in Family #17 as two (one
L858R and the other 19del) due to no detailed information. Other mutations
included G719C/S/A and exon 20 insertions
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secondary mutations (except L858R) cost less energy to
keep EGFR in the activated configuration than in the
inactivated state, thus causing activation of EGFR [44].
For this reason, V769M is more likely to combine with
other mutations than L858R [44], which might be indir-
ectly evidenced by the case reports from the COSMIC
database where no concurrent V769M and L858R muta-
tions have been recorded yet [75]. The other three fam-
ilies, germline R776H with a somatic mutation at codon
719 [43], and germline V834 L [47] and V843I [46] with
somatic L858R among different family members, also
caught our attention. However, in the records from
COSMIC, no exclusive relations between these double
mutations have been observed in the R776H, V834I or
V843 L-mutated cases (but note that the origin of these
mutations in COSMIC – somatic or germline - are
mostly unknown and the sample size was small) [75].
Thus, coincidence could not be excluded here. Whether
some other precise mechanisms are associated with the
preferential combinations in dual/multiplex mutations,
like energy balance, and how they function, have yet to
be clarified.
Most of the remaining families had germline CPGs

functioning in response to DNA damage or regulating
DNA repair pathways, including BRCA2 [51], CHEK2
[50], TP53 [52–59] and PMS2 [59]. Carriers of these
CPGs are vulnerable to familial cancers or inherited can-
cer syndromes, which could overlap with lung cancers,
i.e. BRCA2 in hereditary breast/ovarian cancer [51], APC
in familial adenomatous polyposis [60] and TP53 in Li-
Fraumeni Syndrome [52–59]. Somatic EGFR mutations
in these lung cancers are tentatively deletions or inser-
tions (Table 2). Remarkably, these cases are affected with
multiple-site lesions. In a recent analysis of germline se-
quencing data of 555 lung adenocarcinomas from
TCGA, the authors found about 2.5% of the lung cases
carried the germline mutations that could be linked to
inherited risk [65]. Most of them are in DNA repair
pathways, including ATM (7, 1.3%), TP53 (4, 0.7%) and
BRCA2 (1, 0.18%) [65], which are closely associated with
familial cancer syndromes. What’s more, individuals car-
rying these predisposing genes or cancer syndromes
would have an increased risk of lung cancer [76–78].
Somatic driver mutations, including EGFR mutations,

occur early in lung cancer evolution, and these early-
occurring mutations tend to be histological-subtype-
specific [79]. Generally, squamous-cell lung cancer
harbours remarkably more clonal mutations (relating to
early driver mutations) than lung adenocarcinoma due
to differences in smoking behaviours. In never-smoker
NSCLC females, somatic EGFR mutations are associated
with increased exposure to environmental tobacco
smoke [80]. Both active and passive smoking are exogen-
ous insults and could result in genotoxic damage which

can be enhanced when the endogenous DNA repair sys-
tem is compromised. Thus, there may be a genetically
definable subset of lung cancer patients harbouring
germline mutations involved in the dysfunction of DNA
repair system, where genomic instability may be a poten-
tial risk modifier for EGFR mutation in lung tumour.
BRCA1/2, the genes responsible for double-strand

break repairing, had a significantly lower expression due
to its promoter hypermethylation in lung adenocarcin-
oma [81], potentially mediating genetic instability in
lung tumorigenesis. Women with breast cancer have an
increased risk of synchronous lung cancer (Hazard Ratio:
5.86 in ages 40–69) and vice versa [82]. Members in the
hereditary branch of families of patients eligible for
BRCA test are at high risk of lung cancer, with an odds
ratio of 4.5 compared to those belonging to the non-
hereditary branch [78]. Twelve families in our curated
dataset reported family or personal history of breast or
ovarian cancer, five of which had germline BRCA1/2 de-
tected, and three probands had positive BRCA2 germline
mutations. All the three index cases were ADCs yet with
somatic EGFR mutated in different codons. Some small
subsets investigated the association between germline
BRCA1/2 mutation and EGFR-mutant lung cancer, but
didn’t have positive findings due to the rare frequency of
the BRCA1/2 germline mutations [51].
Nine index patients with germline TP53 mutation in

our dataset complexed with Li-Fraumeni Syndrome,
which is associated with multiple, often rare, cancers.
The nine index families presented early onset of cancer
at multiple sites across the families, which was typically
consistent with the clinical features of Li-Fraumeni Syn-
drome. The median age of the index patients was 34
years old at the diagnosis of lung cancer (range 22–57),
and females (7/9) and never-smokers (7/9) predomi-
nated. One case had concurrent somatic EGFR activating
mutation and HER2 point mutation [53]. Usually, these
two driver mutations occur mutually exclusively [83];
but in this case may result from defective DNA repair
due to TP53 mutation.
Somatically, HER2/ERBB2 is mutated in 2–4% of all

NSCLCS, of which 80%~ 100% are insertions in exon 20
[83]. Germline mutations in HER2 are also extremely rare:
only one in 12,833 Chinese lung cancer patients has been
identified by targeted next-generation sequencing. Yama-
moto et al. reported the germline mutation HER2 G660D
in the index family along with a germline HER2 V659M
mutation detected in a sporadic lung ADC [48]. Mutations
on the transmembrane domain could favour kinase activa-
tion and ERBB2 dimerization thus stimulating the MEK/
ERK signalling [84]. Both G660D and V659E are located
at the transmembrane domain. Their mutant proteins are
more stable than the wild-type and possess an oncogenic
potential by activating Akt and p38, thus facilitating cell
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growth and survival [48]. MET and EGFR are mutual
complements, which activate the PI3K-AKT pathway by
interacting with ERBB3; therefore, the inactivation of
MET by its heterozygous germline mutation could com-
plementarily enhance the EGFR-ERBB3-PI3K axis [49].
The oncogenic stress may explain the pathogenesis of
EGFR mutation in lung cancer [49].
Despite the evidence presented, we should bear in

mind is that cases available for the current study (both
the meta-analysis and the following dataset curation) are
very limited. Caution is warranted in the data interpret-
ation. Moreover, lung cancer is multifactorial and the
genetics basis is complex. Current research on cancer
predisposing genes is usually based on assumptions,
which would over-extrapolate the data [16]. Many sus-
ceptibility genes may only explain a small portion of the
inherited susceptibility; but these genes with small or
moderate effects might, in combination, act additively or
synergistically to result in lung cancer susceptibility. The
acquisition of specific somatic mutations in a back-
ground of predisposing genes may drive cancer evolution
in a particular direction. Which genes behave this way
and how the genetic aberrations function during lung
cancer evolution are still undetermined.
Regarding the current study, other drawbacks besides

data limitation include: 1) recall bias and selective
reporting bias due to retrospective study designs; 2)
mostly Asian patients, which are possibly not representa-
tive of other ethnicities; 3) heterogeneity in detection
methods [85]; 4) intra-tumour heterogeneity (one single
diagnostic assessment may not represent the whole pic-
ture) [79]; 5) differences in definitions regarding EGFR
positive mutation (however, we presume the conclusion
would not be significantly changed, since L858R and
19del are the most frequently mutated in lung cancer
and other mutations reported in the studies we pooled
here are limited); 6) heterogeneity in study populations
(subgroup analysis in the current meta-analysis may
help); 7) bias resulting from self-reported family history
(However, this may not be a major issue, since there is a
high positive predictive value and sensitivity in it by a re-
cent systematic review [86]).

Conclusions
Given current evidence and our observations, there are
potentially different genetic modifiers in somatically
EGFR-mutant lung cancers from their wild-type coun-
terparts. Familial lung cancers tentatively favour adeno-
carcinoma, females, never-smokers, coexistence with
secondary somatic EGFR mutation and occasionally
multi-focal lesions. Among them, germline EGFR muta-
tion carriers affected with lung cancers are more fre-
quently the White ethnicity. Some mechanisms such as
energy balance may attribute to the specific secondary

EGFR mutation type in the tumour of familial cases.
However, caution needs to be taken when interpreting
the data, as it is incomplete. Further studies on this topic
should be encouraged, which will hopefully provide a
more detailed genetic landscape for lung cancer
aetiology.
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