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Abstract

Background: To explain the association between adjuvant radiation therapy after breast conserving surgery (BCS
RT) and overall survival (OS) by quantifying bias due to confounding in a sample of elderly breast cancer
beneficiaries in a multi-state region of Appalachia.

Methods: We used Medicare claims linked registry data for fee-for-service beneficiaries with AJCC stage I-lll, treated
with BCS, and diagnosed from 2006 to 2008 in Appalachian counties of Kentucky, Ohio, North Carolina, and
Pennsylvania. Confounders of BCS RT included age, rurality, regional SES, access to radiation facilities, marital status,
Charlson comorbidity, Medicaid dual status, institutionalization, tumor characteristics, and surgical facility
characteristics. Adjusted percent change in expected survival by BCS RT was examined using Accelerated Failure
Time (AFT) models. Confounding bias was assessed by comparing effects between adjusted and partially adjusted
associations using a fully specified structural model.

Results: The final sample had 2675 beneficiaries with mean age of 75, with 81% 5-year survival from diagnosis.
Unadjusted percentage increase in expected survival was 2.75 times greater in the RT group vs. non-RT group, with
5-year survival of 85% vs 60%; fully adjusted percentage increase was 1.70 times greater, with 5-year rates of 83% vs
71%. Quantification of incremental confounding showed age accounted for 71% of the effect reduction, followed
by tumor features (12%), comorbidity (10%), dual status(10%), and institutionalization (8%). Adjusting for age and
tumor features only resulted in only 4% bias from fully adjusted percent change (70% change vs 66%).

Conclusion: Quantification of confounding aids in determining covariates to adjust for and in interpreting raw
associations. Substantial confounding was present (60% of total association), with age accounting for the largest
share (71%); adjusting for age plus tumor features corrected for most of the confounding (4% bias). The direct
effect of BCS RT on OS accounted for 40% of the total association.
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Background

Radiation therapy (RT) after breast conserving surgery
(BCS) in non-metastatic breast cancer (BC) patients has
been shown in clinical studies to improve long term (>
10 years) survival [1-4], compared to BCS alone. Thus
adjuvant RT has been a consistent recommendation in
standard of care guidelines for Stage I-III patients under-
going BCS [5-7]. Analysis of registry data, at the popula-
tion level, suggests even larger survival benefits of RT [8,
9] and detectable differences in short term survival (<6
years), which remains in certain subpopulations even
after adjusting for relevant confounders [10-12].

A major challenge of the latter real-word or “effectiveness
“studies is to explain the magnitude of the association of a
recommended therapy, such as RT, on survival apart from
the influence of important confounding factors, which often
include comorbidity, access to care, socio-economic status,
and quality of care [10, 11]. Such a quantification of con-
founding may be important in determining whether a co-
variate needs to be adjusted for in an analysis and aid in the
interpretation of unadjusted associations [13].

In this study, we document the effect of adjuvant RT
on survival to model and quantify the magnitude of the
benefit from treatment that may be due to significant
confounding. Methods for quantifying confounding have
been well-documented which enable investigation of con-
founding bias [13] and which are implemented in this
paper. The study population is a sample of a mostly elderly
population residing in Appalachian counties of 4 states
(Pennsylvania, Ohio, Kentucky, North Carolina) as defined
by the Appalachian Regional Commission and chosen to
capture the breadth of the Appalachian region. This geo-
graphical region has higher cancer incidence and mortality
rates [14—16], applicable to breast cancer mortality as well
[17], with heterogeneous economic diversity [18], poor
health care accessibility [18, 19] significant medically
underserved pockets [18], and is distinct from regions from
studies using SEER (Surveillance, Epidemiology, and End
Results Program)-Medicare linked databases [20—22].

Methods

Study population

Female sample beneficiaries with breast cancer and diag-
nosed from 2006 to 2008 resided in the four state region
of Appalachia defined by the Appalachian Regional Com-
mission (see Additional file 1 map, section 3). Beneficiary
characteristics were extracted from each state cancer
registry. Beneficiaries were then linked to their corre-
sponding Medicare claims from 2005 to 2009 by matching
social security number, birth date, and gender. Conform-
ing to published inclusion criteria [23], beneficiaries were
restricted to having diagnostically confirmed breast can-
cers, fee for service (FFS) continuous Medicare enrollment
1 year after and before diagnosis, a first cancer diagnosis,
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no multiple/concurrent cancers within 90 days, 1 year sur-
vival after cancer diagnosis, AJCC (American Joint Com-
mittee on Cancer) stage I-III, and BCS during 6 months
after diagnosis.

Study variables

Overall survival was derived from a composite of up-
dated registry NDI (National Death Index) survival and
Medicare beneficiary death date updated until Dec 2014.
Identification of BCS was based on registry primary site
surgery variable supplemented by Medicare claims using a
study-specific algorithm [23]. Codes used included registry
site-specific codes (10-20), ICD-9-CM procedure codes
85.20-8.23, 86.25, and HCPCS/CPT codes 19,120, 19,125,
19,126, 19,160, 19,162, 19,301, 19,302 [23]. Identification
of Adjuvant RT was based on a registry radiation sequence
variable supplemented by Medicare claims using look-up
tables provided by the NCI (National Cancer Institute)
[24]. RT was assumed given if radiation codes appeared
for 15 days after surgery during the year after diagnosis.

Geographical variables included county level measures
for rurality based on the US Department of Agriculture
2013 Beale codes [25] and an area deprivation index
(Singh) based on 2000 census measures [26]. The num-
ber of hospitals/health care systems with radiation ser-
vices within a 50 mile straight-line radius from patient
residence was calculated as a measure of accessibility, as
determined from AHA (American Hospital Association)
annual 2010 survey database [27]. The 50 mile cut-off
was chosen based on choosing the cut-off with strongest
prediction of RT delivery, based on fitting a logistic
regression with RT delivery rate as a function of succes-
sively increasing distance thresholds ranging from 25 to
100 miles in 5 mile increments.

Potential confounders included beneficiary comorbidity,
enrollment in Medicaid during year after diagnosis, and
being institutionalized. Comorbidity was based on a
Charlson-Deyo score [28, 29] calculated during the year
prior to diagnosis. Institutionalization was assessed if either
at least two claims existed with shared living, nursing/cus-
todial facility, or hospice, or beneficiary had more than 15
days in a skilled nursing facility during the year after diag-
nosis. Other confounders consisted of age at diagnosis,
marital status (single vs married), AJCC Derived Stage (LI,
III), first cancer, grade, histology, positive lymph nodes,
ER/PR (Estrogen/Progesterone) positive tumor, tumor size,
total number of beds and therapeutic radiology services of
surgical facility [23], facility accreditation with the COC
(Commission of Cancer) obtained from a web site locator
during 2011 [30], and surgical provider volume calculated
from claims during the calendar year 2008.

Although RT after BCS has been viewed as guideline
for all cases [6, 7], other authors suggest RT as optional
for subgroups of elderly patients, such as patients jointly
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aged =70 years, with ER/PR positive, <2 cm, and node
negative tumors [23]. These recommendations are based
on findings documenting lower benefit of RT in these
subgroups [31, 32] . As a result, an indicator for optional
RT was included as a potential confounder.

Statistical methods

The primary effect of interest is percent change in ex-
pected survival time (E[T]) between survival for patients
if they receive BCS-RT vs if they do not receive BCS-RT
(6 = (E[T(1)] - E[T(0)]) / E[T(0)]). Confounding bias is
defined as the difference (A) between the marginal asso-
ciation 6, (E[T|X=1] - E[T|X=0]) /E[T|X=0] and §
[13]. Incremental confounding (IC) is the decomposition
of this bias into contributions from each confounder.

Several methods have been suggested to estimate 6, A,
and IC, which include standardization and Inverse Prob-
ability of Treatment Weights (IPTW) [13]. However, a
regression based approach, is an alternative. Advantages
of this method include its similarity to traditional regression
techniques. Also, §, A, and IC can be calculated under the
presence of interactions with the main exposure. Doubly
robust approaches combining IPTW and regression simul-
taneously may further protect against misspecification [33].
However, the statistical properties in the context of cen-
sored survival data and confounding quantification remains
to be studied and is not covered in this paper.

Directed Acyclic Graphs (DAGS) (Fig. 1) are first pre-
sented to clarify the causal structure between variables.
Figure 1 a describes the assumed causal network, where
the topmost layer of nodes represents confounder vari-
ables ordered from antecedent to subsequent in a causal
chain, and the bottom layer describes nodes representing
the exposure (BCS-RT) and outcome (Survival). The quan-
tification method successively conditions on confounders
and uses the conditional associations between exposure-
outcome. Graphically, pathways leading through condi-
tioned nodes cease to contribute to the association,
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allowing for progressive elimination of pathways until a
direct causal effect can be estimated [34]. The method of
successive conditioning is applicable even if latent variables
affect or are affected by the confounders, as illustrated in
Fig. 1 b. One exception is shown in Fig. 1 ¢, where latent
variables simultaneously affect one of the confounders,
leading to an additional non-causal bias. Similarly, omitting
important confounders (Fig. 1 d), results in biased effects.

Once the causal network has been considered, a para-
metric Accelerated Failure Time (AFT) model linking
predictors to overall survival time was fit to the data. Al-
though AFT models are a less applied alternative to the
more popular Cox Proportional Hazards model [35, 36],
an advantage is that log survival times are regressed dir-
ectly on a linear combination of predictors, with an error
term commonly following a log logistic, Weibull, or an
exponential distribution. Percentage change in survival
time compared to reference value can be calculated from
the regression weights [37, 38]. Effects were considered
statistically significant if False Discovery Rate (FDR) ad-
justed p-values were < .05 [39].

We sought to reduce several sources of misspecifica-
tion bias for the full model. Estimation bias due to mis-
specification of the error distribution was addressed by
choosing the model with lowest AIC (Akaike Informa-
tion Criterion) [40]. A second source of bias exist if ef-
fect heterogeneity was present. Initially, a main effects
AFT model was fit assuming the effect represents an
average across covariate levels. Effect heterogeneity was
then investigated through subgroup analysis, examining
the effect of RT across all covariate levels; interaction
terms were added to the main effects model if their sep-
arate interaction test p-values < .05. Other sources of
bias concerned the possibility of misclassification error,
which is not considered in this paper, and endogeneity
bias, where the error term is correlated with the expos-
ure. For the fully adjusted model, we expect the error
term to be uncorrelated under the assumption that no
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Fig. 1 Directed Acyclic Graphs for Confounding Quantification. Shows causal graphs under which quantification is applicable or not applicable
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residual confounding is present. Finally, non-informative
censoring was assumed.

The next step consisted in estimating the effects §, 6,
and partially adjusted effects 6z used to assess incremen-
tal confounding. These quantities were estimated using
estimates from the fully adjusted and partially adjusted
models. The partially adjusted models retained the same
specification as the fully adjusted model but without var-
iables that were not adjusted for. More detail is provided
in the Additional file 1, section 1. From these quantities,
overall A and decomposition of A into increments were
calculated, where each increment assessed the change in
confounding bias. Confidence intervals were calculated
by non-parametric bootstrapping (1000 resamples) with
replacement and using percentile method to determine
endpoints.

Model based survival curves after confounder adjust-
ment were calculated using the “direct adjusted” method
[41-43] which averaged predicted survival from the fully
specified model at each time point for each patient. In
addition, Kaplan Meier (KM) and unadjusted model-
based curves based on an unadjusted AFT model asses-
sing the uncontrolled association between BCS-RT sur-
vival were calculated.

In order to treat missing data, multiple imputation (MI)
was conducted using the method by White and Royston
[44], which adds the cumulative hazard and censoring
variable to the imputation model. Missing values were
then imputed using the FCS (Fully Conditional Specifica-
tion) method available in the SAS procedure MI, v9.3. To
improve compatibility of the imputation model with the
analysis model with interactions, the MI procedure was
implemented separately on RT strata. In order to integrate
MI into the calculation of confidence intervals, the data
was bootstrapped first and MI was conducted for each
bootstrap, as recommended in [45].

Results
The final sample consisted of 2675 beneficiaries. From
Table 1, the average age was 75, most patients lived in
metropolitan regions (59%), average number of local ra-
diation facilities was 5, average Charlson score was 1.34
(standard deviation = 1.62), only 15% where Medicaid
duals, 6% were institutionalized, 70% were Stage I, 85%
had first cancer tumors, 50% had moderately differenti-
ated grade, 92% had Ductal/tubular histology, 85% were
lymph node negative, 88% were ER/PR positive, average
tumor size was 1.6 cm, 71% patients had surgical treat-
ment in a COC designated facility, with average number
of 339 beds, and 77% of such facilities offered radiation
services. Lastly, 56% did not meet optional radiation
therapy criteria.

Significant predictors of increased OS based on the
fully adjusted main effect AFT model, using percent
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change (% CH) in expected survival as a measure of ef-
fect (Fig. 2), included receiving RT (% CH = 63), younger
age (Q1,Q2,Q3 vs Q4, %CH =131,84,50), urban resi-
dence (vs rural, %CH =47), lower Charlson comorbidity
(0,1 vs 2+ vs 3, %CH =82, 39), stage II (vs III, % CH =
39), no prior cancer diagnosis (%CH =23), ER/PR posi-
tive (vs negative, %CH = 31), smaller tumor size (Q1, Q2,
Q3 vs Q4, %CH = 83,60,49). Decreased OS was predicted
by OH residence (vs PA, % CH = - 18), Medicaid Dual
insurance status (% CH = - 20), and being institutional-
ized (% CH = - 51). Figure 3 shows results from the sub-
group analysis. Variations, or heterogeneity, in the RT
effect size, was detected for being institutionalized (%
CH Yes=5 vs No =54, p=.0160), stage (% CH I1=33,
I1=73, Il =107, p=.0016), first cancer (% CH Yes =58
vs No =9, p =.0022), lymph nodes (% CH Positive = 78
vs Negative =43, p =.0506), tumor size (% CH Q1 =36,
Q2 =33, Q3=27, Q4=90, p=.0005), and optional RT
(% CH optional Y =24, N =74, p <.0001).

Figure 4 shows the quantification of confounding
based on comparing population averaged expected sur-
vival change (% CH), where survival is measured starting
1year after diagnosis. The unadjusted % CH for RT =
175%, suggesting expected survival for those who receive
RT is 2.75 times greater than those who were not treated
with RT, whereas the fully adjusted % CH based on a
model with interactions from subgroup analysis was %
CH=70%, or an expected survival 1.70 times greater
with RT (p<.0001). The difference between these two
quantities was statistically significant (A = 105, bootstrap
95 CI% 79,143).

When examining incremental confounding differences
compared to total differences in annual survival using
the default sequential order (left chart in Fig. 4), age ac-
counts to 72% of the difference, there is a 5% increase
due to adding geography, 5% reduction from marital status,
10% reduction from comorbidity, 10% reduction due to
adding dual Medicaid/Medicare status, 8% reduction due to
adding institutionalization, 12% reduction due to adding
tumor features, and 11% increase by adding the remaining
features. With the exception of institutionalization, all suc-
cessive confounding differences were significant based on
overlap of the 95% bootstrap confidence intervals with zero.

When confounders are separately added after adjusting
for age (right chart in Fig. 4), all except for geography
and ‘other’ contribute towards bias reduction. These in-
clude marital status (76% reduction) comorbidity (84%),
dual (88%), institutionalization (90%), and tumor fea-
tures (103%). In particular, adding age plus tumor fea-
tures only results in an % change effect of 66.4% which,
when compared to the fully adjusted effect of 69.5, is off
by a 4% bias.

Figure 5 shows KM and AFT model-based unadjusted/
adjusted survival curves stratified by RT and no RT
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Table 1 Characteristics and Predictors of Adjuvant Radiation Therapy (N = 2675)
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Overall N (%) N(%)

Age Quartile Grade® Niiss = 158
Q1 [£69] 700 (26.2) Well differentiated 712 (283)
Q2 [70-75] 701 (26.2) Moderately differentiated 1203 (47.8)
Q3 [76-80] 609 (22.8) Poor/Undifferentiated 602 (23.9)
Q4 [81+] 665 (24.9) Histology
Mean (Std) [IQR] 74.8 (84) [11] Tube/colloid 138 (5.2)

Rural Status Other 74 (2.8)
Metro 1584 (59.2) Ductal/lobular 2463 (92.1)
Urban 967 (36.2) Lymph Nodes
Rural 124 (4.6) Positive 413 (154)

Singh Index Negative 2262 (84.6)
Q1 [Highest SES] 687 (25.7) ER/PR positive Nmiss = 99
Q2 674 (25.2) Positive 2264 (87.9)
Q3 649 (24.3) Negative 312 (12.1)
Q4 [Lowest SES] 665 (24.9) Tumor Size Nmiss = 88
Mean (Std) [IQR] 86.3 (13.3) [16] Q1 [£9mm] 708 (27.4)

Access to Near Radiation Facilities Q2 [10-13] 601 (23.2)
Q1 [£2] 1056 (39.5) Q3 [14-20] 727 (28.1)
Q2 [3-4] 497 (18.6) Q4 [20+] 551 (21.3)
Q3 [5] 530 (19.8) Mean(Std)[IQR] 157 (11.5) [11]
Q4 [6+] 592 (22.1) COC status
Mean (Std) [IQR] 47 (47) [3] Yes 1898 (71.0)

Region No 777 (29.1)
Kentucky 251 (94) SF Number of Beds Niniss = 32
North Carolina 504 (18.8) Mean (Std) [IQR] 339 (244) [279]
Ohio 525 (19.6) SF Radiation Services Niniss = 45
Pennsyvlania 1395 (52.2) Yes 2031 (77.2)

Marital Status Niniss = 72 No 599 (22.8)
Single 1390 (534) Optional RT Nmiss = 176
Married 1213 (46.6) Yes 1098 (43.9)

Charlson Comorbidity Score No 1401 (56.1)
0 1014 (37.9) Surg Provider Volume Niniss = 134
1 805 (30.1) Mean (Std) [IQR] 16.2 (20.3) [20]
2+ 856 (32.0) Adjuvant Radiation Therapy
Meand (Std) [IQR] 1.34 (1.62) [2] Yes 2128 (79.6)

Medicaid Dual No 547 (20.5)
Yes 387 (14.5) 0S Survival in months®®
No 2288 (85.5) Observed Mean 55 (1.9 [2.0]

Institutionalized
Yes 163 (6.1)

No 2512 (94.9))
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Table 1 Characteristics and Predictors of Adjuvant Radiation Therapy (N = 2675) (Continued)

Overall N (%) N(%)
Stage

Stage | 1869 (69.9)

Stage Il 697 (26.1)

Stage Il 109 (4.1)
First Cancer

Yes 2285 (854)

No 390 (14.6)

cohorts. The AFT curves are presented by dashed lines
and KM curves are continuous. As a diagnostic of good-
ness of fit, the model-based unadjusted curves closely
track the KM curves. Unadjusted 5 year OS rates were
60% vs 85%, compared to adjusted OS rates of 71% vs
83%, for those receiving RT after BCS vs BCS alone.

Discussion
In a typical population based patterns of breast cancer
care study, we quantified significant confounding of the

association between use of RT after BCS and survival.
Confounding variables accounted for approximately half
of the survival benefit of having received RT after
BCS vs not. This large magnitude of confounding
warrants caution in interpretation of treatment bene-
fits in population-based studies. While the specific set
of confounders that an investigator chooses to exam-
ine will depend upon various study attributes, and
could differ from ours, we nonetheless sought to test
a set of plausible confounders relevant to health

~
AFT Parameter Estimates and 95% CI Ref % Change LCL ucL fdr pval
Adj Radiation — 62.56 41.83 86.32 *
Age: [el} | — Qs 131.2 88.50 183.6 *
Age: Q2 e Q4 83.84 5578 117.0 *
Age: Q3 — Q4 4951 28.06 7454 *
Rurality:  Metro ; | Rural 29.24 -4.39 7468
Rurality:  Urban ; | Rural 47.10 10.82 95.26 *
Singh: Hi SES Q1 —_— Low SESQ4 14.99 -8.80 45.00
Singh: Qz2 P Low SESQ4 18.08 -4.27 45.64
Singh: Q3 e Low SESQ4 17.70 -1.50 40.65
Access: Low Q1 —_— HiQ4 -11.4 -28.8 10.10
Access: Q2 — HiQ4 -1.40 -206 22.44
Access: Q3 — HiQ4 -16.4 -30.8 1.04
Dx State: KY e | PA 19.56 -6.46 52.81
Dx State: NC — PA -2.07 77 16.56
Dx State: OH —— PA -17.5 -29.5 -3.50 *
Single: Y —— Married -9.17 -20.1 3.21
Charlson: 0 e — 2+ 82.39 57.98 1106 *
Charlson: 1 —— 2+ 38.81 21.08 59.14 *
Medicaid Dual: Y — N -19.7 -32.0 -5.22 *
In Institution: Y — N -51.1 -60.3 -39.8 *
Stage : I ; | 1] 27.23 -18.3 98.17
Stage : [} e 1] 38.89 542 82.99 *
First Cancer: Y P N 23.47 6.25 43.48 *
Grade: Well diff ——— Poor/Undiff 8.34 -10.2 30.78
Grade: Mod. diff —— Poor/Undiff 8.36 -7.47 26.89
Hist:  Ductal/Lob e Tube/colioid 21.44 -4.94 55.15
Hist:  Other | { Tube/colloid 28.57 -13.4 90.89
Lymph Nodes: Positive P Negative -21.9 -38.7 -0.37
ER/PR : Positive —— Negative 30.59 575 61.26 *
Tumor Size: Q1 —_—_ Q4 83.49 37.02 1457 *
Tumor Size: Q2 [} Q4 60.30 20.52 113.2 *
Tumor Size: Q3 F { Q4 49.20 13.90 95.45 *
MNo COC Status: Y e N -5.71 -17.9 8.31
# of Beds Trend —— 9.48 1.00 18.66
Provider Volume Trend = -0.06 -5.83 6.05
RT Facility Services — N -7.76 -20.6 7.16
RT optional : Y e N -7.03 -24.1 13.91
OS Survival Less Likely OS Survival likelier
~1|00 -5‘0 0I 5‘0 160
Note: Ref = Reference, % Change = % Change in expected survival, LCL, UCL = 95% Confidence Intervals, fdr pval = FDR adjusted p-value;
Estimates are based on main effects multivariate model.
Fig. 2 Predictors of OS survival. Shows parameter estimates for AFT multivariate model where adjuvant radiation and other covariates predict
overall survival
J
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AFT Parameter Estimates and 95% CI % Change LCL ucL Intp
Age: a1 ; i 704 346 1062 0.0947
Age: Q2 _— 67.8 367 98.8
Age: Q3 E— S | 218 -6.9 505
Age: Q4 P 47.0 278 66.2
Rurality:  Metro —_— 523 355 692 0.1536
Rurality Urban [ ——— 354 137 T ]
Ruralty:  Rural ! 90.1 328 1473
Singh: Hi SES Q1 L 58.1 337 825 07732
Singh: Hi SES Q2 P 47.5 225 72.4
Singh: Hi SES Q3 —_— 47.0 197 743
Singh: HiSES Q4 | T 399 147 65.1
Access: Low Q1 — 46.2 26.0 66.3 0.9932
Access: Low Q2 _ 49.8 184 812
Access: Low Q3 — 489 216 763
Access: Low Q4 [ 506 242 769
Dx State: KY t i 371 -52 79.4 0.9473
Dx State: NC | L 494 212 775
Dx State: OH —_ 46.1 16.0 762
Dx State: PA | e—| 505 325 68.5
Marital: Single P 526 365 687 0.3784
Marital: Married [ ———————————— 397 16.4 63.1
Charlson: o —_— 56.2 310 814 0.6404
Charison: 1 N — 50.7 277 738
Charison: 2+ — 419 224 615
Medicaid Dual: N | — 499 348 649 06290
Medicaid Dual: Y _ 423 142 703
In Institution: N —— 54.1 396 68.5 0.0160
In Institution: ¥’ ; { 52 -324 427
Stage : | | | 328 16.6 49.0 0.0016
Stage : " P 726 49.0 96.1
Stage : n | — 107.2 537 1606
First Cancer: N | | 9.4 -189 378 0.0022
First Cancer: Y —— 576 429 723
Grade: Well  diff e e | 358 102 615 0.4101
Grade: Moderate diff [ 51.1 325 69.8
Grade: Poor/Undiff e — 587 303 87.0
Hist: Ductal/Lobular e 46.5 323 60.7 0.2729
Hist: Other types ; 1006 358 1655
Hist: Tubular/Colloid i | 47.0 35 975
Lymph Nodes: Negative —— 432 285 57.8 0.0506
Lymph Nodes: Positive —_— 783 454 1112
ER/PR : Negative ; { 65.1 271 103.1 0.3715
ER/PR  : Positive [ — 46.4 320 60.8
Tumor Size: Q1 P 364 105 622 0.0005
Tumor Size: Q2 | ——— 335 6.7 60.2
Tumor Size: Q3 P 265 0.6 525
Tumor Size: Q4 e 90.0 66.1 1139
No COC Status: N P 514 355 67.4 0.4959
No COC Status: Y e 422 19.0 65.3
Provider Vol < Median P 472 307 63.6 0.8063
Provider Vol=> Median —q 514 289 740
Beds : < Median e 46.9 300 63.8 07477
Beds : => Median | ———— 513 308 71.8
RT Fac Services: N | e | 475 218 733 09119
RT Fac Services: Y | — 489 336 643
RT optional : N | — 738 550 926 <.0001
RT optional : Y e — 244 6.0 427

OS Survival Less Likely OS Survival likelier
r T T

T T
-100 -50 o 50 100

Note: % Change = % Change in expected survival between RT vs no RT, LCL, UCL = 95% Confidence Intervals; Int p = Wald Test of interaction, or,
differences in effects within group.

Fig. 3 Adjuvant Radiation Estimates by subgroup analysis. Shows parameter estimates for subgroup analysis

AFT Estimates and 95% ClI % LCL uCL
Unadjusted Adj RT e 17451385 21738
+Age ——— 98.8 732 1286  Age — 98.8 73.2 128.6
+ Geography [ 1042 78.0 1353  Age +Geography ——— 104.2 78.0 135.3
+Marital Status —— 99.3 739 1300  Age +Marital Status — 94.2 69.5 124.0
+Charlson i 885 64.1 1169  ge.Charson e, 86.7 63.0 114.3
+Dual — 790 562 1053  ago.pua e 823 59.0 109.3
+ Institution — 70.7 485 988 a6 snsitution —— 802 57.6 108.9
+Tumor Features ——— 589 348 822 o ures R Eodl 0O Gt
+ Other | 695 426 967 o omer A 101.9 77.6 130.1
' OS less likely ' ' I 0S more hkel)" 0 less likely 0S more likely
0 50 100 150 200 l; 2'5 5'0 7‘5 160 12'5 1;0

Note: % = % Change in population averaged expected survival between RT vs no RT; LCL UCL = Bootstrap 95% Confidence Intervals.

In the left figure, covariates are incrementally added from top (Unadjusted) to bottom (Fully adjusted). In the right figure, covariates are added
together as described by the labels. Estimates are based on an AFT model including two-way interactions with the following variables based on
subgroup analysis: Institutionalized, stage, first cancer, tumor size quartiles, optional RT, positive lymph nodes.

Fig. 4 Partially and fully adjusted RT population averaged % change. Shows confounder quantification metrics
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Fig. 5 Overall Survival Curves. Shows adjusted and unadjusted survival curves

services research and health disparities in breast can-
cer treatment in an elderly sample.

While adjusting for confounding factors in analyzing
the effect of BCS RT on survival is standard practice,
there are relatively few modern papers in oncology and
health disparities that examine and demonstrate the
magnitude of this source of bias. Prior studies have hy-
pothesized on possible mechanisms which may account
for unanticipated higher mortality rates in women who
forego RT after BCS, ranging from comorbidity, poverty,
and lack of access [11], with particular suspicion centering
on comorbidity and disability [23]. Our analysis suggests
that, while comorbidity and associated measures may con-
tribute towards reducing confounding bias incrementally
and individually, adjusting for age, and tumor characteris-
tics only as performed in most epidemiologic and ran-
domized studies [46—48] may account for most of the bias
(66% change vs 70% change, 4% bias, Fig. 4).

Age significantly had the most contribution to con-
founding (71%). Although this finding may not be note-
worthy given that age is a standard covariate in survival
analysis, the unexpected magnitude of contribution sug-
gests unadjusted RT survival curves may be subject to
substantial bias if not controlled for age.

Appalachian regions varied considerably by socio-
demographic characteristics. Most notably, patients in

KY lived in significantly more rural areas than PA (20%
vs 1%, p <.0001, using county-level USDA Beale codes)
with the average number of nearby radiation facilities
within a 50-mile straight-line radius of patient residence
in KY being significantly lower than PA (1.31 vs 6.2,
p<.0001), and with significantly lower regional SES
(p <.0001) as well. Patients living in KY and NC were
significantly less likely than PA to receive RT by ap-
proximately 6 percentage points. However, the addition
of geographic variables to the age adjusted model re-
sulted in an increase in the association of RT on OS.
This result is explained by a pattern of better survival in
KY compared to other states. For example, a percent
change in survival of 20.6% vs PA, 46.0% vs OH, and
22.7% vs NC was observed under the main effects
model. This was unexpected given KY’s rurality. After
adjusting for state of residence, the other geographical
measures, including health care access, SES (Socioeco-
nomic Status), and rurality, are not related to receipt of RT
and thus do not contribute to incremental confounding.
Consistent with comorbidity being hypothesized as an
important confounder [10], its contribution to incre-
mental confounding ranks was positive (11%) although
not as strong as we expected. Confounding may occur
because higher comorbidity coincides with increased risk
of death and at the same time women who have more



Camacho et al. BMC Cancer (2019) 19:1228

comorbidity are less likely to receive RT. Furthermore,
this contribution may be stronger than in other samples
given that the generally higher rates of comorbidity in
rural Appalachia than more affluent areas of the United
States may increase the importance of this source of
confounding [49, 50]. Alternatively, it is possible the
Charlson-comorbidity score does not fully capture a pa-
tient’s level of illness unrelated to cancer as similar sam-
ples have reported lower rates of no-comorbidity [51].

A related health status confounder was institutionalization
assessed as ongoing care in a skilled nursing facility or
receipt of domiciliary care. While few population-based
patterns of care studies include measures of this status
in their models, our findings suggest that it is a potential
source of confounding with regard to access to cancer
treatment and survival (8% in incremental confounding
using default order, 18% when age is included only, and
90% jointly with age). Institutionalized breast cancer pa-
tients may suffer from increased barriers to treatment and
should be considered in multivariate models comparing
treatments or populations.

Medicaid dual status, as an indicator of means-tested
poverty, also contributed to reduction of confounding
bias. The study region includes extremes of highly con-
centrated poverty in isolated rural areas of Appalachia to
more affluent regions in PA and urbanized areas. The ef-
fect of poverty on access to breast cancer care and on
outcomes is well documented in the literature [52—54]
and is commonly included, along with age, in analytical
models. The fully adjusted model included both area
poverty (Singh index) and individual-level poverty assessed
by dual status; both predicted access to RT (not shown)
but only the latter was a significant source of confounding
in the relationship of RT to OS.

We considered including concomitant treatments,
such as use of adjuvant endocrine therapy (AET) in the
survival model, but made the decision not to for three
main reasons. First, the analysis would have been limited
by the availability of pharmacy information for only two
thirds of the sample. Secondly, it was unclear in our esti-
mation whether such treatments are confounders, along
confounding pathways, or mediators of the association
between RT and survival, in which case the fully ad-
justed effect would be an over-controlled effect. Lastly,
in the case of AET, such therapy is restricted primarily to
ER/PR positive tumors and was not found to be predictive
of survival in this stratum after fully adjusting for the
other variables (% change =13, Not Significant), possibly
due to small sample size, low-risk observational popula-
tions, and too short follow-up to observe survival benefit.

The quantification approach assumes the data generat-
ing mechanism is a linear main effect AFT model with
potential two-way interactions between exposure (RT)
and covariates, which is a common assumption made
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when modelling using regression analysis. In addition fail-
ure to satisfy the backdoor criterion when conditioning on
confounders may bias the estimates and may occur as a
result of measurement error in the exposure/covariates or
presence of hidden latent confounders. Furthermore, in-
cremental confounding contributions may change de-
pending on the order of decomposition, though we think
our order is desirable as it follows antecedent causality
(i.e. age affects comorbidity and not vice-versa).

Informally, we view the strength of confounding as a
product of the association between the confounder with
receipt of RT and its association with survival. Although
the generalizability of the decomposition in other samples
may be affected due to variations in these associations, we
hypothesize the relative ordering and magnitudes will not
be substantial in population based samples, such as this
one involving elderly beneficiaries in the United States. In
such is the case, findings and implications will then be
applicable to similar settings.

Conclusions

We explored the contribution of confounding variables to
the unexpected, short-term OS benefit of the addition of
RT to BCS versus BCS alone seen in epidemiologic studies.
Quantification of confounding aids in determining covari-
ates to include in a multivariate model and in interpreting
raw associations. Substantial confounding was present
(60% of total association), with age accounting for the lar-
gest share (71%); adjusting for age plus tumor features cor-
rected for most of the confounding, resulting in only a 4%
bias. The direct effect of having received RT after BCS on
OS, however, seemed to account for 40% of the benefit.
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