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Abstract

Background: Castrate Resistant Prostate Cancer (CRPC) is an advanced disease resistant to systemic traditional
medical or surgical castration, and resistance is primarily attributed to reactivation of AR through multiple
mechanisms. TMPRSS2-ERG fusions have been shown to regulate AR signaling, interfere with pro-differentiation
functions, and mediate oncogenic signaling. We have recently shown that ERG regulates intra-tumoral androgen
synthesis and thereby facilitates AR function in prostate cancer cells. We hypothesize that enzalutamide treatment
will be more effective in cells/tumors with TMPRSS2-ERG translocations because these tumors have increased AR
signaling.

Methods: ERG knockdown was performed with VCaP cells using lentiviral infections to generate VCaP ERGShRNA
cells and control VCaP scr cells with scrambled shRNA. Cell-growth analysis was performed to determine the effect
of enzalutamide. Reverse transcription, quantitative real-time PCR (RT-gPCR) was used to determine the expression
of AR responsive genes. Luciferase tagged VCaP scr and shRNA infected cells were used in an intra-tibial animal
model for bone tumor growth analysis and enzalutamide treatment used to inhibit AR signaling in bone tumors.
Western blotting analyzed VCaP bone tumor samples for ERG, AR, AKR1C3 and HSD3B1 and HSD3B2 expression.

Results: Enzalutamide inhibited the growth of VCaP scr cells more effectively than shERG cells. Analysis of AR
responsive genes shows that Enzalutamide treatment at 5 micromolar concentration inhibited by 85-90% in VCaP
Scr cells whereas these genes were inhibited to a lesser extent in VCaP shERG cells. Enzalutamide treatment
resulted in severe growth inhibition in VCaP scr shRNA cells compared to VCaP shERG cells. In bone tumor growth
experiment, VCaP ERG shRNA cells grew at slower than VCaP scr shRNA cells. Androgen biosynthetic enzyme
expression is lower VCaP shERG bone tumors compared to VCaP scr shRNA bone tumors and enzalutamide
inhibited the enzyme expression in both types of tumors.

Conclusions: These data suggest that ERG transcription factor regulates androgen biosynthetic enzyme expression
that enzalutamide treatment is more effective against VCaP bone tumors with an intact ERG expression, and that
knocking down ERG in VCaP cells leads to a lesser response to enzalutamide therapy. Thus, ERG expression status in
tumors could help stratify patients for enzalutamide therapy.
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Background
Androgen deprivation therapies in prostate cancer pa-
tients are effective in reducing systemic levels of andro-
gens. However, studies demonstrate that intratumoral
androgens do not change significantly, and those levels
are sufficient to activate AR growth signaling pathways
[1-4], suggesting that, in a castrate environment, tumors
have the capability to make local androgens. Subsequent
studies showed that in CRPC, tumor tissues exhibit en-
hanced levels of androgen biosynthetic enzyme expres-
sion [5, 6]. Production of tumoral androgens in the
castrate environment can be enhanced from adrenal pre-
cursors such as dehydroepiandrosterone (DHEA) and
androstenediol, and directly from cholesterol. Several
studies suggest that, downstream of the CYP17 gene in
the androgen pathway, there could be a viable alternate
target for intratumoral androgen production [7-10].
How expression of these androgen biosynthetic enzymes
is regulated in CRPC remains to be investigated. We
showed for the first time that ERG transcription factor
regulates androgen biosynthesis and subsequent AR acti-
vation in prostate cancer cells [11]. ERG transcription
factor is expressed in PC tumors from TMPRSS2-ERG
fusion gene and the presence of this fusion is highly
prevalent in PC patients, including CRPC. The presence
of TMPRSS2-ERG fusions is associated with high grade
disease [12], and different subsets of rearrangements in-
cluding 2 + Edel, T2-E4, and the presence of a 72 bp in-
sert in the ERG gene are associated with aggressive
disease characteristics [13—15]. ERG has been shown to
bind AR responsive gene promoters throughout the gen-
ome and regulate AR signaling, interfere with prodiffer-
entiation functions, and mediate oncogenic signaling
[16]. Also cooperation between AR and ERG drives inva-
sive adenocarcinoma [17] even in the castrate environ-
ment [18]. However, mechanisms underlying the
cooperation of AR and ERG with each other in a low an-
drogen environment remain unknown. In a low andro-
gen CRPC state, AR reprograms gene expression for
enhanced cell cycle progression [19], which is distinct
from the prodifferentiation function. ERG fusion status
is also related to abiraterone acetate therapy responsive-
ness, where fusion positive patients responded well to
therapy, suggesting a role of the fusion gene in androgen
production [20]. Our previous study supports this notion
and defined a feed forward loop consisting of
TMPRSS2-ERG fusions, androgen biosynthetic enzymes
and AR activation operating in prostate cancer cells
which drives intracellular DHT production. In this study,
we tested the biological significance of ERG induced an-
drogen production on bone tumor growth and targeting
AR signaling with enzalutamide.

Bone metastases are highly prevalent occurrences in
both hormone-naive and CRPC patients. Androgen
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receptor expression is prevalent in bone metastases
where both full length [21] and shorter AR variants [22,
23] are expressed in metastasized prostate tumor cells.
Nuclear AR staining in bone metastases associate with
poor outcome in patients, suggesting AR signaling in
promoting bone tumor growth [21]. At a cellular level,
AR expression and signaling has been active in mature
osteoblasts, osteocytes, and stromal cells [24—-26] that
maintain normal bone function. In support of this argu-
ment, a clinical trial with abiraterone acetate showed
that treated patients have lower testosterone levels in
bone marrow tumor biopsies [27], suggesting the preva-
lence of androgen production in bone metastatic sites.

Our previous study demonstrates that AR/ERG/An-
drogen biosynthetic enzymes form a feed forward loop
in TMPRSS2-ERG fusion positive cells for androgen
production and growth [11]. This study is focused on
determining the impact of breaking this feedforward
loop on bone tumor growth. We utilized ERG knock-
down approach in TMPRSS2-ERG positive cells and tar-
geting the AR function with enzalutamide for bone
tumor growth. We show that ERG positive cells/tumors
are highly responsive to enzaluatimde treatment. AR re-
sponsive genes in CRPC state are inhibited by enzaluata-
mide treatment in ERG positive cells. Androgen
biosynthetic enzyme gene expression is inhibited in ERG
knockdown tumors andenzalutamide significantly inhib-
ited androgen biosynthetic enzyme expression in ERG
positive tumors likely through abrogating the feedback
back mechanism involving AR/ERG/androgen biosyn-
thetic enzyme expression [11]. This data supports the
notion that TMPRSS2-ERG fusion positive tumors are
better responders to enzalutamide therapy.

Methods

Cell lines and treatments

The parental VCaP cell line was obtained from ATCC
(Catalogue number CRL-2876) and cultured in DMEM
media. Preparation of VCaP Scrambled shRNA and
VCaP shERG RNA cells were described previously [11].
Cell lines were cultured in a humidified incubator with
5% CO, at 37 °C. All media were supplemented with 2
mM glutamine, 100 units/mL penicillin, and 100ug/mL
streptomycin (Life Technologies Inc., Carlsbad, CA).
VCaP Scrambled shRNA Control and VCaP shERG
RNA cells were maintained in ATCC-DMEM media
supplemented with (0.3pug/mL) puromycin. Both cell
lines were authenticated with STR analysis (Genomics
core at Michigan State University, East Lansing, MI)
and shown to have markers respective for each cell
line as established by ATCC and also tested for
mycoplasma contamination prior to use, with Venor-
GeM mycoplasma detection kit (Sigma Biochemicals,
St. Louis, MO).
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Cell proliferation

VCaP Scrambled shRNA and VCaP ERG shRNA cells
were seeded in a Cell-Bind 96-well, black culture plate at
a cell density of 10,000 cells per well in 100 pL media
supplemented with 10 uM of HEPES. Cells were seeded
in quadruplicates and incubated for 24 h (to allow adhe-
sion). The following day cells were treated with 5, 10
and 20 uM of enzalutamide. Cells were assessed for
growth at the indicated times (2, 3, and 5days) by
CyQuant NF cell proliferation fluorescence assay kit
(Cat# C35006- Invitrogen Molecular Probes). Growth
media and enzalutamide treatment were replenished at
day 3 for continued drug effect. Relative fluorescence
units were quantified using a fluorescent plate reader.

Gene expression

VCaP Scrambled shRNA and VCaP ERG shRNA cells
were seeded in 6 well plates at a cell density of 5.0 x 10°
cells per well. Cells were treated with 5 and 20 uM of
enzalutamide for 5 days, with media replenished on day
3. On day 5, RNA was extracted using the Trizol (Invi-
trogen, Carlsbad, CA) method. For RT-qPCR experi-
ments, cDNA was synthesized from total RNA using the
iScript cDNA synthesis kit obtained from Bio-Rad (cat.#
170-8891) with an Eppendorf Mastercycler. For RT-
qPCR experiments cDNA was amplified with primers
and SYBR green from Maxima SYBR Green/ROX qPCR
Master Mix (2X) obtained from Thermo Scientific (cat.#
KERK0221) using an Eppendorf Mastercycler Realplex*
qPCR machine. Fold change levels among gene expres-
sion were quantitated using comparative Ct method. In
this study AR responsive genes related to differentiation
such as PSA and TMPRSS2, and CRPC genes, such as,
UBE2C, CDK1, CCNA2 and CDC20 were analyzed.

PCR primers are listed in Table 1.

In vivo studies

For in-vivo studies VCaP Scrambled shRNA Control
and VCaP ERG shRNA cells were infected with
Luciferase-2 lentiviral particles in order to capture
in-vivo bioluminescence images of tumors. Castrated
five-week old male C.B.-17 severe combine immuno-
deficient (SCID) mice (Taconic Farms, Germantown,
NY) were used in this study. All the procedures

Page 3 of 10

including animal housing, surgery, imaging, the
methods of anesthesia and euthanasia prior to tumor
tissue analysis were performed as per the institu-
tional animal care and use committee approved
protocol. For intratibial implantation, 1.0 x 10° cells
in a 10 ul volume were injected per bone. Animals
were imaged periodically to measure bone tumors.
Animals with established bone tumors were random-
ized and treated with a dose of 50mg/kg body
weight of enzalutamide or placebo control by oral
gavage. Luciferase imaging of tumors were performed
with Carestream Invivo Xtreme system. At the end
of the experiment animals were euthanized with car-
bon dioxide inhalation method and bone tumors
were collected for Western blot analysis and quanti-
fying tumoral androgen levels.

Western blot analysis

VCaP shscrambled and shERG bone tumor were weighed
and supplemented with (100 mg tumor in 900ul. RIPA™Y)
RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl,
0.5% sodium deoxycholate, 1% NP-40) plus protease (1X
complete Mini protease inhibitor cocktail tablets) and
phosphatase (10 mM sodium pyrophosphate, 25 mM -
glycerophosphate, 25 mM NaF, 2mM NaVOs3) inhibitors
(RIPA™) and homogenized using a Precellys 24
Homogenizer (PEQLAB, Wilmington, DE), mixing end-
over-end at 4 °C for 15 min followed by centrifugation at
15,000xg for 15 min. Protein concentrations were deter-
mined using BCA reagent (Pierce), and 30-40 ug protein
was analyzed by Western blot analysis. Membranes were
blocked with 5% BSA/TBST and probed with primary
antibody in 5% BSA/TBST. Membranes were probed with
HRP-linked secondary antibody in 5% BSA/TBST. Protein
bands were detected using enhanced chemiluminescence
substrate and autoradiography film. Primary and second-
ary antibodies are listed in supplementary table below.
Densitometry was performed using Image] software
(NIH). The details of antibodies used in Western blot ana-
lysis were provided in Table 2.

Tumoral androgen quantitation
For tumoral testosterone measurements, total lipids were
extracted from bone tumor using a Sep-pak cartridge

Table 1

CRPC Genes Forward (5" = 3') Reverse (5" = 3)

UBE2C TGGTCTGCCCTGTATGATGT AAAAGCTGTGGGGTTTTTCC
CDK1 CCTAGTACTGCAATTCGGGAAATT CCTGGAATCCTGCATAAGCAC
CCNA2 CAGAAAACCATTGGTCCCTC CACTCACTGGCTTTTCATCTTC
CDC20 CCTCTGGTCTCCCCATTAC ATGTGTGACCTTTGAGTTCAG
TMPRSS2 CAGGAGTGTACGGGAATGTGATGGT GATTAGCCGTCTGCCCTCATTTGT
GAPDH ATCACCATCTTCCAGGAGCGA GCCAGTGAGCTTCCCGTTCA
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Table 2

Primary Antibody Vendor Catalog number Dilution
ERG 1/2/3 Santa Cruz Biotechnology 5C-28,680 1:5000
AR (N-20) Santa Cruz Biotech sc-816 1:1000
GAPDH Santa Cruz Biotech sc-25,778 1:10000
AKR1C3 Sigma Aldrich A6229 1:1000
HSD3B1 Sigma Aldrich WH0003283M1 1:1000
HSD3B2 Sigma Aldrich SAB1402232 1:1000
Secondary Antibody Vendor Catalog number Dilution
Anti-rabbit IgG, HRP Cell Signaling Technology 70745 1:5000
Anti-mouse IgG, HRP Cell Signaling Technology 70765 1:5000

obtained from Waters Corporation (Milford, MA,
WATO023590). Lipid samples were eluted with aceto-
nitrile into HPLC/MS/MS vials obtained from Micro-
SOLV Technology (Eatontown, NJ, 9512S-0CV vials,
9502S-10C-B tops) and subjected to HPLC/MS/MS ana-
lysis at the Wayne State University Lipidomics Core Fa-
cility as described previously [11].

Statistical analysis
Statistical analyses were performed using GraphPad
Prism Version 5.0.

Results

TMPRSS2-ERG fusion positive cell growth is sensitive to
enzalutamide exposure

Our previous study showed that ERG factor regulates
androgen biosynthesis and that intracellular androgen
production activates AR responsive gene expression [11].
Here we tested whether ERG factor could be a better
marker for androgen receptor mediated cell growth. We
have previously showed that VCaP cells in culture are
known to produce androgens and knockdown ERG with
shRNA leads to decrease in androgen production [11].
We generated a pair of isogenic VCaP cell lines, where we
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Fig. 1 Enzalutamide inhibits TMPRSS2-ERG fusion positive cancer cell growth. a Western blot analysis of VCaP Scr shRNA and VCaP ERG shRNA
cells for ERG and b-tubulin expression. ERG expression was normalized for b-tubulin and fold differences between VCaP Scr shRNA and VCaP ERG
shRNA cells were shown. b Cell growth analysis of VCaP scr shRNA and VCaP ERG shRNA cells treated with 5-20 uM concentrations of
enzalutamide for 3, 5 and 7 days. * Indicate the p < 0.05 between groups (DMSO vs. enzalutamide treatment) using student t-test and n =3
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stably infected with ERG shRNA to knock down ERG ex-
pression, or with scrambled shRNA as a control cell line
with intact ERG expression, Western blot analysis show
that ERG factor expression is significantly down regulated
in VCaP ERG shRNA cells compared to VCaP scr shRNA
cells (Fig. 1a). Treatment with enzalutamide showed that
VCaP scr shRNA cells are sensitive to cell growth inhib-
ition starting from 5pM concentration at day 5 and 7;
whereas, ERG knockdown cells did not show cell growth
inhibition at these concentration (Fig. 1b). Together these
data suggest that ERG expression confer the responsive-
ness to enzalutamide treatment.

Enzalutamide inhibits AR dependent gene expression in
ERG positive cells

Previous studies defined AR gene signatures specific to
the CRPC phase of disease are selectively upregulated
M-phase cell cycle genes [19], and expression of these
genes in ERG intact and knockdown cells were evalu-
ated. Data showed that CDK1, CCNA2 and CDC20 are
downregulated in ERG knockdown cells, whereas
UBE2C is upregulated in ERG knockdown cells; simi-
larly, among AR responsive genes, TMPRSS2 is down-
regulated in ERG knockdown cells and PSA is
upregulated in ERG knockdown cells (Fig. 2a). ERG has
been shown to regulate several AR responsive genes in
PC cells [16] and its knockdown in VCaP cells resulted
in upregulation of these genes.
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Both VCaP scrambled shRNA (high ERG) and VCaP
ERGshRNA (low ERG) cells were exposed to DMSO (as
a control) or 5 and 20 puM enzalutamide for 5 days.
QPCR analysis of AR responsive genes TMPRSS2 and
PSA, and CRPC genes UBE2C, CDK1, CCNA2 and
CDC20 shows that expression of all these genes was
highly downregulated at both concentrations in VCaP
scrambled shRNA (high ERG) cells (Fig. 2b). At 5uM
concentration of enzalutamide, 85-95% of these gene
expressions were downregulated and at 20 pM concen-
tration these gene expressions were downregulated to
the extent of 3 log units in ERG intact cells. However, in
VCaP ERG shRNA (low ERG) cells, enzalutamide did
not inhibit the TMPRSS2 gene expression at 5 pM con-
centration and all other genes were inhibited to a lower
extent compared to ERG intact cells, whereas at 20 uM
concentration the extent of inhibition in all genes is less
than in high ERG cells. Together, these data suggest that
AR inhibition through enzalutamide is effective in ERG
expressing cells compared to ERG knockdown cells and
that the expression of AR responsive genes were highly
inhibited in ERG intact cells compared to knockdown
cells.

Enzalutamide inhibits bone tumor growth in TMPRSS2-
ERG positive cells

Human bone tumor biopsy studies show that androgen
production is present in bone tumors and activation of
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AR signaling contributes to bone tumor growth. To de-
termine how ERG induced androgen synthesis contrib-
utes to bone tumor growth and whether ERG activity
can be a predictor for anti-androgen therapy responsive-
ness, we utilized an intratibial bone tumor growth model
with VCaP scr and ERG shRNA cells to address these
questions. Tumor growth analysis of both cells lines
show that VCaP ERG shRNA cells grow more slowly, re-
quiring 4 weeks longer to reach similar growth sizes as
assessed by luciferase imaging (Fig. 3a and d). When
both tumors reach comparable size, the animals bearing
bone tumors were randomized and treated with vehicle
(Tween 80) or Enzalutamide by oral gavage. Tumor
growth rate is slower in VCaP shERG tumors compared
to scr shRNA tumors (Fig. 3b and d). Enzalutamide
treatment resulted in significant reduction in tumor bur-
den in VCaP scr shRNA group compared to VCaP
shERG group (Fig. 3c and d). These data suggest that
ERG signaling contributes to bone tumor growth and
that AR targeting with enzalutamide significantly inhibits
the bone tumor growth presumably through interfering
with reduced ERG signaling.
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ERG knockdown and enzalutamide therapy inhibited
androgen biosynthetic enzyme expression

To determine enzalutamide responsiveness is related to
androgen synthesis in bone tumors, we evaluated the ex-
pression of key enzymes in androgen synthesis, AKR1C3,
HSD3B1 and HSD3B2, in bone tumors. Our previous
study demonstrated that ERG factor regulates the expres-
sion of these enzymes in prostate cancer cells. Bone tumor
analysis shows that ERG knockdown results in diminished
expression of AKR1C3 and HSD3B1 in bone tumors
(Fig. 4a and b). Enzalutamide treatment also inhibited the
expression of all three enzymes in bone tumors. Intratu-
moral androgens in bone tumors were measured by MS/
MS analysis. Testosterone was detected in vehicle treated
tumors, whereas no detectable levels of testosterone were
observed with enzalutamide treatment in both groups.
This could be due to very small size of tumors which pre-
cludes the detectable limit of testosterone through MS
analysis. The mean testosterone levels in VCaP scr shRNA
tumors were 23.13ng/mg protein whereas in VCaP
shERG tumors, they were 8.73 ng/mg protein, suggesting
ERG knockdown inhibited the testosterone production.
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These data suggest that ERG knockdown resulted in the
reduced expression of androgen biosynthetic enzyme ex-
pression and corresponding lower levels of testosterone in
bone tumors. Furthermore, enzalutamide therapy is more
effective in ERG positive bone tumor at inhibiting tumor
growth compared to ERG knockdown tumors.

Discussion

Intratumoral androgen synthesis is the mainstay for AR
signaling in castration resistance prostate cancer pro-
gression. Previous studies support this claim based on
overexpression of several androgen biosynthetic enzyme
expression coupled with enhanced utilization of adrenal
precursors for DHT production in human CRPC tu-
mors. To shed light on the transcriptional regulation of
androgen biosynthetic enzymes in tumors, we have pre-
viously shown that ERG factor regulates key enzymes in
androgen synthesis [11]; thus, TMPRSS2-ERG fusion
positive cancer cells producing intracellular androgens
are better responders to abiraterone therapy Herein, we
extended this concept to in vivo tumor studies. We
employed a model system of intact ERG expressing cells
(VCaP scr ShRNA) and ERG knockdown cells (VCaP
ERG shRNA) cells to test the role of ERG factor in anti-
androgen receptor inhibitor (enzalutamide) responsive-
ness. Our data show that enzalutamide inhibited the
growth of VCaP cells expressing TMPRSS2-ERG fusion
genes, but when ERG factor was stably knocked down
with lentiviral ShAERG RNA, tumor growth inhibition oc-
curred at lesser extent. Previous study showed a similar
enzalutamide dose (50 mg/kg body) inhibited subcutaneous
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LNCaP-AR tumors in the CRPC setting [28] suggesting
that at this concentration the drug is stable and inducing
the tumor regression, which is similar to its efficacy ob-
served in clinical trials with the CRPC patients. Two recent
clinical trials evaluated the efficacy of enzalutamide in prior
chemotherapy [29] and chemotherapy naive patients [30]
with metastatic prostate cancer. The skeletal related events
(SRE) such as number of bone lesions and bone pain was
evaluated in these trials as a secondary endpoint. In the
chemotherapy trial the enzalutamide significantly pro-
longed time to develop first SRE and in the chemotherapy
naive trial the enzalutamide significantly reduced the risk
for developing first SRE in patients.

The data support the notion that ERG regulation of
androgen synthesis in cancer cells leads to activation of
AR as shown by AR responsive gene expression and this
process is amenable to AR inhibition through enzaluta-
mide for in vivo tumor growth, whereas when ERG fac-
tor is downregulated, intracellular androgen synthesis is
downregulated and AR is no longer active (as shown by
lower AR responsive gene expression), thus, not allowing
anti-AR inhibitor enzalutamide to exert to growth inhib-
ition to the extent of inhibition observed with ERG in-
tact tumors (Fig. 5). Among androgen biosynthetic
enzymes, we found that HSD3B1/2 and AKR1C3 and
are key enzymes regulated by ERG factor in TMPRSS2-
ERG fusion positive cells [11]. Enzymatic pathways of
these two enzymes have been shown to be key determinants
of DHT production through androstandione (5 a-dione)
pathway, where HSD3B family enzymes catalyzes the irre-
versible step of converting DHEA to androstendione; and
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AKRIC3 is an aldo-keto reductase, which uses androsten-
dione and androstanedione for testosterone and DHT pro-
duction, respectively. Steroid receptor dehydrogenease 1, 2
converts testosterone to DHT as well as androstenedione to
androstanedione, while previous study show that the for
SRD1,2 enzymes androstendione is a preferred substrate
over testosterone [31] thus overexpression of HSD3B1/2 and
AKRI1C3 in TMPRSS2-ERG fusion positive cells leads to
production of DHT from adrenal androgens. Bone tumor
analysis of these enzymes show that ERG knockdown tu-
mors have lower expression, suggesting in vivo function of
ERG in maintaining the enzyme expression in bone tumors.
Enzalutamide treatment resulting in suppression of AKR1C3
and HSD3B1/2 in tumor cells leads to inhibition of bone
tumor growth. Previous studies show that AKR1C3 has been
upregulated in abiratarone resistant tumors [32, 33], suggest-
ing that, in the AR responsive phase, androgen biosynthesis
is inhibited but that, in resistance phase, tumor cells acquire
the capacity to overexpress AKR1C3 enzyme. Further, treat-
ment of abiraterone resistant tumors with AKR1C3 inhibitor
indomethacin leads to inhibition of testosterone production
in cells and in vivo tumor growth. Enzymatic function of
AKRIC3 in maintaining DHT production in CRPC phase
and overexpression of AKR1C3 upon anti-androgen therapy
to restore the androgen production makes this enzyme a key
component in the intracellular pathway operating in tumoral
androgen  biosynthesis.  Furthermore  transcriptional
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regulation by TMPRSS2-ERG in bone tumor growth reveals
the reliance of bone tumor growth on intra-tumoral andro-
gen synthesis.

HSD3B1 has been shown to be a predictive biomarker
for developing the castration resistance phase of prostate
cancer upon androgen ablation therapies. Genetic ana-
lysis reveals that 1245C germline variant encodes a gain-
of function mutant of HSD3B1 which resulted in
increased DHT production in tumors leading to the
development of a castration resistance phenotype, and
patients expressing this germline variant are more prone
to develop CRPC [34]. Li et al., recently reported that
HSD3B enzyme metabolizes the abiraterone to a more
potent compound Delta (4)-abiraterone (D4A) which
can further inhibit androgen biosynthetic enzyme activ-
ities involved in tumoral DHT production [35]. Our
study also suggests that in ERG positive tumors this
enzyme is overexpressed through a transcriptional
mechanism for maintaining intra-osseous tumoral DHT
production for expansion of tumors.

Conclusions

Our data support the hypothesis that, in TMPRSS2-ERG
fusion-positive cells, androgens are produced locally
through transcriptional regulation of androgen biosyn-
thetic enzymes. Thus, TMPRSS2-ERG fusions can serve
as predictive biomarkers for patients undergoing for
anti-AR therapies. Our in vivo data with bone tumor
models demonstrating that enzalutamide can inhibit
bone tumor growth and androgen biosynthetic enzyme
expression in tumors, further suggest the effectiveness of
anti-AR therapies for metastatic bone tumors.
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