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Abstract

Background: Sex-differences in cancer occurrence and mortality are evident across tumor types; men exhibit
higher rates of incidence and often poorer responses to treatment. Targeted approaches to the treatment of
tumors that account for these sex-differences require the characterization and understanding of the fundamental
biological mechanisms that differentiate them. Hepatocellular Carcinoma (HCC) is the second leading cause of
cancer death worldwide, with the incidence rapidly rising. HCC exhibits a male-bias in occurrence and mortality,
but previous studies have failed to explore the sex-specific dysregulation of gene expression in HCC.

Methods: Here, we characterize the sex-shared and sex-specific regulatory changes in HCC tumors in the TCGA
LIHC cohort using combined and sex-stratified differential expression and eQTL analyses.

Results: By using a sex-specific differential expression analysis of tumor and tumor-adjacent samples, we uncovered
etiologically relevant genes and pathways differentiating male and female HCC. While both sexes exhibited
activation of pathways related to apoptosis and cell cycle, males and females differed in the activation of several
signaling pathways, with females showing PPAR pathway enrichment while males showed PI3K, PI3K/AKT, FGFR,
EGFR, NGF, GF1R, Rap1, DAP12, and IL-2 signaling pathway enrichment. Using eQTL analyses, we discovered
germline variants with differential effects on tumor gene expression between the sexes. 24.3% of the discovered
eQTLs exhibit differential effects between the sexes, illustrating the substantial role of sex in modifying the effects
of eQTLs in HCC. The genes that showed sex-specific dysregulation in tumors and those that harbored a sex-
specific eQTL converge in clinically relevant pathways, suggesting that the molecular etiologies of male and female
HCC are partially driven by differential genetic effects on gene expression.

Conclusions: Sex-stratified analyses detect sex-specific molecular etiologies of HCC. Overall, our results provide new
insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology
and provide a framework for future studies on sex-biased cancers.
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Background

Differences in cancer occurrence and mortality between
sexes are evident across tumor types; males exhibit
higher rates of cancer incidence and often poorer re-
sponse to treatment, including some forms of chemo-
therapy and immunotherapy [1, 2]. While differences in
risk factors may explain some portion of the sex-bias,
the bias remains after appropriate adjustment for these
factors [3, 4]. A recent study examining the mutational
profiles of tumors from males and females across The
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Cancer Genome Atlas (TCGA) found sex differences in
mutational profiles, calling for the consideration of sex
as a biological variable in studies on cancer occurrence,
etiology, and treatment [5]. Despite these underlying
molecular differences, sex is rarely considered in the
development of cancer therapies.

Across tumor types analyzed, the largest sex differ-
ences in autosomal mutational profiles were seen in liver
hepatocellular carcinoma (HCC), indicating that male
and female HCC are etiologically distinct [5]. Further-
more, HCC exhibits sex-bias in occurrence, with a male-
to-female incidence ratio between 1.3:1 and 5.5:1 across
populations [6, 7]. The sexes also differ in the clinical
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manifestation of HCC, males exhibiting an earlier onset
and more/larger nodules [8]. HCC is the second leading
cause of cancer mortality worldwide, accounting for
8.2% of all cancer deaths [2], and the incidence in the
US has doubled in the last 3 decades, attributable to in-
creased rates of obesity [7], calling for the development
of new interventions and targeted therapies.

Sex-specific gene regulation may partially underlie dif-
ferences between the sexes in disease prevalence and se-
verity [9, 10]. Previous work observed extensive sex-biased
signatures in gene expression in HCC and other sex-
biased cancers [11]. However, this study focused solely on
comparing male and female tumor samples, without con-
sideration of sex differences in non-diseased and tumor-
adjacent tissues. To understand cancer-specific processes,
it is necessary to contrast the sex differences in gene ex-
pression identified in HCC with those in non-diseases and
tumor-adjacent tissues. For the targeted treatment of tu-
mors, it is necessary to understand whether sex differences
in cancer reflect unique cancer-specific changes, or are re-
flective of healthy sex differences that may underlie ob-
served sex-bias in cancer occurrence and disease etiology.

In addition to sex differences in overall gene expression
due to the wide effects of sex as a biological variable, gen-
etic variants may alter gene expression in a sex-specific
manner. A pan-cancer analysis of the TCGA dataset iden-
tified 128 germline variants altering gene expression levels
(eQTLs) in HCC [12]. However, this study purposefully
controlled for and removed the effect of sex and, to date, a
sex-specific eQTL analysis in HCC has not been per-
formed. Sex-stratified analyses can reveal sex-biased gen-
etic effects on gene expression that may be obscured in a
joint analysis of both sexes - e.g. cases where the regula-
tory variant has a zero or very small effect in one sex, or
the eQTL exhibits an opposite effect direction in the two
sexes [13]. eQTLs that are discovered in one sex but not
in the whole sample analysis are likely to affect gene ex-
pression in a sex-dependent manner, and while a com-
bined analysis of both sexes achieves a greater statistical
power to detect sex-shared effects, it dilutes the signal of
sex-dependent effects [14].

Targeted approaches to the treatment of male and fe-
male HCC require the characterization and understand-
ing of the fundamental biological mechanisms that
differentiate them. Here, we analyzed data from TCGA
and The Genotype-Tissue Expression project (GTEx) to
examine the sex-specific patterns of gene expression and
regulation in HCC. Here, we have contrasted the sex-
biased patterns of gene expression in HCC tumors with
healthy and tumor-adjacent liver tissues, allowing us to
detect sex differences in gene expression shared between
and specific to the different tissues. We show that male
and female HCC exhibit differences in the dysregulation
of genes and germline genetic regulation of tumor gene
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expression. Importantly, these orthogonal approaches
identify genes that converge in shared pathways, indicat-
ing sex-specific etiology in HCC. The results presented
here have implications for the development of targeted
therapies for male and female HCC.

Methods

Data

GTEx (release V6p) whole transcriptome (RNAseq) data
(dbGaP accession #8834) were downloaded from dbGaP.
TCGA LIHC Affymetrix Human Omni 6 array genotype
data, whole exome sequencing (WES), and RNAseq data
(dbGaP accession #11368) were downloaded from NCI
Genomic Data Commons [15]. In total, RNAseq data
from 91 male and 45 female GTEx donors, germline
genotypes and tumor RNAseq data from 248 male and
119 female TCGA LIHC donors, as well as paired tumor
and tumor-adjacent samples from 28 male and 22 female
TCGA LIHC donors were utilized in this study. FASTQ
read files were extracted from the TCGA LIHC WES
BAM files using the strip_reads function of XYAlign [16].
We used FastQC [17] to assess the WES and RNAseq
FASTQ quality. Reads were trimmed using TRIMMO-
MATIC lluminaClip [18], with the following parameters:
seed mismatches 2, palindrome clip threshold 30, simple
clip threshold 10, leading quality value 3, trailing quality
value 3, sliding window size 4, minimum window quality
30 and minimum read length of 50.

Read mapping and read count quantification

Sequence homology between the X and Y chromosomes
may cause the mismapping of short sequencing reads
derived from the sex chromosomes and affect down-
stream analyses [16]. To overcome this, reads were
mapped to custom sex-specific reference genomes using
HISAT?2 [19]. Female samples were mapped to the hu-
man reference genome GRCh38 with the Y-
chromosome hard-masked. Male samples were mapped
to the human reference genome with Y-chromosomal
pseudoautosomal regions hard-masked. Gene-level
counts from RNAseq were quantified using Subread fea-
tureCounts [20]. Reads overlapping features (genes or
RNA families with conserved secondary structures) were
counted for each feature.

Germline variant calling and filtering

BAM files were processed according to Broad Institute
GATK (Genome Analysis Toolkit) best practices [21-23]:
Read groups were added with Picard Toolkit's AddOrRepla-
ceReadGroups and optical duplicates marked with Picard
Toolkit's MarkDuplicates (v.2.18.1, http://broadinsti-
tute.github.io/picard/). Base quality scores were recali-
brated with GATK (v.4.0.3.0) BaseRecalibrator. Germline
genotypes were called from whole blood Whole Exome
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Sequence samples from 248 male and 119 female HCC
cases using the scatter-gather method with GATK Haplo-
typeCaller and GenotypeGVCFs [21]. Affymetrix 6.0 array
genotypes were lifted to GRCh38 using the UCSC LiftOver
tool [24] and converted to VCEF. Filters were applied to
retain variants with a minimum quality score > 30, minor
allele frequency > 10%, minor allele count > 10, and no call
rate < 10% across all samples.

Clinical characteristics and cellular content of tumor
samples

Confounding effects, e.g. differences in clinical and patho-
logical characteristics or cell-type composition of the se-
quenced samples, may contribute to the observed effect
modification when utilizing stratified analyses. We exam-
ined the differences in the clinical characteristics between
males and females in the TCGA LIHC cohort. We used a
t-test to test for the equality of means in patient age and
cell-type proportions, and Fisher’s exact test to test to
detect differences in risk factors and pathological classifi-
cations (Additional file 3: Tables S1 and S2).

Filtering of gene expression data

FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) expression values for each gene were
obtained using EdgeR [25]. Each expression dataset was
filtered to retain genes with mean FPKM=0.5 and read
count of 26 in at least 10 samples across all samples
under investigation. In the comparative analysis of differen-
tially expressed genes (DEGs) between the tumor vs. tumor-
adjacent samples in males, females, and both sexes, genes
that reached the previously described expression thresholds
in at least one tissue in at least one sex were retained. This
assures that the differences in DEGs detected in the sex-
specific and combined analyses are not due to filtering.

Differential expression analysis

For differential expression (DE) analysis, filtered, untrans-
formed read count data were quantile normalized and
logCPM transformed with voom [26]. From the TCGA
LIHC dataset, paired tumor and tumor-adjacent samples
were available for 22 females and 28 males. From the
GTEx liver dataset, 91 male and 45 female samples were
used in the DE analysis. A multi-factor design with sex and
tissue type as predictor variables were used to fit the linear
model. duplicateCorrelation function was used to calculate
the correlation between measurements made between
tumor and tumor-adjacent samples on the same subject,
and this inter-subject correlation was accounted for in the
linear modeling. As the paired tumor samples differed sig-
nificantly between the sexes in terms of race, tumor grade,
and HBV status, (Additional file 3: Tables S1 and S2), these
parameters were included in the linear models as covari-
ates. Due to missing values in the covariate data, the final
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numbers of sample pairs used in the analyses were 18
females and 26 males.

DEGs between comparisons were identified using the
limma/voom pipeline [26] by computing empirical Bayes
statistics with eBayes. An FDR-adjusted p-value thresh-
old of 0.01 and an absolute log, fold-change (FC) thresh-
old of 2 were used to select significant DEGs.

To reliably detect genes that are expressed in a sex-
biased way in HCC but not in non-diseased liver or in
tumor-adjacent tissue, we examined genes that were DE
in the male vs. female tumor comparison using the pre-
viously described significance thresholds, but not in the
male vs. female comparisons of normal or tumor-
adjacent samples with a relaxed significance threshold of
FDR-adjusted p-value <0.1 and absolute log,(FC) > 0.

To detect genes that are dysregulated in tumors com-
pared to matched tumor-adjacent samples in each sex,
we identified DEGs in the tumor vs. tumor-adjacent
comparison of males, females, and in the whole sample.
DEGs that were identified in one sex but not in the
other or in the combined analysis of both sexes were
considered sex-specific. DEGs identified in the combined
analysis were considered sex-shared. This approach al-
lows the identification of high-confidence sex-specific
events that are a result of the underlying biological dif-
ferences as opposed to sampling or statistical power.
ANOVA and Kruskal-Wallis tests were used to test for
equality of fold changes of sex-shared and sex-specific
DEGs across male, female, and all samples.

Overrepresentation of biological functions and canonical
pathways

We further analyzed the sex-shared and sex-specific
tumor vs. tumor-adjacent DEGs as well as the sex-
specific eQTL target genes (eGenes) to identify sex-
shared and sex-specific pathways driving HCC etiology.
We used the NetworkAnalyst webtool [27], which uti-
lizes a hypergeometric test to compute p-values for the
overrepresentation of genes in regards to GO terms and
KEGG and Reactome pathways. An FDR-adjusted p-
value threshold of 0.01 was used to select significantly
overrepresented GO terms and canonical pathways.

Accounting for confounding effects and population
structure

Gene expression values are affected by genetic, environ-
mental, and technical factors, many of which may be un-
known or unmeasured. Technical confounding factors
introduce sources of variance that may greatly reduce
the statistical power of association studies, and even
cause false signals [28]. Thus, it is necessary to account
for known and unknown technical confounders. This is
often achieved by detecting a set of latent confounding
factors with methods such as principal component



Natri et al. BMC Cancer (2019) 19:951

analysis (PCA) or Probabilistic Estimation of Expression
Residuals (PEER) [29]. These surrogate variables are
then used as covariates in downstream analyses. We de-
rived 10 PEER factors from the filtered tumor gene ex-
pression data and used the weights of these factors as
covariates in the eQTL analysis. We used the R package
SNPRelate [30] to perform PCA on the germline geno-
type data. We accounted for population structure by ap-
plying the first three genotype PCs as covariates in the
eQTL analysis.

eQTL analysis

We used eQTL analyses to detect germline genetic ef-
fects on tumor gene expression. Similar to the DE ana-
lysis, we utilized combined and sex-stratified analyses to
detect sex-shared and sex-specific effects. Germline ge-
notypes and tumor gene expression data from 248 male
and 119 female donors in the TCGA LIHC cohort were
used in the eQTL analysis. Filtered count data was nor-
malized by fitting the FPKM values of each gene and
sample to the quantiles of the normal distribution. To
account for technical confounders and population struc-
ture, 10 de novo PEER factors and three genotype prin-
cipal components were used as covariates. Cis-acting
(proximal) eQTLs were detected by linear regression as
implemented in QTLtools v.1.1 [31]. Variants within 1
Mb of the gene under investigation were considered for
testing. We used the permutation pass with 10,000 permu-
tations to get adjusted p-values for associations between
the gene expression levels and the top-variants in cis: first,
permutations are used to derive a nominal p-value thresh-
old per gene that reflects the number of independent tests
per cis-window. Then, QTLtools uses a forward-backward
stepwise regression to determine the best candidate variant
per signal [31]. FDR-adjusted p-values were calculated to
correct for multiple phenotypes tested, and an adjusted p-
value threshold of 0.01 was used to select significant associ-
ations. To allow the comparison of effect sizes of sex-
specific and sex-shared eQTLs across the sexes, the effects
of each variant located within the 1 Mb cis-window were
obtained using the QTLzools nominal pass.

Similarly to the tumor vs. tumor-adjacent DEGs, eQTLs
that were detected in one sex but not in the other or in
the combined analysis were considered sex-specific, while
eQTLs detected in the combined analysis were considered
sex-shared. ANOVA and Kruskal-Wallis tests were used
to test for equality of effect sizes of sex-shared and sex-
specific eQTLs across male, female, and all samples.

Estimating statistical power in the eQTL analysis

We used the R package powereQTL [32] to estimate the
effect of the sample size to the statistical power to detect
eQTLs in the combined analysis of both sexes and in the
sex-specific analyses (Additional file 2: Figure S2).
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Genomic annotations of eQTLs

We used the R package Annotatr to annotate the genomic
locations of eQTLs [33]. Variant sites were annotated for
promoters, 5UTRs, exons, introns, 3UTRs, CpGs (CpG
islands, CpG shores, CpG shelves), and putative regulatory
regions based on ChromHMM [34] annotations.

Results

Sex-specific patterns of gene expression in HCC

We identified sex-differences in gene expression in non-
diseased liver (GTEx; 21 sex-biased genes with an FDR-
adjusted p-value <0.01 and an absolute log, (FC)=2),
tumor-adjacent tissue (TCGA LIHC; 21 genes), and
HCC (TCGA LIHC; 53 genes) to characterize the shared
and unique sex differences that may drive the observed
sex-biases in HCC occurrence and etiology (Fig. 1, Add-
itional file 3: Tables S3—-S5). X-linked XIST and Y-linked
genes were expressed in a sex-biased way across all tis-
sues. While sex-biased gene expression in non-diseased
and tumor-adjacent tissues may contribute to the sex
differences in cancer occurrence, sex-biased expression in
tumors is suggestive of distinct molecular etiologies of
male and female HCC. We identified 34 genes that show
sex differences in expression in HCC, but not in tumor-
adjacent tissue or non-diseased liver, even with a relaxed
significance threshold (Fig. 1a). Notably, Notch-regulating
DTX1 (Fig. 1b) and signal transducer CD24 were down-
regulated in male HCC.

To further examine the sex-shared and sex-specific
mechanisms driving HCC etiology, we detected DEGs
between tumor and tumor-adjacent samples in males and
females, as well as in the combined analysis of both sexes.
Dimensionality reduction of gene expression data shows
that variation among the tumor and tumor-adjacent sam-
ples is driven by tissue type and sex (Fig. 1c). When
inspecting the tumor samples only, the first dimension is
largely driven by sex (Additional file 1: Figure S1). In the
combined analysis of male and female samples, we de-
tected 691 tumor vs. tumor-adjacent DEGs (Additional
file 3: Table S6). In male- and female-specific analyses, we
detected 715 and 542 tumor vs. tumor-adjacent DEGs,
respectively (Additional file 3: Tables S7 and S8). Out of
the total of 903 unique DEGs, 76.5% were shared be-
tween the sexes. We identified 103 female-specific and
108 male-specific tumor vs. tumor-adjacent DEGs. Not-
ably, substantially more DEGs were detected in sex-
specific analyses than in the unstratified analysis (Fig. 1d).
Specifically, DEGs that showed different magnitudes in
fold change between the sexes (based on ANOVA/Krus-
kal-Wallis tests) were detected in the sex-specific analyses
(Fig. 2¢, d), while DEGs with similar fold changes across
all comparisons were detected in the combined analysis as
well as the sex-specific analyses (Fig. 2a). Sex-shared DEGs
that were only detected in the combined analysis, and not
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Fig. 1 Patterns of gene expression and molecular etiologies of male and female HCC. a Sex-biased gene expression in HCC. A volcano plot of
DEGs between male (N =26) and female (N = 18) HCC tumor samples. X-linked genes are indicated in pink, Y-linked in green, and autosomal in
black. Significant genes were selected based on an FDR-adjusted p-value threshold of 0.01 and absolute log,(FC) threshold of 2. Multiple
transcripts of the long non-coding RNA XIST are independently expressed. Genes that were not expressed in a sex-biased way in healthy liver
(GTEx) or in the tumor-adjacent tissues are indicated with an asterisk. b An example of a gene exhibiting a sex-bias in HCC but not in healthy
liver or tumor-adjacent tissues. DTXT expression in log(CPM) is shown for male and female samples in each tissue. ¢ A multi-dimensional scaling
plot of the paired TCGA LIHC tumor and tumor-adjacent samples of each sex. Euclidean distances between samples were calculated based on
100 genes with the largest standard deviations between samples. Tissue type (dimension 1) and sex (dimension 2) drive the overall patterns of
gene expression in HCC. d Venn-diagram of the overlap of DEGs in the sex-specific and combined analyses of matched tumor and tumor-
adjacent samples. Substantially more DEGs were identified in the sex-specific analyses. e Sex-specific and sex-shared DEGs were analyzed for the
overrepresentation of functional pathways. Sex-specific patterns of pathway enrichment point to differential processes driving the etiology of
male and female HCC. f Examples of sex-specific and sex-shared pathways

in the sex-specific analyses, showed a large variance in ex-
pression and, due to limited statistical power, were not de-
tected as statistically significant DEGs in sex-specific
analyses (Fig. 2b). Tumor-infiltrating immune cells may
produce spurious signals in DE analyses, which is evident
from the detection of various immunoglobulin genes in
tumor vs. tumor-adjacent comparisons (Additional file 3:
Tables S6-8). However, male and female samples did not
significantly differ in terms of cellular content (Additional
file 3: Table S2), and thus such spurious signals are un-
likely to affect male-female comparisons. The observed
differences in gene expression are thus likely to reflect ac-
tual sex differences rather than confounding differences in
sample characteristics or composition.

To put these results in a broader context, we analyzed
the male- and female-specific DEGs (tumor vs. tumor-
adjacent) for the overrepresentation of functional path-
ways. We found that the sex-shared and sex-specific
DEGs were enriched in pathways relevant to oncogenesis
and cancer progression (Additional file 3: Tables S9-
S11). We identified pathways that were overrepresented
in only one of the sexes but not in the other or in the
combined analysis of both sexes, indicating that male
and female HCC are partially driven by different mecha-
nisms and processes (Fig. le-f).

Differential cis-eQTL effects in male and female HCC

To further investigate the mechanisms of sex difference
in HCC etiology, we used eQTL analyses to detect germ-
line genetic effects on tumor gene expression in both the
joint and sex-stratified analyses (Fig. 3a). We detected
1204, 761, and 245 eQTLs in the combined, male-specific,
and female-specific analyses, respectively (Additional file 3:
Tables S12—S14). As expected, genomic annotations show
that most eQTLs are located on non-coding regions
(Fig. 3b Additional file 3: Tables S15-S17). Consistent
with previous reports, most cis-eQTLs were located
near transcription start sites (TSSs), with 63% of all
eQTLs across the combined and sex-specific analyses
being located within 20kb of TSSs. On average, 384
variants were tested per gene. 31% of the unique

shared and sex-specific cis-eQTLs in HCC were also
identified as eQTLs in the liver data in the GTEx
project analysis release V7, indicating shared tissue
origin. Out of the total of 1595 unique associations,
75.7% were shared between the sexes. We detected
295 male-specific and 92 female-specific eQTLs. Since
these associations were not detected in the unstrati-
fied analysis, they are likely not a result of differential
power to detect associations due to different sample
sizes, but exhibit effect modification by sex. Sex-
specific associations exhibited differences in effect size
between the sexes (based on ANOVA/Kruskal-Wallis
tests, Fig. 4c, d), and the sex-specific effect is diluted
in the combined analysis (Fig. 4c, d). Sex-shared large
effect eQTLs were detected in sex-specific and com-
bined analyses (Fig. 4a), and, due to the larger sample
size, sex-shared low-effect eQTLs are detected in the
combined analysis only (Fig. 4b).

We detected 27 shared eGenes that were associated
with independent variants in males and females. This
could be due to actual biological differences in gene
regulation, or due to technical constraints, in particular,
missing genotypes in one sex affecting the permutation
scheme to select the top-variant for each target gene. To
overcome this and to detect high confidence instances of
differential gene regulation between the sexes, we further
examined the sex-shared and sex-specific eGenes: we
found 24 genes that are under germline regulatory control
in only male HCC (Fig. 3c), including POGLUT1, which is
an essential regulator of Notch signaling (Fig. 3d). No
genes were found to be associated with nearby variants in
females only, likely due to reduced statistical power to de-
tect associations in females (Additional file 2: Figure S2).
Male-specific eGenes were overrepresented in pathways re-
lated to cell cycle, apoptosis, and cancer (Additional file 3:
Table S18). Concordant with previous studies [14, 35],
none of the male-specific eGenes were differentially
expressed between male and female HCC, indicating that
the male-specific eQTLs are not a result of differences in
overall gene expression levels between males and females,
but are likely to arise from factors such as differential
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DEGs in combined, male, and female analysis

A

B

DEGs in combined analysis only
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Fig. 2 Absolute log,-fold changes of DEGs detected from tumor vs. tumor-adjacent comparisons in the combined analysis of both sexes, male, and
female analysis (a), in the combined analysis only (b), in the male analysis only (c), and in the female analysis only (d). Absolute log,-fold changes are
given for female samples, male samples, and across all samples. Global p-values for ANOVA are shown for each DEG type. Adjusted p-values based on

chromatin accessibility or transcription factor activity.
The observation that none of the sex-biased auto-
somal genes in tumors harbor significant cis-eQTLs
(Additional file 3: Table S19) also suggests that while
sex-specific cis-eQTLs may contribute to differences
in variance, sex-biased gene expression is likely a re-
sult of tranms-effects, e.g. sex-chromosomal effects on
autosomal gene expression, or, more widely, a result
of sex as a biological variable, e.g. hormonal effects.

Discussion

Distinct molecular etiologies of male and female HCC

It is well established that patterns of gene expression
vary between the sexes across different tissues. Previous

studies have confounded these differences with those
which may be driving etiological differences between
male and female tumors. For example, Yuan et al. previ-
ously reported extensive sex-biased signatures in gene
expression in HCC and other strongly sex-biased can-
cers [11]. While they identified immunity and cancer-
associated enriched pathways based on sex-biased genes
detected in HCC tumors, their approach was limited as
it did not include the examination of non-diseased liver
nor tumor-adjacent tissues. From the results presented
here, we are able to distinguish the differences detected
in comparisons of male and female HCC from those
reflecting sex differences in the healthy liver or in
tumor-adjacent tissue, as well as to detect genes that are
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dysregulated in HCC in a sex-shared or sex-specific
manner.

We characterized differences in gene expression be-
tween male and female HCC cases. Notably, sex differ-
ences in gene expression were the largest in the tumor
tissue, with 53 genes (including 32 autosomal genes) be-
ing expressed in a sex-biased way. These sex differences
point to distinct mechanisms underlying HCC oncogen-
esis between the sexes, and may partially underlie the
observed sex-biases in HCC occurrence and onset. We
detected 34 genes that were expressed in a sex-biased way
in HCC tumors, but not in healthy or tumor-adjacent liver
tissues. Some of these genes are of particular interest in
the context of HCC: female-biased CXCLI14 and ATF5
may modulate antitumor immune responses and have a
tumor suppressor role in HCC [36, 37]. Additionally,
HAMP and GPR37 were found downregulated in male tu-
mors in comparison to female tumors. Downregulation of

HAMP contributes to aggressive HCC [38], and low level
of GPR37 is associated with disease progression and poor
survival in HCC [39]. These genes could be considered as
diagnostic biomarkers and potential targets in the treat-
ment of male HCC. On the other hand, we detect female-
biased genes that may contribute to HCC aggressiveness
in females: overexpression of FGFR2 has been associated
with advanced clinical stages [40], and NTS is known to
induce local inflammation and to promote tumor invasion
in HCC [41]. Furthermore, female-biased GGT6 has previ-
ously been identified as a potential biomarker in renal cell
carcinoma [42], but has not been studied in the context of
HCC. Notch-regulating DTX1, found here to be underex-
pressed in males compared to females, has been identified
as a putative tumor suppressor gene in head and neck
squamous cell carcinoma [43]. Another female-biased
gene detected here, CD24, has a crucial role in T cell
homeostasis and autoimmunity [44]. The opposing roles
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of CD24 expression in cancer and autoimmune diseases
raise interesting questions on the role of sex differences in
immunity underlying sex differences in cancer. Future
studies will focus on better understanding the differential
regulation of immune functions between the sexes, and
how these differences contribute to the observed biases in
disease occurrence and etiology.

By sex-specific analyses of matched tumor and tumor-
adjacent samples, we detected genes that are uniquely dys-
regulated in male and female HCC. Further examination of
these genes revealed sex differences in the pathway

activation, indicating that the molecular etiologies of male
and female HCC are partly driven by distinct functional
pathways. Males and females differed in the activation of
several signaling pathways, with females showing PPAR
pathway enrichment while males showed PI3K, PI3K/AKT,
FGFR, EGFR, NGF, GFIR, Rapl, DAP12, and IL-2
signaling pathway enrichment (Fig. 1e, Additional file 3:
Tables S9-S10). As these signaling pathways are notable
targets for anti-cancer and anti-metastasis therapies [45—
51], the results presented here have implications for the tar-
geted treatment of male and female HCC.
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Sex-specific germline genetic effects on tumor gene
expression may drive the molecular etiologies of male
and female HCC

Sex-specific regulatory functions may underlie sex differ-
ences in cancer etiology, progression, and outcome. We de-
tected sex differences in the germline genetic regulation of
tumor gene expression in HCC, including 24 genes that
were under germline regulatory control only in male HCC
(Fig. 3). Functional annotations of these male-specific
eGenes provide insight into possible regulatory mechanisms
contributing to the observed male-bias in HCC and sex dif-
ferences in HCC etiology. Protein O-glucosyltransferase 1
(POGLUTI) was found to be under germline regulation in
male HCC, but not in female HCC nor in the joint analysis
of both sexes (Fig. 3d). The eQTL associated with
POGLUTI is located on a promoter region of its target
(Additional file 3: Table S15). POGLUT1 is an enzyme that
is responsible for O-linked glycosylation of proteins. Altered
glycosylation of proteins has been observed in many cancers
[52, 53], including liver cancer [54, 55]. POGLUT1 is an es-
sential regulator of Notch signaling and is likely involved in
cell fate and tissue formation during development. Genes in-
volved in Notch and PI3K/AKT signaling were also found
to be expressed in a sex-biased way in HCC tumors and
overrepresented among the male-specific DEGs detected in
the tumor vs. tumor-adjacent comparison, showing that
sex-specific eQTLs and sex-specific dysregulated genes con-
verge in canonical pathways. Notch signaling pathway was
also detected as overrepresented (FDR-adj. p-value <0.01)
among the 24 male-specific eGenes. PI3K-AKT is known to
co-operate with Notch by triggering inflammation and im-
munosuppression [56]. Concurrent activation of Notch and
PIBK/AKT pathways can trigger tumorigenesis and is preva-
lent in aggressive cancers [57-60]. We find simultaneous ac-
tivation of PI3K/AKT and Notch pathways in male HCC,
and sex-specific genetic effects on regulation of genes in-
volved in PI3K/AKT signaling. These results point to a
major role of the Notch/PI3K/AKT axis in the development
of HCC in males. PI3K/AKT signaling is of particular inter-
est in the context of HCC, as it has been implicated in HCC
carcinogenesis [61], is involved in hepatic gluconeogenesis
[62], and is activated in a sex-biased way in the liver and
other tissues [63]. The role of Notch and PI3K/AKT signal-
ing in HCC may differ between early and late-stage tumors
and among molecular subtypes, and further studies are ne-
cessary to understand the oncogenic properties of these
pathways among HCC subtypes and between the sexes. In
the future, analyses of data collected as a part of the Inter-
national Cancer Genomics Consortium project may eluci-
date the sex-specific processes of HCC oncogenesis among
the Japanese, as well as the interactions between sex and
hepatitis infections in shaping HCC etiology. However, each
dataset has a unique ancestry composition and are not dir-
ectly comparable for validation purposes.
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Conclusions

In summary, we discovered differential regulatory
functions in HCC tumors between the sexes. This
work provides a framework for future studies on
sex-biased cancers. Further studies are required to
identify and validate sex-specific genetic effects on
tumor gene expression and its consequences in
HCC and other sex-biased cancers across diverse
populations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512885-019-6167-2.

Additional file 1: Figure S1. A multi-dimensional scaling plot of the
TCGA LIHC tumor samples of each sex (N male =248, N female = 119).
Euclidean distances between samples were calculated based on 100 genes
with the largest standard deviations between samples.

Additional file 2: Figure S2. Estimation of statistical power in the
combined (grey), male-specific (blue), and female-specific (red) eQTL
analyses with a p-value level 0.01 and 384 variants. Increased power in
the combined analysis allows the detection of sex-shared low-effect eQTLs.

Additional file 3: Tables S1-S19.

Abbreviations

DEG: Differentially expressed gene; eQTL: Expression quantitative trait loci;
HBV: Hepatitis B virus; HCC: Hepatocellular Carcinoma; HCV: Hepatitis C virus;
TSS: Transcription start site

Acknowledgments

We thank Dr. Nicholas Banovich and anonymous reviewers for their feedback
on previous versions of this manuscript. We acknowledge Research Computing
at Arizona State University for providing computing and storage resources that
have contributed to the research results reported within this paper.

Authors’ contributions

Conception and design: HVMIN, MAW, KB. Development of methodology:
HMN, MAW. Acquisition of data: MAW, KB. Analysis and interpretation of
data: HMN. Writing, review, and/or revision of the manuscript: HMIN, MAW,
KB. Study supervision: MAW, KB. All authors read and approved the final
manuscript.

Funding

No specific funding was received for this study. HMN was supported by ASU
Center for Evolution and Medicine postdoctoral fellowship and the Marcia
and Frank Carlucci Charitable Foundation postdoctoral award from the
Prevent Cancer Foundation. MAW was supported by ASU School of Life
Sciences and the Biodesign Institute for startup funds. HMN, MAW, and KHB
were supported by ASU Center for Evolution and Medicine Venture funds.

Availability of data and materials
Data used in this study are available at dbGaP at https://www.ncbi.nim.nih.
gov/gap/ and NCI Genomic Data Commons at https://gdc.cancer.gov/.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.


https://doi.org/10.1186/s12885-019-6167-2
https://doi.org/10.1186/s12885-019-6167-2
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://gdc.cancer.gov/

Natri et al. BMC Cancer

(2019) 19:951

Received: 2 July 2019 Accepted: 16 September 2019
Published online: 15 October 2019

References

1.

20.

21.

22.

23.

24.

Clocchiatti A, Cora E, Zhang Y, Dotto GP. Sexual dimorphism in cancer. Nat
Rev Cancer. 2016;16:330.

Bray F, Ferlay J, Soerjomataram |, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018. https://doi.org/10.
3322/caac.21492.

Wisnivesky JP, Halm EA. Sex differences in lung cancer survival: do tumors
behave differently in elderly women? J Clin Oncol. 2007;25:1705-12.
OuYang P-Y, Zhang L-N, Lan X-W, Xie C, Zhang W-W, Wang Q-X, et al. The
significant survival advantage of female sex in nasopharyngeal carcinoma: a
propensity-matched analysis. Br J Cancer. 2015;112:1554-61.

Li CH, Haider S, Shiah Y-J, Thai K, Boutros PC. Sex differences in Cancer
driver genes and biomarkers. Cancer Res. 2018;78:5527-37.

Wands J. Hepatocellular carcinoma and sex. N Engl J Med. 2007;357:1974-6.
Petrick JL, Braunlin M, Laversanne M, Valery PC, Bray F, McGlynn KA.
International trends in liver cancer incidence, overall and by histologic
subtype, 1978-2007. Int J Cancer. 2016;139:1534-45.

Ladenheim MR, Kim NG, Nguyen P, Le A, Stefanick ML, Garcia G, et al. Sex
differences in disease presentation, treatment and clinical outcomes of
patients with hepatocellular carcinoma: a single-Centre cohort study. BMJ
Open Gastroenterol. 2016;3:2000107.

Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics:
evidence, evolution, and detection. Trends Genet. 2014;30:453-63.

Morrow EH. The evolution of sex differences in disease. Biol Sex Differ.
2015;6:5.

Yuan Y, Liu L, Chen H, Wang Y, Xu Y, Mao H, et al. Comprehensive
characterization of molecular differences in Cancer between male and
female patients. Cancer Cell. 2016;29:711-22.

Gong J, Mei S, Liu C, Xiang Y, Ye Y, Zhang Z, et al. PancanQTL: systematic
identification of cis-eQTLs and trans-eQTLs in 33 cancer types. Nucleic Acids
Res. 2018;46:D0971-6.

Behrens G, Winkler TW, Gorski M, Leitznann MF, Heid IM. To stratify or not
to stratify: power considerations for population-based genome-wide
association studies of quantitative traits. Genet Epidemiol. 2011;35:867-79.
Dimas AS, Nica AC, Montgomery SB, Stranger BE, Raj T, Buil A, et al. Sex-biased
genetic effects on gene regulation in humans. Genome Res. 2012;22:2368-75.
Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward
a shared vision for Cancer genomic data. N Engl J Med. 2016;375:1109-12.
Webster TH, Couse M, Grande BM, Karlins E, Phung TN, Richmond PA, et al.
Identifying, understanding, and correcting technical biases on the sex
chromosomes in next-generation sequencing data [Internet]. bioRxiv. 2018.
p. 346940. doihttps;//doi.org/10.1101/346940

Andrews S. FastQC A Quality Control tool for High Throughput Sequence
Data. In: http//www.bioinformatics.babraham.ac.uk/projects/fastqc/
[Internet]. 2010. Available: http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for lllumina
sequence data. Bioinformatics. 2014;30:2114-20.

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low
memory requirements. Nat Methods. 2015;12:357-60.

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics.
2014;30:923-30.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The genome analysis toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 2010;20:1297-303.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet. 2011,43:491-8.

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-
Moonshine A, et al. From FastQ data to high confidence variant calls: the
genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics.
2013;43:11.10.1-33.

Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al.
The UCSC genome browser database: update 2006. Nucleic Acids Res. 2006;
34:0590-8.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

Page 11 of 12

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26:139-40.

Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
Xia J, Gill EE, Hancock REW. NetworkAnalyst for statistical, visual and network-
based meta-analysis of gene expression data. Nat Protoc. 2015;10:823-44.
Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet. 2007,3:¢161.

Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation
of expression residuals (PEER) to obtain increased power and interpretability
of gene expression analyses. Nat Protoc. 2012;7:500-7.

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-
performance computing toolset for relatedness and principal component
analysis of SNP data. Bioinformatics. 2012;28:3326-8.

Delaneau O, Ongen H, Brown AA, Fort A, Panousis N, Dermitzakis E. A
complete tool set for molecular QTL discovery and analysis. bioRxiv. 2016;
doihttps://doi.org/10.1101/068635.

GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet.
2013;45:580-5.

Cavalcante RG, Sartor MA. Annotatr: genomic regions in context.
Bioinformatics. 2017;33:2381-3.

Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012,9:215-6.

Kukurba KR, Parsana P, Balliu B, Smith KS, Zappala Z, Knowles DA, et al.
Impact of the X chromosome and sex on regulatory variation. Genome Res.
2016;26:768-77.

Gho JW-M, Ip W-K, Chan KY-Y, Law PT-Y, Lai PB-S, Wong N. Re-expression of
transcription factor ATF5 in hepatocellular carcinoma induces G2-M arrest.
Cancer Res. 2008,68:6743-51.

Wang W, Huang P, Zhang L, Wei J, Xie Q, Sun Q, et al. Antitumor efficacy of
C-X-C motif chemokine ligand 14 in hepatocellular carcinoma in vitro and
in vivo. Cancer Sci. 2013;104:1523-31.

Shen Y, Li X, Su Y, Badshah SA, Zhang B, Xue Y, et al. HAMP
Downregulation Contributes to Aggressive Hepatocellular Carcinoma via
Mechanism Mediated by Cyclin4-Dependent Kinase-1/STAT3 Pathway
[Internet]. Diagnostics. 2019. p. 48. doi:https.//doi.org/10.3390/
diagnostics9020048

Liu F, Zhu C, Huang X, Cai J, Wang H, Wang X, et al. A low level of GPR37 is
associated with human hepatocellular carcinoma progression and poor
patient survival. Pathol Res Pract. 2014;210:885-92.

Jo J-C, Choi EK, Shin J-S, Moon J-H, Hong S-W, Lee H-R, et al. Targeting
FGFR pathway in human hepatocellular carcinoma: expressing pFGFR and
pMET for antitumor activity. Mol Cancer Ther. 2015;14:2613-22.

Xiao P, Long X, Zhang L, Ye Y, Guo J, Liu P, et al. Neurotensin/IL-8 pathway
orchestrates local inflammatory response and tumor invasion by inducing
M2 polarization of tumor-associated macrophages and epithelial-
mesenchymal transition of hepatocellular carcinoma cells.
Oncoimmunology. 2018;7:21440166.

Lasseigne BN, Burwell TC, Patil MA, Absher DM, Brooks JD, Myers RM. DNA
methylation profiling reveals novel diagnostic biomarkers in renal cell
carcinoma. BMC Med. 2014;12:235.

Gaykalova DA, Zizkova V, Guo T, Tiscareno |, Wei Y, Vatapalli R, et al.
Integrative computational analysis of transcriptional and epigenetic
alterations implicates DTX1 as a putative tumor suppressor gene in HNSCC.
Oncotarget. 2017;8:15349-63.

Liu Y, Zheng P. CD24: a genetic checkpoint in T cell homeostasis and
autoimmune diseases. Trends Immunol. 2007,28:315-20.

Gou Q, Gong X, Jin J, Shi J, Hou Y. Peroxisome proliferator-activated receptors
(PPARs) are potential drug targets for cancer therapy. Oncotarget. 2017,8:60704-9.
Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for Cancer
treatment. Annu Rev Med. 2016;67:11-28.

Porta R, Borea R, Coelho A, Khan S, Aratjo A, Reclusa P, et al. FGFR a
promising druggable target in cancer: molecular biology and new drugs.
Crit Rev Oncol Hematol. 2017;113:256-67.

Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK.
Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther
Targets. 2012;16:15-31.

Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor &
TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta. 1866;
2016:37-50.


https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
https://doi.org/10.1101/346940
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1101/068635
https://doi.org/10.3390/diagnostics9020048
https://doi.org/10.3390/diagnostics9020048

Natri et al. BMC Cancer

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

(2019) 19:951

Zhang Y-L, Wang R-C, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in
tumor cell migration and invasion. Cancer Biol Med. 2017;14:90-9.
Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W, et al.
Prospects of IL-2 in Cancer immunotherapy. Biomed Res Int. 2018;2018:
9056173.

Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical
implications. Nat Rev Cancer. 2015;15:540-55.

Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev
Pathol. 2015;10:473-510.

Mehta A, Herrera H, Block T. Chapter Seven - Glycosylation and Liver Cancer.

In: Drake RR, Ball LE, editors. Advances in Cancer Research. Cambridge:
Academic Press; 2015. pp. 257-279.

Liang K-H, Yeh C-T. O-glycosylation in liver cancer: clinical associations and
potential mechanisms. Liver Res. 2017;1:193-6.

Villegas SN, Gombos R, Garcfa-Lopez L, Gutiérrez-Pérez |, Garcfa-Castillo J,
Vallejo DM, et al. PI3K/Akt cooperates with oncogenic notch by inducing
nitric oxide-dependent inflammation. Cell Rep. 2018;22:2541-9.

Eliasz S, Liang S, Chen Y, De Marco MA, Machek O, Skucha S, et al. Notch-1
stimulates survival of lung adenocarcinoma cells during hypoxia by
activating the IGF-1R pathway. Oncogene. 2010;29:2488-98.

Piovan E, Yu J, Tosello V, Herranz D, Ambesi-impiombato A, Da Silva AC,

et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute
lymphoblastic leukemia. Cancer Cell. 2013;24:766-76.

Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the
PI3K-AKT-mTORT1 signaling axis: Targeted therapy of y-secretase inhibitor
resistant T-cell acute lymphoblastic leukemia [Internet]. Cellular Signalling.
2014. pp. 149-161. doi:https://doi.org/10.1016/j.cellsig.2013.09.021

Muellner MK, Uras IZ, Gapp BV, Kerzendorfer C, Smida M, Lechtermann H,
et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K
inhibitors in cancer. Nat Chem Biol. 2011;7:787-93.

Wang G-L, lakova P, Wilde M, Awad S, Timchenko NA. Liver tumors escape
negative control of proliferation via PI3K/Akt-mediated block of C/EBP alpha
growth inhibitory activity. Genes Dev. 2004;18:912-25.

Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2
diabetes. Int J Biol Sci. 2018;14:1483-96.

Baar EL, Carbajal KA, Ong IM, Lamming DW. Sex- and tissue-specific
changes in mTOR signaling with age in C57BL/6J mice. Aging Cell. 2016;15:
155-66.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 12 of 12

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1016/j.cellsig.2013.09.021

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data
	Read mapping and read count quantification
	Germline variant calling and filtering
	Clinical characteristics and cellular content of tumor samples
	Filtering of gene expression data
	Differential expression analysis
	Overrepresentation of biological functions and canonical pathways
	Accounting for confounding effects and population structure
	eQTL analysis
	Estimating statistical power in the eQTL analysis
	Genomic annotations of eQTLs

	Results
	Sex-specific patterns of gene expression in HCC
	Differential cis-eQTL effects in male and female HCC

	Discussion
	Distinct molecular etiologies of male and female HCC
	Sex-specific germline genetic effects on tumor gene expression may drive the molecular etiologies of male and female HCC

	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

