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Abstract

a meta-analysis.

CIMP-H prevalence across countries.

across geographical regions.

Background: CpG Island Methylator Phenotype (CIMP) is an epigenetic phenotype in CRC characterized by
hypermethylation of CpG islands in promoter regions of tumor suppressor genes, leading to their transcriptional
silencing and loss of function. While the prevalence of CRC differs across geographical regions, no studies have
compared prevalence of CIMP-High phenotype across regions. The purpose of this project was to compare the
prevalence of CIMP across geographical regions after adjusting for variations in methodologies to measure CIMP in

Methods: We searched PubMed, Medline, and Embase for articles focusing on CIMP published from 2000 to 2018.
Two reviewers independently identified 111 articles to be included in final meta-analysis. We classified methods used
to quantify CIMP into 4 categories: a) Classical (MINT marker) Panel group b) Weisenberg-Ogino (W-O) group ¢) Human
Methylation Arrays group and d) Miscellaneous group. We compared the prevalence of CIMP across geographical
regions after correcting for methodological variations using meta-regression techniques.

Results: The pooled prevalence of CIMP-High across all studies was 22% (95% confidence interval:21-24%; I = 94.75%).
Pooled prevalence of CIMP-H across Asia, Australia, Europe, North America and South America was 22, 21, 21, 27 and
25%, respectively. Meta-regression analysis identified no significant differences in the prevalence of CIMP-H across
geographical regions after correction for methodological variations. In exploratory analysis, we observed variations in

Conclusion: Although no differences were found for CIMP-H prevalence across countries, further studies are needed
to compare the influence of demographic, lifestyle and environmental factors in relation to the prevalence of CIMP
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Background

Colorectal cancer (CRC) poses a significant public health
burden globally. In 2018, globally, CRC will account for
approximately 6.1% of all new cancer cases (n =1,096,
601) and 5.8% of cancer related deaths (1 =551,269)
globally [1]. Disparities in the incidence of CRC occur
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across geographical regions, with the highest incidence
reported in Australia and lowest incidence in Africa [2].
Additionally, mortality rates associated with CRC vary
across the globe, with high rates of mortality associated
with CRC across Europe as compared to low mortality
rates in Africa [2]. Furthermore, differences in CRC inci-
dence exists within regions across age groups, gender, and
racial/ethnic groups due to multiple factors, including life-
style, screening behaviors, and biological factors [3].
Hence, understanding the prevalence and distribution of
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CRC could help guide tailored prevention, screening and
treatment strategies.

The biological processes underlying the development
of CRC are complex, with multiple genetic and epigenetic
alterations dictating the transition from a normal colon
epithelium to cancer. In recent years, much attention has
been paid to the role of epigenetic alterations—changes in
phenotype or gene expression that do not involve DNA
sequence changes—in the development of CRC [4, 5].
One type of epigenetic alteration associated with cancer is
methylation of CpG islands in promoter regions of tumor
suppressor genes which form hotspots for methylation
changes. The CpG island methylator phenotype was first
described in CRC by Toyota et al. who identified cancer
specific methylation of tumor markers in CRC tissues and
is now considered to be an initiating event of the serrated
adenoma pathway in the development of CRC [6, 7].
CIMP -High (CIMP-H) is now considered a distinct mo-
lecular subtype of sporadic colorectal cancer. It is charac-
terized by a high degree of methylation in promoter-
associated CpG-rich regions of tumor suppressor genes,
which causes transcriptional inactivation of these genes
and leads to cancer development and progression [4, 8].

Large-scale geographic comparisons of CIMP preva-
lence are limited because there is no consensus on the
definition of CIMP and a wide array of methods used for
measuring it [8]. In a recent systematic review, Hughes
et al. concluded that no gold standard exists for determin-
ing CIMP and that no methodology has been shown to be
superior to another [9]. Additionally, Jia et al. showed that
the estimated prevalence of CIMP-H in CRC tumors
ranged from 7 to 48%, and described 16 different of varied
genetic markers used to measure CIMP that were based
on different threshold values of methylation at individual
markers in panels or based on different cut-offs used for
defining CIMP-H [10]. The first panel used to measure
CIMP, termed the classical panel measures CIMP using
the methylated in tumor (MINT) markers MINTI,
MINT2, MINT31, CDKN2A, and MLHI and defines
CIMP-H tumors as those expressing 2 or more of these
methylated markers [4, 6]. Subsequently, Weisenberger
et al. [11] measured CIMP using a 5-marker panel consist-
ing of CACNAIG, IGF2, NEUROGI1, RUNX3, and SOCS],
and Ogino et al. [12] extended the Weisenberger panel,
adding CDKN2A, CRABP1, and MLHI. These two panels
have been widely used to measure CIMP. More recently,
genome-wide methylation arrays have been used to study
methylation changes across the human genome [13].
Technologies for quantifying CIMP have rapidly devel-
oped and include methylation-specific polymerase chain
reaction (PCR), real-time PCR (such as MethyLight), and
bisulfite pyrosequencing [9]. These technologies measure
methylation differently: some at a single gene site, others
across several CpG sites of a gene, and others across
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several genes [9, 14]. Previous reviews have identified sig-
nificant heterogeneity in pooled estimates of the clinical,
pathological, and molecular characteristics of CIMP tu-
mors, particularly due to differences in the methods used
to assess CIMP across studies, selection criteria for CRC
patient populations, laboratory methods, or geographic re-
gion of study [4, 8, 15]. Hence, it is important to consider
utilization of CIMP methodologies across geographic
areas while studying the geographical variation of esti-
mates of CIMP prevalence.

Lifestyle factors are also shown to be associated with
epigenetic changes and might influence prevalence of
CIMP phenotype and CRC across geographical regions.
Identifying potential differences in CIMP prevalence can
help us explore potential factors underlying these differ-
ences and explain disparities in the incidence of CRC
across geographical regions. It is, therefore, important to
understand how CIMP prevalence varies geographically.
The aim of this systematic review and meta-analysis was
to assess the prevalence of CIMP across geographical re-
gions after correcting for methodological variations
using meta-regression techniques.

Methods

We utilized data from a comprehensive systematic review
of clinical, pathological and molecular characteristics of
CIMP tumors in CRC [15]. The original systematic review
was registered with PROSPERO (registration number
CRD42016034181). Included studies had to describe pa-
tients who were diagnosed with sporadic CRC and evalu-
ated CIMP phenotype among these patients. We excluded
studies that focused on hereditary CRC syndromes and
studies focusing on premalignant lesions such as aden-
omas or polyps within CRC. Additionally, studies focused
on other cancers or that did not have a clear description
of the measurement or quantification of CIMP were ex-
cluded. Original research published in the journal litera-
ture was required; review articles were excluded as were
conference proceedings. Lastly, we limited articles to those
published in English, in peer-reviewed journals.

Search strategy

The Medline (Ovid), PubMed (National Library of Medi-
cine), and Embase (Ovid) databases were searched with
the assistance of a health sciences librarian (HV). The ini-
tial searches were completed in April 2016; two updated
PubMed searches were completed, one on January 3, 2017
and the other on April 25, 2018. The three main concepts
that made up our search were: CIMP or CpG island meth-
ylator phenotype/methylation, sporadic CRC, and clinical/
pathological and molecular characteristics. A combination
of medical subject heading (MeSH) terms and terms in-
cluded in the title, abstract, and keywords were used to
develop the initial Medline search. This search was then
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adapted for the other databases. Additional file 1 provides
an overview of the search strategies used for each data-
base. RefWorks (ProQuest) was used to store all citations
found in the search process and to check for duplicates.

Study selection

An online random number generator (https://www.
random.org/integers/) was used to create a random
sample of 66 numbers that were then input into an
Excel workbook designed specifically for the Cohen’s
kappa interrater reliability test [16]. If there were any
duplicate numbers, one was replaced by choosing a
number between the pair and the number below or
above. The numbers corresponded to line numbers
within the Excel workbook which resulted in a random
sample of titles and abstracts; authors and journal titles
were not included in the sample. Two authors (SA, PA)
independently screened the sample and reached good
interrater agreement (Cohen’s k=0.77). After resolving
discrepancies in the interrater reliability test through mu-
tual discussion, the same authors then independently
screened all titles and abstracts, still blinded to authors
and journal titles, using an Excel workbook designed spe-
cifically for this step of the systematic review process [16].
Data were compiled into a single Excel workbook at which
time consensus was reached on items in which there was
disagreement. Articles considered for inclusion were inde-
pendently reviewed by two authors (SA, PA) and consen-
sus reached by discussion on any disagreements for
inclusion. The Excel workbooks also served as our pri-
mary tool for gathering all search strategy data and for the
creation of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) flowchart [17].

Data abstraction

The primary author (SA) identified key study character-
istics, including study design, first author, cohort de-
scription, and country, and extracted information on the
panel markers and/or methodology used to determine
CIMP, the cutoff for classifying various CIMP groups in
each study, and the prevalence of each CIMP subgroup.

CIMP classification

Studies generally classified CIMP into three groups:
CIMP-High, CIMP-Low and CIMP-0. A few studies also
classify CIMP as CIMP+ and CIMP-. For analytical
purposes, we coded the classifications of CIMP-H and
CIMP+ as CIMP-H and analogously, we coded CIMP-
Low, CIMP-, and CIMP-0 as CIMP-0.

Methodological classification

We classified CIMP methodologies into four groups: (i) the
classical panel or MINT marker group, (ii) Wiesenberger-
Ogino (W-O) marker panels, and (jiii) human methylation
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array panels and (iv) Miscellaneous. The human methyla-
tion arrays included the Infinium HumanMethylation27
BeadChip and Infinium HumanMethylation450 BeadChip
(Illumina, Inc., San Diego, CA) [18, 19]. Methodologies that
did not fit into any of these 3 categories were categorized as
“miscellaneous.”

Meta-analysis

We calculated the pooled prevalence of CIMP-H across
studies using a random effects model [20]. A measure of
study heterogeneity (I*) was calculated; (I*) of >50% is
considered to indicate statistical heterogeneity. Using
this method, we calculated pooled prevalence estimates
of the CIMP-H subcategory for Asia, Australia, Europe,
North America, and South America. No pooled estimate
could be calculated across Africa because only one study
was identified from the African continent. Additionally,
we calculated the pooled prevalence of CIMP-H pheno-
type across methods described above. Furthermore,
country specific prevalence of the CIMP-H group was
estimated using a random effects model.

Meta-regression

We performed a meta-regression analysis to compare
CIMP-H prevalence across methodological groups and
geographical regions using a random effects model [21].
In the first step, using unadjusted meta-regression ana-
lysis, we compared the mean prevalence of CIMP-H
across continents, using North America as the reference
group. To assess whether differences in methodology
accounted for differences in CIMP-H prevalence across
continents, we reran meta-regression analysis across geo-
graphical regions adjusting for methodological subtype.

Bias and quality assessment

We performed quality assessment on the included studies.
For cohort and case-control studies, the Newcastle-
Ottawa Scale was utilized [22]. This scale assesses quality
of included studies on three groups: Selection, Compar-
ability, and Assessment. For cohort studies, these include
selection strategy of cohort, comparability of exposed and
non-exposed cohort, and assessment of outcome and
follow-up data. For case control, these include selection
strategy of cases and controls, comparability of cases and
controls, and ascertainment of exposure, including ascer-
tainment of cases and controls and response rates. Re-
viewers rate studies on scale of 0—4 for selection, scale of
0-2 for comparability, and scale of 0-3 for ascertainment
respectively. Egger’s test was utilized to assess for publica-
tion bias due to sample size [23]. Finally funnel plots were
plotted to assess for publication bias [24].
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Results

Screening process

Our search identified 4377 records. After removal of
duplicates, two screeners (SA, PA) screened 2313 ab-
stracts and identified 749 articles for full text review.
Figure 1 provides a PRISMA flowchart of the screen-
ing process. Of total 749 screened, 279 articles were
excluded because they did not report original re-
search, 43 articles did not include a clear description
of CIMP, and 90 articles were excluded for other
reasons, including a focus on premalignant lesions
such as adenomas or polyps or inadequate informa-
tion on CIMP measurements or methodologies. The
final sample consisted of 337 publications for overall
analysis.
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Patient population

The 337 included articles represented a total of 111
cohorts and 26 countries. To avoid bias from re-
peated inclusion of the same patients, we restricted
our analysis to 111 cohorts, using data from each co-
hort with largest sample size. Our final analysis was
based on 111 studies that included 37,585 CRC pa-
tients (Fig. 1).

Meta-analysis of CIMP prevalence

We calculated a pooled prevalence of CIMP-H across the
included 111 studies [14, 25-133]. The pooled prevalence
of CIMP-H was 22% (95% confidence interval [CI], 21—
24%; 1> = 95.68%). Additionally, 30 studies reported preva-
lence of CIMP-low (CIMP-L) and CIMP-0. The pooled

4377 records identified from all sources

111 publications included for final
analysis

Fig. 1 PRISMA flowchart

2064 duplicates
excluded
2313 titles & abstracts to screen
1564 Titles & abstracts excluded
23 Study focused on hereditary CRC
1068 No description of CIMP Phenotype
314 Not an original article
18 No description of clinical, pathologic or molecular
characteristics
77 Other cancers
19 Focused on Inflammatory Bowel Disease (UC or CD)
45 Other
749 full text records to review
412  Full text articles excluded
5 Study focused on hereditary CRC
43 No description of CIMP Phenotype
279 Not an original article
24 No description of clinical, pathologic or molecular
characteristics
6 Other cancers
2 Focused on Inflammatory Bowel Disease (UC or CD)
53 Other
337 publications included
Reporting on 111 cohorts
227 full text articles
excluded due to
data from same
cohorts
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prevalence of CIMP-L was 34% (95% CI, 30-39%; I* =
94.73%), and the pooled prevalence of CIMP-0 was 47%
(95% CI, 40-53%; I* = 96.65%) [25, 27, 30, 35, 41, 44—46,
49, 50, 52, 54, 57, 59, 60, 62, 64, 76, 77, 83, 105, 111, 117—
119, 121, 123, 126, 131, 133].

Summary of CIMP methodologies

The included studies provided information on over 60
different methods or combinations of markers/panels to
determine or measure CIMP (Additional file 2: Table S2).
We classified these methodologies into 4 groups: MINT
marker panel (classical panel), W-O panels, and the hu-
man methylation arrays (27k or 450k panel). Methods
that did not fit into either three were grouped as “miscel-
laneous”. Additional file 2: Table S2 provides a table with
detailed information on the methods used in the studies,
including the cutoffs used to define CIMP subgroups and
the countries these methods were used in.

Measuring CIMP-H prevalence across continents

We calculated pooled prevalence estimates of CIMP-H
for Asia, Europe, Australia, North America and South
America using random effects model. The pooled CIMP-H
prevalence across Asia, Australia, Europe, North America
and South America were 22% (95% CI, 18-26%; > =
95.74%); 21% (95% CI, 14—28%; I* = 97.77%); 21% (95% CI,
18-24%; I* = 94.78%); 27% (95% CI, 23-31%; I* = 96.76%)
and 25% (95% CI, 18-31%; I* = not available), respectively.
Only 1 study was available from the African subcontinent,
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from Tunisia. Nine studies included more than 1 country
and were not included in the analysis of prevalence across
continents [25, 42, 44, 45, 63, 69, 88, 108, 115]. Figure 2
provides an overview of pooled prevalence across countries.

CIMP prevalence by methodology

We measured the pooled prevalence of CIMP-H for
each of the 3 methods used to determine CIMP: MINT
marker panel, W-O panel, and human methylation ar-
rays. The pooled prevalence of CIMP-H across these
groups were 26% (95% CI, 23-29%; I* =93.89%); 21%
(95% CIL: 18-23%; I> =96.70%) and 22% (95% CI: 13—
31%; I> = 91.06%), respectively.

Meta-regression analysis

Both unadjusted and adjusted meta-regression analysis
identified no significant differences in CIMP-H preva-
lence across geographical regions (Table 1).

Prevalence by country

Based on available data, we calculated CIMP-H preva-
lence across countries, and found that CIMP-H preva-
lence varied widely across countries globally, and within
continents (Table 2). CIMP-H prevalence ranged from a
low of 6% in Saudi Arabia to high of 50% in Czech Re-
public. Figure 3 provided a global representation of vari-
ation in CIMP-H prevalence across countries.

CIMP-H Prevalence
21%

32%

EUROPE

| 21% (95% Cl=18-24%) |

| South America (Brazil) |

| 25% (95% Cl=18-31%) |

prevalence with 95% Confidence Intervals

2% (95% Cl=23-42%

Fig. 2 CIMP-H prevalence across continents. Global Map Showing Pooled CIMP-H prevalence across continents. Estimates included pooled

ASIA

| 22% (95% CI=18-26%) |

w‘_.“. k.
S |
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Table 1 Metaregression analysis of comparison of CIMP-H prevalence across continents. Using North America as the reference
group, pooled prevalence using unadjusted and adjusted estimates are shown

N Studies N (Total sample size) N (Total CIMP-H) Mean CIMP-H  95% confidence P-Value for unadjusted P-Value for adjusted
prevalence interval metaregression metaregression
North America 19 13,138 2162 27% 23-31% Ref Ref
Asia 30 6628 1113 22% 18-26% 0.24 0.35
Australia 12 4315 618 21% 14-28% 0.19 035
Europe 37 7926 1583 21% 18-24% 0.15 0.31
South America 2 159 40 25% 18-31% 0.66 0.90

Correlation of CIMP-H phenotype with prevalence of
lifestyle factors across countries

Using statistics from the World Health Organization
[134], we measured the prevalence of risk factors
previously associated with CRC [135-137]: obesity
(BMI > =30 kg/m?), alcohol intake (ever drinkers) and
smoking (ever-smoker) with measured CIMP-H
prevalence across countries (Table 2). CIMP-H was
significantly corelated with alcohol intake (Pearson

Table 2 Meta- Analysis for CIMP-H prevalence across countries

correlation=0.51, p =0.01). No significant correl-
ation was observed with the prevalence of obesity
(Pearson correlation=-0.24, p =0.23) or smoking
(Pearson correlation =-0.004, p =0.98). Though
these correlations do not imply causation, it provides
evidence of possible association of alcohol intake as-
sociated epigenetic changes with CIMP phenotype in
CRC and warrants further exploration in future
studies.

Continent Country Mean CIMP-H prevalence 95% Cl Smoking % Alcohol drinkers % Obesity%
Africa Tunisia 32% 23-42% 40.93% 20% 27%
Australia Australia 20% 13-27% 14.8% 11.9% 29%
New Zealand 35% 26-45% 14.9% 12% 31%
Asia China 24% 12-35% 25.2% 10.6% 6%
India 44% 37-51% 11.3% 22.3% 4%
Japan 26% 20-32% 22.5% 9.90% 4%
Taiwan 16% 12-20% 18% NA NA
South Korea 21% 11-31% 236 19.90% 7%
Kuwait 9% 5-16% 19.9% 3.10% 38%
Saudi Arabia 6% 3-10% 13.6% NA 35%
Europe Greece 10% 6-15% 43.7% 15% 25%
[taly 21% 14-28% 23.8% 13% 20%
Spain 24% 18-31% 294% 21% 24%
France 17% 15-19% 32.9% 14.90% 22%
Switzerland 9% 6-12% 25.8% 13.40% 20%
United Kingdom 12% 1-24% 22.4% 15.60% 28%
Netherlands 34% 21-48% 25.9% 13.90% 20%
Norway 19% 17-21% 20.2% 8.70% 23%
Sweden 13% 11-15% 18.9% 12.50% 21%
Denmark 38% 35-42% 19.1% 14.40% 20%
Germany 16% 12-20% 30.7% 13.40% 22%
Poland 25% 19-31% 28.2% 17.90% 23%
Czech Republic 50% 42-59% 34.4% 19.50% 26%
Ireland 43% 29-58% 24.4% 19.30% 25%
North America United States 27% 23-31% 21.9% 14.40% 36%
South America Brazil 25% 18-31% 14% 18.50% 22%

CIMP-H CIMP-High, CI 95% Confidence Interval, % Prevalence as % using World Health Organization data, NA Not available
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CIMP-H Prevalence

.
6% 50%

Mean CIMP-H Prevalence

Fig. 3 CIMP-H prevalence across countries

Bias and quality assessment

Our results identified significant heterogeneity as
assessed by funnel plots for pooled prevalence across
studies. Additional file 3: Figure S1 depicts funnel plots
for assessing publication bias for pooled CIMP-H preva-
lence. Additionally, possible heterogeneity was also ob-
served in funnel plots for CIMP-H prevalence measures
across panel types and continents (Additional file 3). We
found evidence for publication bias, as seen by signifi-
cant Egger’s Publication Bias test (p =0.014) in pooled
CIMP-H prevalence, as well as in pooled prevalence
across North America (p =0.03). Quality assessment re-
sults for cohort and case control studies using the New-
Castle Ottawa scale has been summarized in Add-
itional files 4 and 5 respectively.

Discussion

To our knowledge, this is the first systematic review to
assess differences in the prevalence of CIMP phenotype
in CRC across geographical regions. We found pooled
prevalence of CIMP-H to be 22% across all studies. Add-
itionally, the pooled prevalence of CIMP-H varied from
21 to 27% across geographical regions, and meta-
regression analysis did not identify any significant differ-
ences in pooled prevalence across geographical regions,
after adjusting for methodological differences. Moreover,

our literature search identified over 60 combinations of
panels and methods to measure CIMP, highlighting the
rapidly evolving methodologies and technologies used to
measure CIMP, differences in its utility across geograph-
ical regions, and the need to develop consensus on iden-
tifying a gold standard for measuring CIMP across
geographical regions.

The incidence of CRC varies across different regions
of the world [138, 139]. For example, the overall inci-
dence of CRC in Australia is among the highest in the
world, approximately 40% higher than in the United
States (12% vs 8.6%) [139]. Previous studies have also
found a higher incidence of CRC and a higher ratio of
colon to rectal cancers in Western than in Asian popula-
tions [138—141]. The reasons for these differences are
likely complex and involve differences in risk factors as-
sociated with CRC including lifestyle, genetic and epi-
genetic factors as well as screening practices across
geographical regions [142]. Though our analysis did not
find significant differences in CIMP prevalence across
geographical regions, variation in other molecular sub-
sets across geographical regions is warranted. CRC has
been shown to be associated with lifestyle factors such
as a diet high in red or processed meat, inadequate con-
sumption of fruits and vegetables, smoking, obesity, and
lack of physical activity [143]. Lifestyle factors have been
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postulated to induce inflammation through various
mechanisms including epigenetic changes like hyperme-
thylation [144]. Alcohol consumption may influence
carcinogenesis through several possible mechanisms, in-
cluding altering DNA methylation patterns by affecting
intestinal absorption, hepatobiliary metabolism, and
renal excretion of folate [145]. One study in Germany
found higher consumption of alcohol among patients
diagnosed with CIMP-L (but not CIMP-H) CRC tumors
[110]. Another study found that the type of alcohol con-
sumed (wine or beer) can affect the development of
CIMP tumors [146]. Smoking too has been shown to be
associated more with proximal than distal CRCs, sug-
gesting differential changes induced by tobacco exposure
on CRC pathways [147]. As CIMP is more common in
proximal than in distal CRCs, smoking may be involved
in the development of CIMP-high cancers associated
with proximal tumor location [11]. Samowitz et al. re-
ported higher odds of CIMP-H CRC tumors among
smokers versus nonsmokers (OR = 2.06, 95% CI = 1.43 to
2.97) [148]. In a study comparing the development of
CIMP tumors by smoking status, a shorter time since
cessation of smoking was associated with a higher risk of
developing CIMP-H CRC [149]. Slattery et al. observed
an association between a high body mass index (BMI)
and CIMP- Low but not CIMP-High colon tumors and
no association between BMI and CIMP status in rectal
tumors [150]. In addition, one study reported that over-
weight or obesity was associated with the development
of CIMP-H tumors [29].

Dietary factors also play a key role in CRC develop-
ment. Certain dietary components have shown to be as-
sociated with inducing systemic and gastrointestinal
specific inflammation, leading to increase in levels of
pro-inflammatory cytokines including IL-1, IL-6 and
TNEF-a, and activation of downstream oncogenic signal-
ing pathways [151]. Differences in total and red meat in-
take have been observed between the United States and
other developed countries [152]. Diets low in methyl-
contributing folate, vitamins B6 and B12, methionine
and high consumption of alcohol, affect DNA methyla-
tion and have been shown to result in increased risk of
cancers with CpG island methylation [145]. Lastly, the
combination of high inflammatory diets comprising of
saturated fatty acids, high levels of sugar, red and proc-
essed meat, coupled with low dietary fibers and green
leafy vegetables promote inflammation through increase
in levels of pro-inflammatory cytokines [151]. In normal
healthy colon tissue from women, obesity and smoking
increased DNA methylation at genes hypermethylated in
cancer, but aspirin and hormone replacement therapy
reduced DNA hypermethylation [153]. Therefore, a bet-
ter understanding of differences in the prevalence of risk
factors among CIMP subgroups across geographical regions

Page 8 of 13

could help unravel the pathways involved in CIMP CRC
and explain disparities in CIMP prevalence across these re-
gions. Racial, ethnic, and genetic differences in CIMP
prevalence have also been previously reported. For instance,
compared to patients of Southern European origin, the
prevalence of CIMP tumors was higher in Australian-born
CRC patients of Anglo-Celtic origin, suggesting a genetic
predisposition to CIMP tumors among the latter popula-
tion [154]. Other studies have also found evidence for a
genetic basis for CIMP; for example, polymorphisms in
genes such as MSH6 and MTHFR allele have been shown
to be associated with CIMP-H tumors across diverse popu-
lations [151, 152, 155]. In addition, the authors also ob-
served a joint effect of low folate, low methionine, high
alcohol consumption, and MTHFR 1298 AC or CC geno-
types on the risk of CIMP+ CRC in the US study [156].
Hence possible differences in genetic makeup across coun-
tries can also underline differences in CIMP-H prevalence
across geographical regions. Future studies should focus on
a comprehensive assessment of lifestyle and genetic factors
to compare differences and incidence of CIMP+ cancers
across geographical regions.

Differences in utility of panels/methods for measuring
CIMP significantly differed across continents, highlight-
ing the rapid pace of development of the understanding
of role of epigenetics in cancer and the associated tech-
nology and methodology used to quantify understanding
of this phenotype. CIMP was first characterized by Issa
et.al as a subset of highly methylated CRCs with features
of concordant hypermethylation of multiple CpG island
loci and bimodal distribution of the number of methyl-
ated CpG island loci using the 7-marker MINT panel
[157]. The classical MINT marker panel paved the way
for understanding methylation changes at the gene level.
Lee et al. [158] later compared CIMP tumors using the
classical and the Weisenberger panels. The Weissenberg
panel was better at identifying the clinical, pathological,
and molecular characteristics of CIMP tumors and
worse at prognosis [158]. In 2007, Ogino et al. [12] pro-
posed that a panel of 4 markers for CIMP—RUNX3,
CACNAIG, IGF2, and MLHI—should be sensitive and
specific enough for research and clinical use. Recently,
the use of human methylation arrays have opened the
door to an understanding of methylation across the
whole genome [19]. Another difference among studies of
CIMP is the utilization of primers and probes as well as
identification of “CpG” probes and their location on the
gene [9]. Differences in these methodological factors, in
addition to differences in the background populations
and thus the cohort compositions, might explain some
of the variation in results obtained using different CIMP
panels [76]. Other factors may include methods of tissue
preservation, screening modalities, and patient selection
criteria. This highlights the rapid pace of development of
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field of Epigenetics and transition from gene-specific
panels to study of genome wide methylation across can-
cer patients.

The study of epigenetic modifications like CIMP is of
growing interest to the fields of public health and cancer
prevention, detection, and management. Assessing dif-
ferences in the prevalence of CIMP across regions of the
world is key to identifying factors that contribute to
these changes and to developing primary cancer preven-
tion strategies. CIMP can be present in precancerous
“normal” tissue, raising cancer risk [159-162]. Because
recent combined genetic and epigenetic analyses of spor-
adic CRC identified subsets possessing distinct clinico-
pathologic features, elucidation of the precise roles of
epigenetic abnormalities such as CIMP might be a great
help for the prevention, screening, and treatment of
CRCs [163].

Our study has several strengths. First, we did not restrict
our search strategy to any country or group of CRC pa-
tients. Second, to maintain uniformity we excluded CIMP
studies focusing on precancerous lesions such as aden-
omas and polyps, as CIMP is considered to evolve from
the serrated adenoma pathways [57, 164, 165]. Our study
also had some limitations. First, because no gold
standard exists for defining CIMP, comparisons of
studies across panels or countries are challenging.
Also, genetic markers across panels varied, including
differences in cut-offs for defining CIMP groups
within each methodological subtype too, which might
add to possible heterogeneity in pooled prevalence of
CIMP-H overall and across regions. Second, the high
degree of heterogeneity in the results highlights the
biological complexity of CIMP. Third, a few studies
utilizing Weisenberger or Ogino panel had different
cut-offs to determine CIMP within the same method-
ology which might lead to difference in prevalence of
CIMP-H. Also the sensitivity of different methodolo-
gies or gene panels to quantify methylation might
vary, possibly adding another source of heterogeneity
in our results. Lastly, meta-regression has low power,
and controlling for multiple factors in meta-regression
analysis is not recommended. Hence, we decided to
control only for methodology. By limiting to reports
published in English, we may have excluded entire re-
gions which report their findings in other languages.
Though we identified positive correlation of CIMP-H
prevalence with alcohol intake, these correlations do
not imply causation and warrants further exploration in
future studies. Finally, our results should be interpreted
with caution due to small sample size in subgroup ana-
lysis and high heterogeneity identified in pooled ana-
lysis which might be due to factors other than
methodology including differences in population char-
acteristics, sampling variation, or by chance alone.
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Through our study, we highlight the importance of
considering variations in molecular methodologies in
examining global variations of a disease phenotype.
Further using principles of molecular pathology epi-
demiology, it is possible to examine the role of lifestyle,
demographic and molecular factors in understanding
possible mechanisms that explain possible differences in
CIMP prevalence across geographical regions.

Conclusion

In summary, our results identified mean CIMP-H preva-
lence to be 22%, with no differences observed between
geographical regions. However, there were variations ob-
served across countries within continents. In ecological
analysis, CIMP-H prevalence showed strong correlation
with alcohol intake at a global level, highlighting possible
role of epigenetic mechanisms underlying this associ-
ation. Finally, we also identified variations in methodolo-
gies used to quantify CIMP and need to identify a gold
standard for making effective comparisons.
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