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Abstract

Background: Poly (ADP-ribose) Polymerase (PARP) inhibitors are promising novel radiosensitisers. Pre-clinical
models have demonstrated potent and tumour-specific radiosensitisation by PARP inhibitors. Olaparib is a PARP
inhibitor with a favourable safety profile in comparison to clinically used radiosensitisers including cisplatin when
used as single agent. However, data on safety, tolerability and efficacy of olaparib in combination with radiotherapy
are limited.

Methods: Olaparib is dose escalated in combination with radical (chemo-)radiotherapy regimens for non-small cell
lung cancer (NSCLC), breast cancer and head and neck squamous cell carcinoma (HNSCC) in three parallel single
institution phase 1 trials. All trials investigate a combination treatment of olaparib and radiotherapy, the NSCLC trial
also investigates a triple combination of olaparib, radiotherapy and concurrent low dose cisplatin. The primary
objective is to identify the maximum tolerated dose of olaparib in these combination treatments, defined as the
dose closest to but not exceeding a 15% probability of dose limiting toxicity. Each trial has a separate dose limiting
toxicity definition, taking into account incidence, duration and severity of expected toxicities without olaparib. Dose
escalation is performed using a time-to-event continual reassessment method (TITE-CRM). TITE-CRM enables the
incorporation of late onset toxicity until one year after treatment in the dose limiting toxicity definition while
maintaining an acceptable trial duration. Olaparib treatment starts two days before radiotherapy and continues
during weekends until two days after radiotherapy. Olaparib will also be given two weeks and one week before
radiotherapy in the breast cancer trial and HNSCC trial respectively to allow for translational research. Toxicity is
scored using common terminology criteria for adverse events (CTCAE) version 4.03. Blood samples, and tumour
biopsies in the breast cancer trial, are collected for pharmacokinetic and pharmacodynamic analyses.

Discussion: We designed three parallel phase 1 trials to assess the safety and tolerability of the PARP inhibitor
olaparib in combination with radical (chemo-)radiotherapy treatment regimens. PARP inhibitors have the potential
to improve outcomes in patients treated with radical (chemo-)radiotherapy, by achieving higher locoregional
control rates and/or less treatment associated toxicity.

Trial registration: ClinicalTrials.gov Identifiers: NCT01562210 (registered March 23, 2012), NCT02227082
(retrospectively registered August 27, 2014), NCT02229656 (registered September 1, 2014).

Keywords: Radiotherapy, Radiosensitisation, Olaparib, PARP inhibitor, Phase 1, Dose escalation, TITE-CRM, Dose
limiting toxicity
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Background
Radical radiotherapy is widely used in patients with
advanced solid tumours to achieve long-term locore-
gional control, translating into improvements in
disease free and overall survival. The addition of
chemotherapy has improved these outcomes in a
broad range of tumour types [1]. Nevertheless, further
improvements are warranted given both the toxicities
of such radical treatments and the incidence of locor-
egional recurrences, especially as curative treatment
options for recurrences are often limited. Dose escal-
ation of radiotherapy and/or chemotherapy, however,
is often limited by normal tissue toxicity. In addition,
most radiosensitisers need to be applied intravenously,
which is unpractical and invasive. Oral therapy would
overcome these limitations.
Tumour specific radiosensitisers are expected to en-

hance tumour control without concomitantly increasing
normal tissue toxicity. Potential tumour-specific radio-
sensitisers that are very promising in pre-clinical models
include Poly (ADP-Ribose) Polymerase (PARP) inhibi-
tors [2–4]. In patients the tolerability of PARP inhibitors
as single agent compares favourably to most chemother-
apeutic agents including cisplatin, currently the most
widely used radiosensitiser in clinic [5–8]. Despite these
promising characteristics of PARP inhibitors, little is
known about the clinical value of PARP inhibitors as
radiosensitisers [3].
PARP inhibitors are thought to radiosensitise through

several different mechanisms. The best studied mechan-
ism is through the inhibition of PARP1-mediated repair of
radiation induced DNA damage. Other studies highlight
the PARP1 trapping activity of such inhibitors that could
interfere with cellular replication [9]. Radiosensitisation is
more pronounced in replicating cells [10–13] and in cells
that are homologous recombination deficient [10, 14, 15].
As both these properties are found more frequently in
tumour cells compared to surrounding normal tissue cells,
radiosensitisation is expected to occur preferentially in
tumour cells. A second potential mechanism of tumour-
specific radiosensitisation is based on the increase of
tumour blood flow. Vessel dilation by several PARP inhib-
itors including olaparib increases tumour perfusion [16–
20]. This efficiently reduces the hypoxic, radioresistant
fraction in the tumour rendering the overall tumour more
sensitive to radiation. It may also improve drug delivery
leading to chemosensitisation.
In clinic, several orally bioavailable PARP inhibitors

are used as standard of care or being developed. No clin-
ical data on any PARP inhibitor in combination with
radiotherapy was available at the time of the design of
our combination trials. To date several trials have been
published that assessed the tolerability of the PARP in-
hibitor veliparib in combination with radiotherapy.

Radiotherapy in these combination trials was delivered
to the whole abdomen [21, 22], the brain [23–27], the
pelvic area for locally advanced rectal cancer [28] and
the chest wall and regional lymph node areas for inflam-
matory or locoregionally recurrent breast cancer [29].
Haematological toxicity impeded the determination of a
tolerable dose of veliparib in a triple treatment combin-
ation with radiation and temozolomide for glioblastoma
multiforme [25]. All other trials found an acceptable
safety profile of the combination treatment and identi-
fied a maximum tolerated dose (MTD) varying from 50
mg bi-daily to 400 mg bi-daily. Dose limiting toxicities
(DLTs) included nausea and vomiting [27, 28], radiation
dermatitis [28] and fibrosis [29]. A recent study reports
the results of a phase 1 trial that combines the PARP in-
hibitor olaparib with cetuximab and radiotherapy for lo-
cally advanced head and neck squamous cell carcinoma
(HNSCC) [30]. The recommended phase 2 dose of ola-
parib in this combination treatment was established at
25 mg bi-daily in tablet formulation. Dose limiting tox-
icity included dermatitis and nausea and vomiting.
Grade 3–4 radiation dermatitis and mucositis were com-
mon (38 and 69% respectively). Awaiting results, the
PARADIGM-2 study and OLA-TMZ-RTE-01 trial inves-
tigate the safety and tolerability of olaparib and radio-
therapy with and without temozolomide in glioblastoma
[31, 32]. To the best of our knowledge, there are no
other published trial results on the combination of
radiotherapy with olaparib.
To assess the clinical tolerability and safety of olaparib

in combination with radiotherapy, we initiated three
phase 1 trials in parallel: in patients with non-small cell
lung cancer (NSCLC), breast cancer and HNSCC.
Table 1 provides the rationales for the PARP inhibitor
combination with radiotherapy in these specific types of
cancer. All trials are investigator-initiated and single in-
stitution (The Netherlands Cancer Institute, the
Netherlands). Olaparib is dose escalated in combination
with a fixed radical (chemo-)radiotherapy regime in all
trials to identify the MTD of olaparib in that specific
combination treatment.

Methods
Inclusion criteria
The NSCLC trial includes patients in two parallel
dose escalating arms. Patients can be included in the
concurrent chemoradiotherapy (CCRT) arm if they
have stage II/III inoperable disease without malignant
pleural effusion. Patients can be included in the (se-
quential chemo-)radiotherapy ((SC)RT) arm if they
have an indication for radical locoregional radiother-
apy and, in case induction chemotherapy is given, if
they have no disease progression after induction
chemotherapy. This allows the inclusion of patients
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with oligometastatic disease with a good response to
chemotherapy in the (SC) RT arm only [59].
The breast cancer trial includes patients with pri-

mary breast cancer or a local recurrence of breast
cancer, including inflammatory breast cancer, which is
inoperable and/or metastatic and that have an indica-
tion for breast irradiation. Patients with tumour in-
volvement of the skin are included in a trial arm in
which bolus material is used. Patients without tumour
involvement of the skin are included in a parallel trial
arm in which no bolus material is used. Concomitant
use of tamoxifen or an aromatase inhibitor is allowed.
Other systemic anti-cancer treatments are not allowed
during the trial and up to four weeks after the last
dose of olaparib.
The HNSCC trial includes patients with squamous cell

carcinoma of the larynx (T2N0M0 or T1-2 N1-2bM0 or
patients with locally advanced disease who will not receive
CCRT) or oropharynx (T1-2 N1-2bM0 or T3N0-2bM0 or
patients with locally advanced disease who will not receive
CCRT). Only oropharyngeal carcinoma patients with a
HPV negative tumour status or oropharyngeal carcinoma
patients with a history of smoking ≥ ten pack-years can be
included (i.e. are at intermediate risk [60]).
Additional inclusion criteria in all three trials include:

age higher than or equal to 18 years, a WHO perform-
ance status of 0–1 (a performance status of 2 is also
allowed in the breast cancer trial only), a life expectancy
of at least six months, adequate haematological, renal
and hepatic functions, no concurrent active malignancy
(other than non-melanoma skin cancer or carcinoma-in-
situ), no prior radiotherapy to the involved region, no
prior PARP inhibitor treatment, no concurrent CYP3A4
inhibitors of the following classes: azole antifungals,
macrolide antibiotics, protease inhibitors and no gastro-
intestinal disorders that may interfere with absorption of
the study drug.

Study objectives and endpoints
The primary objective of all three trials is to identify
the maximum tolerated dose (MTD) of olaparib in
combination with radical radiotherapy. The highest
dose level at which not more than 15% of patients
experience dose limiting toxicity (DLT) or the highest
reached dose level in the absence of DLT is defined
as the MTD. The primary endpoint is the incidence
of DLT. DLT is defined separately in each trial. We
differentiate DLT definition between the acute toxicity
phase (i.e. until three months after end of study treat-
ment) and late toxicity phase (i.e. from three months
until one year after end of study treatment) (Table 2).
We aimed to define DLT so that it would not exceed
a ‘baseline’ incidence of 10% after (chemo-)radiother-
apy without olaparib.

Secondary objectives are:

– to describe the safety profile of olaparib in
combination with radical radiotherapy

– to determine the pharmacokinetic profile of olaparib
– to assess the pharmacodynamic effects of olaparib
– to document preliminary evidence of anti-tumour

effects.

Translational research within the trials has the ex-
ploratory objective to investigate the potential and feasi-
bility of biomarkers in whole blood, serum and tumour
biopsy samples as surrogate and/or predictive bio-
markers for anti-tumour effects and/or treatment related
toxicities.

Study treatment
(Chemo-)radiation treatment details are summarised in
Table 3. Radiation is delivered using IMRT (NSCLC,
breast cancer) or VMAT-techniques (HNSCC). Follow-
ing institutional guidelines, simultaneously integrated
boost (SIB) and sequential boost techniques can be ap-
plied in the HNSCC trial. In the breast cancer trial, a
boost to the macroscopic tumour in the breast is deliv-
ered using a SIB technique. Patients in the breast cancer
trial with tumour involvement of the skin are irradiated
using a skin bolus. Dose constraints to organs at risk fol-
low institutional guidelines. Because of concerns of po-
tentially increased risks of pneumonitis, for the first
three patients in the NSCLC trial the maximal mean
lung dose constraint is 16Gy instead of the maximal
20Gy accepted in institutional guidelines.
Olaparib is taken orally twice daily with a 12-h inter-

val, starting two days before the first fraction of radio-
therapy, continuing during weekends, until two days
after the last fraction of radiotherapy. No specific time
interval between radiation and olaparib intake is defined.
To allow for translational research, olaparib is also given
ahead of the combination treatment in two trials: two
weeks before start of radiotherapy to take tumour biop-
sies in the breast cancer trial and one week before start
of radiotherapy to acquire an extra MRI in the HNSCC
trial. Figure 1 describes treatment schedules. Pre-defined
dose levels are 25 mg once daily, 25 mg bi-daily, 50 mg
bi-daily, 100 mg bi-daily, 200 mg bi-daily and 300 mg bi-
daily. Olaparib is given in tablet formulation. Olaparib 25
mg once daily is a predefined dose de-escalation level,
see Additional file 1 for details. The starting dose level is
olaparib 50 mg bi-daily in the breast cancer trial arm
without the use of a skin bolus and 25mg bi-daily in all
other trial arms. These are relatively low doses com-
pared to the recommended monotherapy dose (300 mg
bi-daily in tablet formulation [62]). We chose these as
our preclinical data showed radiosensitisation at
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significantly lower olaparib concentrations than required
for monotherapy efficacy [14]. Considering the available
patient pharmacokinetic data [62] and dependence on
the genetic tumour background one could expect radio-
sensitisation around 25 mg olaparib dose (tablet formu-
lation) with an dose enhancement factor between 1.2
and 1.6 [14]. The starting dose level in the breast cancer
trial arm without the use of a skin bolus is higher as the
incidence, severity and duration of expected dose limit-
ing toxicity such as dermatitis and mucositis is lower.

Dose escalation design
The expected incidence, duration and severity of toxic-
ities strongly depend on the use of a skin bolus (breast
cancer trial) and on the use of concurrent chemotherapy
(NSCLC trial). Therefore, olaparib is dose escalated sep-
arately in patients with and without the use of a skin
bolus or concomitant chemotherapy. This results in two
parallel study arms in the NSCLC trial and in the breast
cancer trial, and only one trial arm in the HNSCC trial.
As a consequence, the identified MTD can differ not

Table 2 Definition of dose limiting toxicities in all three study protocols

NSCLC trial Breast cancer trial HNSCC trial All three trials

Acute
toxicity
phase

Non-hematological toxicity:
• Radiation pneumonitis gr≥ 3
• Any other non-hematological gr≥ 3
toxicity (other than radiation
esophagitis/dysphagia, radiation
dermatitis, fatigue, nausea and
vomiting, weight loss, anorexia and
dehydration)

• Gr≥ 4 radiation esophagitis/dysphagia,
radiation dermatitis, fatigue, nausea and
vomiting, weight loss, anorexia and
dehydration in the presence of
maximal support/treatment.

• Gr 3 radiation dermatitis present ≥ 9
weeks after end of treatment

• Gr 2 cardiac or neurological toxicity
Treatment discontinuation#:
• Any radiotherapy discontinuation
• Cisplatin cumulative discontinuation for
> 20% of the total prescribed dose

Non-hematological toxicity:
• Radiation dermatitis gr 4 except if
this is associated with and at the
localization of the ulcerative tumour

• Radiation dermatitis gr 3 present ≥ 7
weeks after end of treatment

• Pain related to dermatitis gr≥ 3
present ≥ 7 weeks after end of
treatment

• Edema breast gr 3 in the presence of
maximal support/treatment

• Nausea and vomiting gr≥ 3 in the
presence of maximal support/
treatment

• Esophagitis gr≥ 3
• Any other non-hematological toxicity
gr≥ 3 (except radiation dermatitis,
pain, edema, nausea, vomiting,
anorexia, weight loss and fatigue)

Treatment discontinuation:
• Any radiotherapy discontinuation
due to toxicity attributable to
radiotherapy, irrespective of the
grade of toxicity

• Cumulative discontinuation of
radiotherapy for > 5 fractions due to
toxicity attributable to olaparib,
irrespective of the grade of toxicity

Non-hematological
toxicity:
• Gr≥ 4 mucositis,
dysphagia, radiation
dermatitis, anorexia

• Gr≥ 3 hemorrhage,
aspiration, trismus

• Gr≥ 3 radiation
dermatitis present ≥ 8
weeks after end of
treatment

• Gr≥ 3 nausea and/or
vomiting in the presence
of maximal support

• Only in patients with
oropharynx SCC: gr≥ 3
larynx edema

• Weight loss ≥ 20% of
baseline weight

Treatment
discontinuation#:
• Cumulative
discontinuation of
radiotherapy for > 3
fractions

Hematological toxicity:
• Neutropenia gr 4 lasting
for > 6 days

• Neutropenic fever gr≥ 3
• Thrombocytopenia gr 3 in
the presence of bleeding;
Thrombocytopenia gr≥ 4

• Anemia gr 3 in the
presence of blood
transfusion dependency
as judged by the PI;
Anemia gr≥ 4

Other:
• Any other toxicity, which
in the judgment of the
Investigator is viewed as
DLT

Treatment discontinuation#:
• Olaparib total
discontinuation for > 20%
of the total prescribed
dose

Late
toxicity
phase

Non-hematological toxicity:
• Gr≥ 3 radiation pneumonitis, brachial
plexopathy, esophageal stenosis,
esophageal ulcer, esophageal necrosis,
esophageal hemorrhage

• Gr≥ 2 myelitis, esophageal perforation,
esophageal fistula

Non-hematological toxicity:
• Fibrosis gr ≥ 3 outside the boost field
AND if applicable outside the skin
bolus field

• Skin ulceration gr≥ 2 except if this is
persisting acute toxicity associated
with and at the localisation of the
ulcerative tumour

• Radiation pneumonitis gr≥ 3
• Esophagitis gr≥ 3
• Brachial plexopathy gr≥ 2 except if
there was pre-existing brachial
plexopathy or if the brachial
plexopathy is tumour progression
related

Non-hematological
toxicity:
• Gr≥ 4 dysphagia,
aspiration

• Gr≥ 3 hemorrhage, skin
atrophy, trismus,
osteoradionecrosis,
radiation dermatitis,
pneumonitis

• Gr≥ 2 fistula, myelitis
• Gr≥ 2 mucosal ulcer
present ≥ 6 months after
end of treatment

• Fibrosis limiting joint or
orifice movement (e.g.
mouth) and/or limiting
self-care ADL

• Only in patients with
oropharynx SCC: gr≥ 3
larynx stenosis

Hematological toxicity:
• Blood transfusion
dependency as judged by
the PI, unless the patient
has progressive disease

• Development of MDS/
AML

Other:
• Any other toxicity, which
in the judgment of the
Investigator is viewed as
DLT

The acute and late toxicity phases are defined as between start of treatment until three months after end of study treatment, and between three months until
one year after end of study treatment respectively. All toxicities are graded according to CTCAE version 4.03 and are only considered a dose limiting toxicity (DLT)
if they are assessed by the investigator as possibly, probably or definitely related to the combination of radiotherapy and olaparib. # Treatment discontinuation
can be intermittent and/or continuous and is only considered a DLT if this is due to toxicity attributable to the combination study treatment, irrespective of the
grade of toxicity. Gr = grade, ADL = activity of daily living, SCC = squamous cell carcinoma, MDS =myelodysplastic syndrome, AML = acute myeloid leukemia
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only between trials but also between the two study arms
within the same trial. Each trial arm accrues an esti-
mated maximum of 36 patients evaluable for DLTs.
The NSCLC trial was launched first and started with a

standard 3 + 3 design [63]. However, to be able to in-
clude late onset toxicity in the DLT definition, the dose
escalation method was switched to a Time-to-Event
Continual Reassessment Method (TITE-CRM [64, 65]).
The breast cancer trial and HNSCC trial directly started
with a TITE-CRM design. TITE-CRM is recommended
for radiotherapy studies in several guidelines as late on-
set toxicity can be dose limiting [1, 66–68]. In short,
TITE-CRM uses a dose level - toxicity model to identify
the MTD, thereby weighting patients according to their
time of follow-up. It allows the trial to continue with pa-
tient enrolment while previous patients are still being
evaluated for late onset DLT. The first three patients in
each trial arm are treated at the starting dose level.
Thereafter, patients are assigned to a dose level using
TITE-CRM and dose escalation rules. Upon enrolment
of a new patient, TITE-CRM estimates the current
MTD (see statistical analysis). New patients are assigned

to the dose level that is closest to but not exceeding this
current estimated MTD after applying two restrictive
dose-escalation rules: 1) at least three patients have com-
pleted a minimal follow-up time of three months after
end of treatment at the dose level below the assigned
dose level, and 2) the assigned dose level may not in-
crease more than one dose level between two consecu-
tive patients. There is no restriction on the decrease in
number of levels between consecutive patients.

Assessments
Toxicity is assessed using the common terminology cri-
teria for adverse events (CTCAE) version 4.03 at base-
line, weekly during treatment, five times during the
acute toxicity phase and at all follow-up visits during the
late toxicity phase. The frequency and duration of fol-
low-up visits in the late toxicity phase differs between
trials: three monthly until two years after end of treat-
ment (EOT) in the breast cancer trial, three monthly
until one year after EOT and six monthly between one
and five years after EOT in the NSCLC trial, and two
monthly until one year after EOT and three monthly

Fig. 1 Treatment schedules in the NSCLC, breast cancer and HNSCC trials. Cisplatin is only given to patients in the CCRT arm. Radiotherapy in the
HNSCC trial is delivered in five to six fractions per week in six weeks, the sixth fraction will be given on a weekday with an interval of at least six
hours [61]

Table 3 (Chemo-)radiation treatment details

Radiation target volumes Radiation dose Boost / Elective fields Chemotherapy

NSCLC trial Primary lung tumour and involved
regional lymph nodes

66 Gy in 24 fractions N.A. Cisplatin 6 mg/m2 1.5–2 h
before radiation on every
radiotherapy day#

Breast cancer trial Whole breast and involved regional
lymph node areas

46.69 Gy in 23
fractions

SIB of 14.49 Gy in 23 fractions to
macroscopic tumour in breast;
sequential boost of 10 Gy in 5
fractions to macroscopic lymph
nodes (only if applicable)

N.A.

HNSCC trial Primary tumour and regional metastatic
lymph nodes; elective lymph node
volumes based on site of primary
tumour and stage

70 Gy in 35 fractions Elective fields: 46 Gy in 23 fractions
(sequential boost technique) or
54.25 Gy in 35 fractions (SIB technique)

N.A.

# in the CCRT arm only. Gy = Gray. N.A. = not applicable, SIB = simultaneous integrated boost
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between one and two years after EOT in the HNSCC
trial. Patients in all trials are followed until the last
planned study follow-up visit or until disease progres-
sion, whichever occurs first. There is one exception, if
disease progression occurs within the first year after
EOT, toxicity assessments are completed until one year
after EOT to be able to fully assess the DLT incidence.
To evaluate cosmetic outcome in the breast cancer trial,
breast appearance of the irradiated breast is scored ac-
cording to Harvard criteria [69] at baseline and three-
monthly until two years after EOT. Additionally, clinical
photographs are taken at baseline, one week, three
months and one year after EOT.
Treatment response is assessed using a tailored

method in each trial: using a chest CT and FDG PET-
CT scan six weeks after treatment in the NSCLC trial,
using a prone breast-MRI three months after treatment
in the breast cancer trial and a CT (only in case of lar-
ynx carcinoma) and MRI of the head and neck region
three months after treatment in the HNSCC trial. Add-
itional treatment response assessments at later time
points are defined in the study protocols and follow in-
stitutional guidelines.

Translational research
The primary purpose of translational research studies in-
cluded in these trials is to investigate the biologically ef-
fective dose range of olaparib in combination with
radiotherapy. It has been shown that much lower ola-
parib concentrations than those causing single agent
cytotoxicity are required to be effective as radiosensitiser
[14]. To investigate the biologically effective dose range
of olaparib in patients, pharmacokinetic (PK) and
adapted pharmacodynamic (PD) studies are conducted.
Patient material is collected at several time points for
these PK/PD studies. Plasma samples for PK analysis are
taken on the day of the fourth radiation fraction (i.e. at
near steady state olaparib levels [70]) at several time
points in all trials: before olaparib intake and 0.5, 1, 2, 3,
4, 6, 8 and 12 h after intake. Blood samples are taken for
PD analysis in all trials before start of treatment, several
times during study treatment at three hours after ola-
parib intake and shortly before the next olaparib intake,
and after end of treatment. An additional plasma sample
is taken at each of these time points to assess PK-PD re-
lationships. The collection of tumour biopsy material is
restricted to the breast cancer trial and planned both be-
fore the start of treatment and at three hours after ola-
parib intake during the olaparib pre-treatment phase
(week − 1 in Fig. 1).
Olaparib concentrations are measured in plasma and

tumour samples using a validated high-performance liquid
chromatography-tandem mass spectrometry (HPLC-MS/
MS) method [71]. Pharmacodynamic analyses primarily

focus on biological effective target inhibition in the con-
text of radiation-induced responses, in this case radiation-
induced PARylation. PAR levels are measured using our
previously reported modified ‘REP-assay’ (radiation-en-
hanced-PAR-assay [72]). This ELISA-based PD assay in-
cludes an ex vivo irradiation step of intact cells to activate
PARylation by PARP. The assay’s sensitivity to detect
PARP inhibition was greatly increased by this modification
and revealed inhibition of radiation-induced PARylation
at low olaparib concentrations in a healthy volunteer study
[72]. In our trials, the inhibition of radiation-induced PAR
levels is assessed both in peripheral blood mononuclear
cells from all trial patients, and in tumour biopsy material
from breast cancer trial patients.
Another pharmacodynamic study aims to investigate

the reported vasoactive properties of some PARP inhibit-
ing compounds that alter tumour perfusion [16–20].
The associated reduction in tumour hypoxia and im-
provement in tumour drug delivery will be important
determinants of response to radiotherapy and combined
treatment. Tumour perfusion changes are therefore in-
vestigated by dynamic contrast enhanced MRIs in the
HNSCC trial. MRI images are acquired in radiation
mask before start of treatment and 1.5–2 h after olaparib
intake during the olaparib pre-treatment phase (week −
1 in Fig. 1). Furthermore, PARP inhibitors may impact
healthy tissue toxicity by interfering in the inflammatory
responses induced by radiotherapy. Repeated serum
samples are taken before, during and after treatment for
analyses of changes in markers related to the radiation-
induced inflammatory response, such as TGF-beta [73,
74]. Additionally the feasibility and potential value of
candidate response biomarkers for the combination
treatment of olaparib and radiotherapy is investigated.
Given the increased radiosensitisation in DNA damage
repair defected tumours [10, 14, 15] and in hypoxic tu-
mours [17, 75], this includes biomarkers for DNA repair
defects such as homologous recombination deficiency,
and/or biomarkers for hypoxia. These additional genetic
analyses are an optional part in the breast cancer trial
and the HNSCC trial, of which patients are informed
using a separate patient information file containing a
separate form for consent.

Treatment adherence and discontinuation
Adherence to daily oral olaparib intake is monitored
closely. Actual drug intake is documented in a patient
diary by patients themselves. A trained research nurse or
radiation therapy technologist discusses olaparib intake
and the patient diary completion before start of treat-
ment and weekly until the end of treatment with each
patient. Any discrepancies between returned tablets after
end of treatment and documentation in the patient diary
will be discussed with the patient.
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Olaparib will be permanently discontinued in patients in
whom a dose limiting toxicity occurs during treatment. Cis-
platin, if given, will be discontinued until improvement in
case of ≥ 30% reduction of glomerular filtration rate (GFR),
a GFR < 50ml/min or thrombocytopenia < 75 x 10E9/l.
The decision to interrupt or change the radiotherapy regi-
men will be made on a case by case basis. In general radio-
therapy will be continued in case of toxicity that can clearly
be ascribed to olaparib or cisplatin, or in case only a limited
number of radiotherapy fractions have to be delivered. In
case of study treatment discontinuation after less than 80%
of the planned cumulative olaparib dose, patients will have
follow-up of all adverse events until resolution or until
three months after the last dose of olaparib, whichever oc-
curs first. In case of study treatment discontinuation after
more than 80% of the planned cumulative olaparib dose,
patients will undergo all planned study assessments.

Serious adverse events
Serious adverse events (SAE) are defined according to
the rules of Good Clinical Practice. All SAEs occurring
until three months after end of study treatment must be
reported. Thereafter, only possibly, probably or defini-
tively related SAEs must be reported until the last study
follow-up visit (see assessments). The above specified
SAEs must be reported within one working day and are
listed in an annually safety report.

Data management and monitoring
Data will be collected on Case Report Forms and will be
entered in database at the Department of Biometrics.
Data cleaning will be performed following a study spe-
cific central data management plan. Source data verifica-
tion will be performed by an independent Clinical
Research Monitor. The study is considered to be high
risk according to guidelines of the Dutch Federation of
University Medical Centres. Therefore, 100% of all data
will be monitored in the first three patients, and 100% of
all primary data will be monitored in all subsequent pa-
tients. Drug-accountability will be performed by both
the Clinical Research Monitor and Slotervaart Pharmacy.
An auditing trial will not be performed routinely. All
study results will be processed anonymously, identified
by a patient verification code. All study files will be
stored for 15 years.

Statistical analysis
TITE-CRM uses a one parameter power model calculat-
ing the probability P of a DLT for a given dose d with
the following formula: P (DLT/d) = d exp β. The dose-
toxicity parameter β is initially assumed to have a nor-
mal distribution with mean 0.0 and standard deviation
of 1.16. Upon enrolment of a new patient, a new value
of β is calculated based on a prior estimated DLT

probability and the observed DLT rate in all already
enrolled patients. The weight (w) of enrolled patients
without DLT depends on their follow-up time according
to a piecewise linear function which is w = 0 at start of
treatment, w = 0.5 at three months after end of study
treatment and w = 1 at one year after end of study treat-
ment. This gives equal weight to the acute and late DLT
periods. Patients experiencing a DLT are given the full
weight (w = 1) independent of the time of DLT appear-
ance and follow-up time. Subsequently posterior DLT
probabilities with 90% Bayesian confidence intervals
(“credible intervals”) are calculated for each dose level.
The dose level that is closest to but not exceeding a 15%
posterior DLT probability (i.e. the current estimated
probability) is identified as the current estimated MTD.
Once all patients in a trial arm completed their max-
imum DLT-observation period, this posterior DLT prob-
ability is the final estimate of the MTD. All calculations
are performed at the statistical department of The
Netherlands Cancer Institute using R software version
3.5.0 with package dfcrm version 0.2–2 [76].

Discussion
The clinical development of radiosensitisers in a curative
setting faces several important challenges [1, 66, 77].
First, concurrent chemotherapy regimens are often
standard of care. Locally advanced NSCLC and locally
advanced HNSCC are both treated with CCRT which is
often cisplatin-based. Two clinical development strat-
egies can be followed: one to compose a triple combin-
ation, or another to substitute the currently used
chemotherapy by a novel radiosensitiser. The choice is
based on the evaluation of expected efficacy, toxicity and
feasibility. To the best of our knowledge, there are no
preclinical data on a triple combination of radiation, cis-
platin and a PARP inhibitor. Preclinical models have
shown that PARP inhibitors not only sensitise tumours
to radiation, but also to the well-established radiosensiti-
ser cisplatin [78, 79]. Such triple treatments may there-
fore have strong anti-tumour effects. In clinic,
nevertheless, other triple combinations did not always
show superiority over the standard of care [40, 80, 81].
Also, triple combination treatments are often not well-
tolerated [40, 80]. Mucositis and haematological toxicity
are expected to be dose limiting in a triple combination
of radiotherapy, cisplatin and a PARP inhibitor. Radi-
ation induced mucositis is increased by cisplatin [33, 82,
83]. This could be aggravated by PARP inhibitors as
both chemo- and radiosensitisation can occur especially
in rapidly dividing tissue [10–13]). Haematological tox-
icity is shown to be dose limiting in a combination of
olaparib and high dose cisplatin [84]. CCRT for HNSCC
is given with a high dose of cisplatin and results in mu-
cositis rates that are high and already close to dose
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limiting without a PARP inhibitor. We therefore rea-
soned that a triple combination in HNSCC would be too
toxic. In the NSCLC trial, however, we decided to inves-
tigate the safety and tolerability of a triple combination
treatment. Mucositis/esophagitis rates induced by cis-
platin-based CCRT are substantially lower in NSCLC
compared to HNSCC. Also, the lower cisplatin dose
used in our CCRT schedule for NSCLC has a lower risk
of haematological toxicity [85].
The second development strategy aims to substitute

cisplatin by olaparib. Although a direct preclinical com-
parison of radiosensitisation potential between cisplatin
and PARP inhibitors is lacking, reported radiation dose
enhancement factors support a substitution strategy
(i.e. around 1.2 for cisplatin [86] and 1.3–1.5 for PARP
inhibitors [3, 14] in in vitro models). The substitution
strategy is also supported by the favourable toxicity
profile of PARP inhibitors. Systemic toxicity such as
cisplatin induced nephrotoxicity will be avoided. Fur-
thermore, olaparib has the advantages of being an oral
drug over the intravenously injected cisplatin: non-in-
vasive, more patient friendly and with less logistical is-
sues. The challenge of the substitution strategy,
however, concerns the identification of a large enough
patient population for study inclusion. On the one
hand, it is usually not considered acceptable to substi-
tute a therapeutic agent for which level one clinical evi-
dence of survival benefit exists (i.e. concurrent
chemotherapy), with a therapeutic agent for which only
preclinical evidence of radiosensitisation is available
(i.e. in our trials olaparib). This possibly results in the
‘under treatment’ of patients. On the other hand, it is
usually considered not justified to ‘over treat’ patients
with metastatic disease with a radical radiotherapy regi-
men including a radiosensitiser that potentially even
worsens toxicity. We defined our trial patient popula-
tions balancing between these ethical concerns. In the
(SC) RT arm of the NSCLC trial we allow the inclusion
of patients with oligometastatic disease, as their prog-
nosis is comparable to that of patients with stage III
disease in which the toxicity risks of radical radiotherapy
are clinically accepted [59]. In the HNSCC trial we include
patients with an intermediate risk for locoregional recur-
rence in whom standard of care treatment according to
institutional policies is accelerated radiotherapy, only ex-
cluding HPV positive oropharyngeal tumours with a low
risk of locoregional recurrence [60].
Another challenge in the clinical development of

radiosensitisers concerns the strong dependency of tox-
icity profiles on radiation volumes and schedules [1, 66,
77]. The safety and tolerability of a radiosensitiser is
therefore likely to depend on these same variables. The
MTD for a given radiosensitiser can differ between pri-
mary tumour sites and radiotherapy schedules, as is

shown for e.g. gemcitabine [1] and veliparib [21–25, 27–
29]. Hence, we designed three parallel dose escalation
trials. In addition, as the use of concurrent chemother-
apy in NSCLC [33] or the use of a skin bolus in breast
cancer [87–89] significantly increases toxicity, we de-
signed parallel trial arms for separate dose escalation
within the NSCLC trial and the breast cancer trial.
A final challenge in the clinical development of

radiosensitisers concerns the DLT definition and
evaluation period [1]. DLTs are typically defined as
toxicities of grade three or more. In radical radiother-
apy treatment regimens, however, certain grade three
acute toxicities are common and considered clinically
acceptable (e.g. dermatitis in the area where a skin
bolus is used). In the case of such expected and ac-
cepted severe toxicities, DLTs can be defined as more
severe than expected toxicity (e.g. grade four derma-
titis) and/or as expected severe toxicity with a longer
duration than expected (e.g. grade three dermatitis
present ≥ seven weeks after end of treatment) [66]. A
third strategy is to define a higher DLT probability as
the MTD, taking a certain ‘baseline’ DLT probability
with (chemo-)radiotherapy alone into account. We de-
termined DLT definitions and acceptable DLT prob-
abilities based on a structured literature review and
expert opinions. The duration of the DLT evaluation
period is also important, and can influence the final
MTD dramatically. The MTD of veliparib in combin-
ation with radiotherapy to the chest wall and regional
lymph node areas [29] was determined to be 200 mg
bi-daily based on acute toxicity only. However, after
considering the late onset toxicity that only started to
occur one year after end of treatment, the final MTD
was determined to be 50 mg bi-daily. Severe late on-
set toxicity was also found to appear six months after
end of treatment in the recently published phase 1
trial combining olaparib with cetuximab and radio-
therapy [30]. The MTD was based on acute toxicity
only and determined to be 50 mg bi-daily. However,
the recommended phase 2 dose was established at 25
mg bi-daily. Our trials have a DLT evaluation period
until one year after end of treatment, as this time
window captures most of the late onset toxicity such
as late (consequential) oesophagus toxicity [90] and
radiation pneumonitis [91].
In summary, we present three parallel single institutional

phase 1 trials in which the PARP inhibitor olaparib is dose
escalated in combination with radical (chemo-)radiotherapy
in NSCLC, breast cancer and HNSCC patients to assess
safety and tolerability of the combination treatments.
Through the tumour-specific radiosensitisation of PARP in-
hibitors, these combination treatments have the potential to
improve patient outcomes, by achieving higher locoregional
control rates and/or less treatment associated toxicity.
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Additional files

Additional file 1: De-escalation dose level. Treatment schedules of
the predefined dose de-escalation level of olaparib 25 mg once daily.
(DOCX 69 kb)

Additional file 2: Tables S1-S3. Homologous recombination deficiency
in NSCLC, breast cancer and HNSCC. The tables list reported gene
mutation frequencies, if applicable BRCA-ness frequencies, and data
showing preclinical and clinical PARP efficacy. (DOCX 147 kb)
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mutated; BRCA1: BRCA1, DNA repair associated; BRCA2: BRCA2, DNA repair
associated; CCRT: concurrent chemoradiotherapy; CTCAE: common
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of treatment; FA: fanconi anemia; GFR: glomerular filtration rate; gr: grade;
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