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Abstract

Background: Adoptive transfer of immune cells such as T cells and natural killer (NK) cells has emerged as a
targeted method of controlling the immune system against cancer. Despite their significant therapeutic potential,
efficient methods to generate adequate numbers of NK cells are lacking and ex vivo-expansion and activation of
NK cells is currently under intensive investigation. The primary purpose of this study was to develop an effective

cytotoxicity against liver cancer in a short time period.

, MY1633 , Cytotoxicity

method for expansion and activation of the effector cells with high proportion of NK cells and increasing

Methods: Expanded NK cell-enriched lymphocytes (NKL) designated as “MYJ1633" were prepared by using
autologous human plasma, cytokines (IL-2, IL-12 and IL-18) and agonistic antibodies (CD16, CD56 and NKp46)
without an NK cell-sorting step. The characteristics of NKL were compared to those of freshly isolated PBMCs. In
addition, the cytotoxic effect of the NKL on liver cancer cell was examined in vitro and in vivo.

Results: The total cell number after ex vivo-expansion increased about 140-fold compared to that of freshly
isolated PBMC within 2 weeks. Approximately 78% of the expanded and activated NKL using the house-developed
protocol was NK cell and NKT cells even without a NK cell-sorting step. In addition, the expanded and activated
NKL demonstrated potent cytotoxicity against liver cancer in vitro and in vivo.

Conclusion: The house-developed method can be a new and effective strategy to prepare clinically applicable NKL
for autologous NK cell-based anti-tumor immunotherapy.
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Background

Cancer immunotherapy has been an attractive approach
for a long time. There have been many attempts using
diverse immunotherapeutic modalities with varying clin-
ical results. Especially, adoptive transfer of immune cells
such as T cells and natural killer (NK) cells has emerged
as a targeted method of controlling the immune system
against cancer [1-3]. Together with CD8" cytotoxic T
(Tc) cells, NK cells have received considerable attention
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because of their roles in in vivo immune surveillance
which is to destroy infected or transformed cells [4—6].
NK cells play an important role in the innate immune
response. They have highly regulated cytolytic capacity
that is achieved by the release of perforins and gran-
zymes as well as expression of Fas ligand and tumor ne-
crosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) [7, 8]. Furthermore, they are involved in T-cell
recognition of infected cells and interact with macro-
phages, granulocytes and dendritic cells through secreted
cytokines (interferon (IFN)-y, interleukin (IL)-13, TNF-a
and RANTES), chemokines (C-C motif ligand (CCL)-3,
-4 and - 5) and growth factor (granulocyte—macrophage
colony-stimulating factor (GM-CSF)) [7, 9]. The
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biological activity of NK cell is regulated through fine-
tuning of activating and inhibitory receptors. Those re-
ceptors maintain cytotoxic capacity against tumor cells
without harming healthy cells. Many studies have dem-
onstrated the safety and clinical anti-cancer effects of
adoptive transfer of NK cells, highlighting the potential
of NK cells as an effective cancer immunotherapy [2,
10].

Nevertheless, a major roadblock to the development of
NK cell-based therapies is the lack of efficient methods
to generate sufficient number of NK cells for clinical ap-
plication and efficacy. Since ex vivo-expansion and acti-
vation of NK cells is proven to be very challenging,
development of an optimized method of preparing NK
cells for clinical application is vital to the realization of
NK cell-based immunotherapies.

To date, NK cells have been expanded from multiple
sources, including peripheral blood mononuclear cells
(PBMC) [6, 11-16], umbilical cord blood [2, 17, 18] and
embryonic stem cells [19]. Various stimuli such as cyto-
kines [16, 20], monoclonal antibodies [13, 14, 21], and
allogenic feeder cells [2, 6, 11, 15, 17] also have been
used. Additionally, most of the previous NK cell ex vivo-
expansion protocol involved culturing the cells following
a process of NK-cell sorting through positive and/or
negative selection [6, 11, 15-17]. One of the main pur-
poses of NK-cell sorting is to minimize the risk of im-
mune-related adverse complications such as graft-
versus-host disease (GVHD), especially in case of allo-
geneic applications [22]. This is because non-NK im-
mune cells, such as alloreactive T cells, can cause
GVHD following allogeneic adoptive cell therapy [23].
Therefore, NK-cell sorting may not be necessary if the
intended use of ex vivo expanded NK cells is autologous
adoptive cell therapy. Furthermore, skipping the cell
sorting step could simplify the NK cell preparation
protocol and reduce the production costs of autologous
NK cell-based product if such product should be devel-
oped [24].

In the present study, as an effort to develop an effect-
ive NK cell-based therapeutics for autologous adoptive
cell therapy, we tested a relatively simple but effective
method for the expansion and activation of NK cell
enriched effector cells and examined the cytotoxic cap-
acity of the prepared cells against liver cancer cells.

Methods

Human subjects

Human PBMCs and plasma used for the experiment
were obtained from the human blood samples of healthy
donors recruited at IMMUNISBIO Co., Ltd. All donors
provided an informed consent to participate. The study
protocol was approved by the Institutional Review
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Board, Korea National Institute for Bioethics Policy
(P01-201706-31-003)..

Isolation of PBMC and plasma

Human blood (30 to 60 mL) was collected using vac-
uum-driven BD Vacutainer Blood Collection Tubes con-
taining heparin (cat no. 367874; BD, Franklin Lakes, NJ,
USA). Autologous human PBMCs and plasma were col-
lected from the buffy coats and the upper aqueous phase
of blood samples, respectively, by density gravity centri-
fugation using Ficoll-Paque (cat. no. 17-1440-03, GE
Healthcare, Piscataway, NJ, USA). The lymphocyte-con-
taining PBMCs were washed with phosphate buffered sa-
line (cat. no. LB-004-01; WELGENE, Gyeongsan, Korea)
and counted using a hemocytometer. The obtained
plasma was inactivated for 30 min at 56 °C for future use
(culture and expansion of NKL).

Composition of NKL culture media

The KBM502 (cat no. 16025020; KOHJIN Bio, Sakado
city, Saitama, Japan)-based culture medium used to ex-
pand and activate the isolated PBMC was supplemented
with the following ingredients; 0.5% or 10% autologous
human plasma depending on the step, each 2.5 ug of 3
different agonistic antibodies (anti-human CD56 (cat.
no. 555513 and clone B159 (RUQ); BD Biosciences, San
Jose, CA, USA), anti-human CD16 (cat. no. 555403 and
clone 3G8 (RUO); BD Biosciences) and anti-human
CD355 (cat. no. MAB1850-500 and clone #195314;
R&D SYSTEMS, Minneapolis, MN, USA)), and 3 differ-
ent cytokines (200 ng/mL of IL-2 (cat. no. 653601261;
Norvatis, Whippany, USA), 10 ng/mL of IL-12 (cat. no.
200-12; PEPROTECH, Rocky Hill, NJ, USA) and 100
ng/mL of IL-18 (cat. no. B003-2; R&D SYSTEMS)). All
the cytokines were from PEPROTECH (Rocky Hill, NJ,
USA).

Expansion and activation of NKL

The isolated PBMCs from the first step were cultured in
T25 flask (cat no. 70025; SPL Life Science, Pocheon,
Korea) with 10 ml of NKL culture medium containing
10% autologous human plasma for a day or two (second
step). The cells and supernatants in T25 flask were then
transferred to T75 flask (cat no. 70075; SPL Life Science)
and new NKL culture medium containing 10% autolo-
gous human plasma was added to the flask to make a
final volume of 30 ml (third step). After two or 3 days,
the cells and supernatants in T75 flask were transferred
to T175 flask (cat no. 71175; SPL Life Science) and 40
ml of new NKL culture medium containing 10% autolo-
gous human plasma was added to the flask to make a
final volume of 70 ml (fourth step). After two or 3 days,
the cells and supernatants in T175 flask were injected
into gas-permeable culture bag (cat no. 1602502B;
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KOH]JIN Bio) and 1000 mL of new NKL culture medium
containing 0.5% autologous human plasma was added.
The cells were cultivated for six or 7 days (fifth step;
Fig. 1a). The final product was named after the project
(MY]J1633) and the name “MYJ1633” was used to refer
the ex-vivo expanded NKL prepared by the house-devel-
oped protocol for the rest of the study.

Flow cytometry

To estimate the cellular composition of the MYJ1633,
the cells were incubated with a premixed antibody cock-
tails in flow cytometry staining buffer containing 1%
fetal bovine serum (FBS; Gibco by Life Technologies,
Grand island, NY, USA) and 0.09% sodium azide
(Sigma-Aldrich, St. Louis, MO, USA). To determine the
ratio of NK cells to T cells, 0.25 pg of anti-human CD56
PE-Cyanine7 antibodies (cat. no. 25-0567-42 and clone
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CMSSB; eBioscience, San Diego, CA, USA), 0.03 ug of
anti-human CD16 PE-Cyanine7 antibodies (cat. no. 25—
0168-42 and clone CB16; eBioscience) and 0.125 pg of
anti-human CD3 APC antibodies (cat. no. 17-0036-42
and clone SK7; eBioscience) were used for the antibody
cocktail. For determining the ratio of helper T cells (Th)
to cytotoxic T cells (Tc), 0.25 pug of anti-human CD4
FITC antibodies (cat. no. 11-0047-42 and clone SK3
(SK-3); eBioscience) and 0.125 pg of anti-human CDS8-
PerCP-eFluor®710 antibodies (cat. no. 46—0087-42 and
clone: SK1; eBioscience) were used. For detecting differ-
ent types of receptors expressed, 0.25 pug of anti-human
CD56 FITC antibodies (cat. no. 11-0566-42 and clone
TULY56; eBioscience), 0.03 ug of anti-human CD16
FITC antibodies (cat. no. 11-0168-41 and clone CB16;
eBioscience), 0.125 pg of anti-human CD314 (NKG2D)
PE antibodies (cat. no. 12-5879-42 and clone 5C6;
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Fig. 1 Ex vivo-expansion of MYJ1633. a Experimental scheme for ex vivo-expansion of MYJ1633. More details about culture methods of MYJ1633
were described in the Methods section. b Comparison of total cell number between PBMC and MYJ1633 from 10 individuals. Significant
differences between PBMC and MYJ1633 were determined by Student's t test. The data represented as mean =+ standard error of
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eBioscience), 0.25pg of anti-human CD226 APC anti-
bodies (DNAM-1; cat. no. 338312 and clone 11A8; Bio-
Legend, San Diego, CA, USA), 0.125 pg of anti-human
CD336 (NKp44) PerCP-eFluor®710 antibodies (cat. no.
46-3369-42 and clone 44.189; eBioscience), 0.125 pg of
anti-human CD355 (NKp46) APC antibodies (cat. no.
17-3359-42 and clone 9E2; eBioscience) and 0.125 pg of
anti-human CD94 (NKG2A) APC antibodies (cat. no.
17-5094-42 and clone HP-3D9; eBioscience) were used
to stain receptors. The cells were incubated with flow
cytometry staining buffer containing appropriate combi-
nations of antibodies for 30 min on ice and washed with
PBS twice. For each sample, 100,000 events were cap-
tured and data were processed using an Acurri C6 plus
flow cytometer (BD Biosciences). Compensation of the
spillover between different fluorochromes was per-
formed by using Acurri C6 software according to the
user manual provided. Since our unpublished data indi-
cated that more than 95% of CD56" cells were also posi-
tive for CD16, an antibody cocktail containing both
CD16 and CD56 antibodies were used for detecting
CD16" and CD56" cells.

Enzyme-linked immunosorbent assay (ELISA)
Supernatants were collected after 24h from cytokine-
stimulated and expanded MYJ1633. Interferon (IFN)-y
and tumor necrosis factor (TNF)-a cytokine levels in cell
culture supernatants were quantitatively measured using
Human IEN-y ELISA Kit (Abcam; Cambridge, United
Kingdom) and Human TNF-a ELISA Kit (Abcam), fol-
lowing the manufacturer’ instructions.

Cell lines

Hep3B (hepatocellular carcinoma, ATCC® HB-8064),
HepG2 (hepatoblastoma, ATCC® HB-8065) and SK-
Hepl (hepatocellular adenocarcinoma, ATCC® HTB-52)
cells were purchased form the American Type Culture
Collection (ATCC, Manassas, VA, USA). Hep3B and
SK-Hepl were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM; Gibco by Life Technologies) supple-
mented with 4.5g/L D-glucose, 10% heat-inactivated
FBS, 2 mM L-glutamine (Gibco by Life Technologies), 1
mM sodium pyruvate (Gibco by Life Technologies) and
10mM HEPES (Gibco by Life Technologies). HepG2
was cultured in Minimum Essential Medium (MEM;
Gibco by Life Technologies) supplemented with heat-
inactivated 10% FBS, 2 mM L-glutamine, 1 mM sodium
pyruvate and 10 mM HEPES. The cells were maintained
in a humidified atmosphere of 5% CO, and 95% air at
37°C.

Cell viability and cytotoxicity assay
Three different lines of liver cancer cells (Hep3B, SK-
Hepl and HepG2) were seeded at a density of 1 x 10*
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cells/well in a 96-well plate. After 24 h, MYJ1633 were
applied to the liver cancer cells with different effector (E,
MY]J1633) to target (T, cancer cells) ratios (2.5:1, 5:1, 10:
1 and 20:1). After 24 h of culture, the supernatants were
collected, centrifuged to remove unattached MYJ1633
and debris, and were objected to LDH (lactate dehydro-
genase) assay [25] to determine the cytotoxicity of
MY]J1633 against cancer cells using Cytotoxicity Detec-
tion Kit (Takara, Nojihigashi, Kusatsu, Shiga, Japan). The
viability of remained (attached) cancer cells after the co-
culture with MYJ1633 was measured using Ez-Cytox
(DOGEN, Seoul, Korea) [26].

Xenograft model using SK-Hep1 cell

All experimental procedures for animal studies were ap-
proved by the Committee for the Care and Use of La-
boratory Animals of Catholic Kwandong University
College of Medicine and were performed in accordance
with the Committee’s Guidelines and Regulations for
Animal Care (CKU 01-2017-008). Male athymic nude
mice (Koatech, Pyeoungtaek, Korea) were used at 5
weeks of age. The animals were housed in microisolator
cages. To evaluate anti-tumor efficacy of MYJ1633, the
animals were subcutaneously bolus injected with SK-
Hepl (3 x 10° cells/animal) in the right flank. After the
group assignment (day 0), the animals for the MYJ1633
treated groups were received MYJ1633 (3 x 10° or 6 x
10° cells/200 pl of PBS) via tail vein using a disposable
syringe (1 ml, 29G, BD bioscience) at a rate of 2 ml/ml
under physical restraint with great care [27]. A mixture
of Zoletile (tiletamine/zolazepam, 40 mg/kg) and xyla-
zine (5 mg/kg) was used to anesthetize the animals dur-
ing handling. MYJ1633 injection was conducted every 7
days from day 1 for 3 times. The volume of tumor was
determined by the following formula; width x width x
length / 2. The volume of tumor was measured every 3
days on average. At the end of the in vivo study (day
24), and tumors were excised for measurement [28]. Fi-
nally, the animals were euthanized via additional i.p in-
jection of Zoletile (30 mg/kg) and xylazine (10 mg/kg).

Chemical analysis of blood

At the end of the in vivo study, approximately 500 pl of
blood was collected from retroorbital venous plexus
using capillary tube. The samples were centrifuged at
3000 xg for 15min to isolate blood serum, and the
serum was used to determine the amount of blood alka-
line phosphatase (ALP), glutamate oxalacetate trans-
aminase (GOT), glutamate pyruvate transaminase (GPT)
and total bilirubin (TBIL) using an automated clinical
chemistry analyzer (Fuji Dri-Chem NX500i, FUJI photo
film Co., LTD. Tokyo, Japan).
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Immunohistochemistry

To identify human NK cells in tumor mass, mouse
monoclonal CD16 antibodies (Santa Cruz Biotechnology,
Dallas, TX, USA) were used. In brief, tumor mass sec-
tions (24d) were blocked in 2.5% normal horse serum
and incubated overnight with the primary antibodies at
4.°C. FITC-conjugated anti-mouse IgG (Jackson Immuno
Research Laboratories, West Grove, PA, USA) was used
as secondary antibody. Immunofluorescence was de-
tected by a confocal microscope (LSM710; Carl Zeiss
Microscopy GmbH, Jena, Germany).

Statistical analysis

All quantified data are the averages of at least triplicate
samples and the error bars represent the SD of the mean.
Statistical significance was determined by Student’s t test,
and p values < 0.05 were considered significant.

Results

Experimental scheme and total cell number of MYJ1633
following ex vivo expansion

To preferentially amplify NK cells in PBMCs, blood-iso-
lated PBMCs were cultured in the presence of agonistic
antibodies against activating receptors (CD16 and CD56)
and natural cytotoxic receptor (NKp44 and NKp46) of
NK cells and selected cytokines (Fig. 1a). After 2 weeks
of culture, the total cell number of the expanded NKL
using our methods increased approximately 140-fold
compared to that of initially isolated PBMCs (2 x 107 vs.
2.8 x 107 cells, Fig. 1b). The ex-vivo expanded NKL was
designate as “MYJ1633” after a project developing cul-
ture protocol.

Identifying key cell types of MYJ1633 following ex vivo
expansion

The proportion of NK cells (CD37/CD16*/CD56"), nat-
ural killer T cells (NKT, CD3*/CD16"/CD56"), and T
cells (CD3"CD16 CD56) in initially isolated PBMCs
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and MYJ1633 was determined using flow cytometry. In
the initially isolated PBMCs, the ratio of CD16"/CD56"
cells (NK plus NKT cells) to T cells was 0.346, but it in-
creased in MYJ1633 to 3.888 indicating that CD16"/
CD56" cells were preferentially expanded compared to T
cells under the given culture condition. In MYJ1633, the
percentage of NK cells (CD3"CD16"CD56"%), NKT cells
(CD3*CD16"CD56") and T cells (CD3"CD16 CD56")
were 64.7 +9.6%, 7.7 + 2.5% and 24.4 + 7.8% of the total
cells, respectively (Fig. 2a). Additionally, majority of the
T cell population was CD8" cytotoxic T (Tc) cells
(76.5 + 4%) rather than CD4" helper T (Th) cells (4.9 +
1.7%) in MYJ1633 (Fig. 2b). Analyzed data using flow cy-
tometry in PBMC and MYJ1633 are shown in (Add-
itional file 1: Figure S1).

Examining receptors of MYJ1633 following ex vivo
expansion

The expression of activating, natural cytotoxicity, and
inhibiting receptors on CD16"'CD56" cells in MYJ1633
from 6 healthy donors was examined using flow cytome-
try. As shown in Fig. 3, the expression of activating re-
ceptors, NKG2D and DNAM-1, in the CD16'CD56"
MY]J1633 were 67.3 +8.4% and 67.3 £ 8.6%, respectively.
The expression of natural cytotoxicity receptors, NKp44
and NKp46, were 32.9 + 10.1% and 40.1 + 8.4%, respect-
ively. Finally, the expression of inhibiting receptor
NKG2A in MYJ1633 was 46.6 +4.5% (Fig. 3a). Analyzed
data using flow cytometry in CD16"CD56" MYJ1633 are
shown in (Additional file 1: Figure S2) and the expres-
sions of activating and natural cytotoxicity receptors at 7
and 14-days after the initial culture are indicated in
(Additional file 1: Figure S3).

Studying cytokine release of MYJ1633 following ex vivo
expansion

NK cells can take roles in immunoregulation by secre-
tion of cytokines. Hence, we analyzed the release of IFN-
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y and TNF-q, that are known to mediate the cytotoxic
function of NK cells, before and after ex vivo expansion
of MYJ1633. According to the data, the concentrations
of IFN-y and TNF-a in PBMC cultured media were
1.2+0.02ng/ml and 3.8+0.1ng/ml, respectively.
However, after the ex vivo expansion of PBMC, the
concentrations of IFN-y and TNF-a increased to
529.1 +23.3 ng/ml and 520.4 + 98.7 ng/ml, respectively
(Fig. 3b and c).

Investigating MYJ1633-mediated killing following ex vivo

expansion of liver cancer cell lines

The effect of MYJ1633 on the cell viability and the cyto-
toxicity of 3 different liver cancer cells (Hep3B, HepG2
and SK-Hepl1 cells) were determined by WST-based cell
viability assay and LDH-based cytotoxicity assay, re-
spectively. As the E:T ratio increased the cell viability of
all 3 liver cancer cells significantly decreased, while

cytotoxicity on the cancer cells significantly increased.
Although all 3 liver cancer cells were susceptible to the
MY]J1633-induced cytotoxicity, SK-Hepl was most sensi-
tive to the MYJ1633, followed by Hep3B and HepG2
(Fig. 4).

Investigating MYJ1633-mediated killing following ex vivo

expansion of liver cancer animal models

Two months after the subcutaneous injection of SK-
Hepl, the volume of tumor reached approximately 80
mm? in sufficient number of animals for random group.
The volume of tumor in the MYJ1633 treated groups
(81.3+121 mm> for 3x10° of MYJ1633 group and
88.0 + 252 mm? for 6 x 10° of MYJ1633 group) started
to significantly differ from that of cancer group (125.3 +

17.8 mm?®) from day 10, and remained to be significantly
smaller compared to that of cancer group to the end of
the study (Fig. 5a). However, there was no significant
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difference between the group treated with 3 x10° of
MYJ1633 and the group treated with 6x10° of
MYJ1633. Although there was no significant difference
between the MYJ1633-treated groups, the tumor mass
was significantly smaller in the MYJ1633-treated groups
(0.11+0.03g and 0.12+0.04g for 3x10° of MYJ1633
group and 6 x 10° of MYJ1633 group, respectively) com-
pared to that of cancer group (0.16 +0.04g) (Fig. 5b).
Upon gross examination of major organs (heart, liver
and kidney) at the end of the study, no significant tissue
damage was observed. Furthermore, chemical analysis of
blood serum for ALP, GOT, GPT and TBIL indicated
that there were no significant differences in those pa-
rameters detected among different groups (Fig. 5¢). In
inmmunohistochemical staining of the tumor mass using
human CD16 specific antibodies, the number of human
CD16 stained cells prominently increased in both
MY]J1633 treated groups compared to the untreated con-
trol tumor group indicating the migration of MYJ1633
into the tumor mass (Fig. 5d).

Discussion

It is important to secure effector cells with high cytotox-
icity in large numbers for a successful adoptive cancer
immunotherapy. One of our team’s long-term goals is to
develop an effective autologous NK cell-based cell thera-
peutics which does not necessitate the use of NK cell
purification. Furthermore, in our early trials, the

expansion and activation of the purified NK cells were
not as good as those of MYJ1633 in our experimental
setting suggesting that certain factors derived from other
type of cells such as T cells (eg. cytokines, growth fac-
tors, microRNAs, and/or vesicles containing them) could
have played a beneficial role during the expansion and
activation of MYJ1633. Although we are still trying to
establish an effective expansion and activation protocol
for purified NK cells as well, the major aim of the
present study was to develop a new and simple ex vivo
cell culture strategy to prepare large number of NK cells
with elevated cytotoxicity from human PBMCs without
an NK cell-sorting step.

To this end, PBMCs were isolated from the blood of
healthy donors and cultured with selected cytokines (IL-
2, IL-12, IL-18) for 2 weeks, because they may regulate
the activation, proliferation and differentiation of leuko-
cytes, including effector cells. (Fig. 1a). With the house-
developed culture protocol, the total cell number in-
creased 140-fold compared to the initially isolated
PBMCs within 2 weeks (Fig. 1b). Flow cytometry using
NK cell specific antibodies and T cell specific antibodies
indicated that approximately 78% of the ex vivo-ex-
panded and activated cells (MYJ1633) were CD16"/
CD56" cells (NK plus NKT cells) (Fig. 2a), and the ma-
jority of the T cells were CD3"CD8" Tc cells (Fig. 2b).
Further flow cytometric analysis indicated that ex vivo
expansion of PBMCs in the presence of cytokines (IL-2,
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chemistry analyzed at the end of the animal study (n =5 for each
GPT: glutamate pyruvate transaminase and TBIL: total bilirubin. Unit for

IL-12 and IL-18) and agonistic antibodies (CD16, CD56
and NKp46) increased the expression of activating re-
ceptors (NKG2D and DNAM-1) and cytotoxicity recep-
tor (NKp44) (Additional file 1: Figure S3).

Regarding the cytokines use in this study, it has been
reported that IL-2 regulates the activities of leukocytes
and plays role in tolerance and immunity through via its
direct effects on T cells [29]. It can also promote cell cy-
cles and production of IFN-y for proliferation and acti-
vation of NK cells [30, 31]. IL-12 plays an important role
in the activities of T cells and NK cells by inducing pro-
duction of IFN-y and TNF-a [32]. In addition, it also
mediates high cytotoxicity of NK cells and Tc cells [32].
Meanwhile, IL-2 induces the expression of two IL-12 re-
ceptors, IL-12R-B1 and IL-12R-B2, maintaining the ex-
pression of IL-12 signaling-related proteins in NK cells
[33]. There is a report that activation of NK cells with

IL-2 and IL-12 increased perforin binding and subse-
quent lysis of tumor cells [34]. In combination with IL-
12, IL-18 induces cell-mediated immunity following in-
fection, and NK cells and certain T cells secret IFN-y or
type II IEN after stimulation with IL-18. IL-12 and
IL-18 exert striking synergistic activities for NK cell
proliferation [35]. These cytokines are necessary but
not sufficient for optimal proliferation of NK cells
and Tc cells [36].

The cytolytic function of NK is controlled by a various
activation and inhibitory receptors, and activating recep-
tor (i.e, NKG2D) mediated target cell recognition in-
duces the production of IFN- y [37]. IEN-y and TNF-a
have been shown to be central in viral and tumor clear-
ance [38—-40]. NK cells express various activating and in-
hibitory receptors including NKG2D, DNAM-1 or killer
immunoglobulin receptor (KIR), CD94 and natural
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cytotoxicity receptors (NKp30, NKp44 and NKp46) [41].
These receptors recognize major histocompatibility
complex (MHC) class I and related molecules and cellu-
lar ligands, which can induce NK cell responses. Some
of these receptors can also prevent activation of NK cells
[41]. The cytotoxic activity of NK cells is regulated by
the balance between activating and inhibitory signals de-
rived from receptors expressed on the cell surface [42].

Our data demonstrated that MYJ1633 have anti-cancer
potential against liver cancer cells both in vitro and in
vivo (Figs. 4 and 5). In vitro study, MYJ1633-mediated
cytotoxicity was elevated in all three liver cancer cell
lines, namely Hep3B (hepatocellular carcinoma), HepG2
(hepatoblastoma) and SK-Hepl (hepatocellular adeno-
carcinoma) cells with escalating E:T ratios. In in vivo
study using SK-Hepl to further validate the effectiveness
of MYJ1633 against liver cancer, MYJ1633 treatment
with 7 day-interval significantly suppressed tumor
growth both in volumes and mass (Figs. 5a and b) with-
out apparently significant change of blood chemistry
(Fig. 5¢). However, there was no significant difference
between the two different concentrations of MYJ1633
in terms of suppressing tumor growth. At given ex-
perimental data given, it can be speculated that the
number of MY]J1633, even the lower concentration,
was sufficient to suppress tumor growth. Another
possibility is that the duration of study might have
not been long enough to see the different between
groups. Our unpublished data using the same experi-
mental design with longer study time (5weeks) indi-
cated that the difference between the groups tends to
get larger as time increases. However, the study time
could not be indefinitely elongated, since the over-
grown cancer frequently causes the death of animal.
Therefore, the dosage of NK cells may need to be op-
timized for each and every cancer model to clearly
show the inter-group differences for future studies.

Although we did not conduct a systemic analysis
for a time-dependent bio-distribution of NK cells for
the present study, immunohistochemical analysis
using human specific CD16 antibodies indicated that
the injected MYJ1633 were migrated into the tumor
mass (Fig. 5d). Considering the last MYJ1633 injec-
tion was 9days prior to the sacrifice of animals, it
can be assumed that the injected MYJ1633 survived
and migrated into the tumor mass at the least for up
to 9 days. Recently, similar results have been reported
by other groups [43]. According to their study, intra-
venously injected NK cells were initially concentrated
in the lung and kidney, but rapidly disappeared at 4h
after the injection in non-tumor-bearing animals. On
the other hand, in tumor (MDA-MB-231, triple nega-
tive breast cancer) bearing-animals, NK cells migrated
to the tumor mass and persisted for up to 7 days.
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One of the limitations of the present study is that, by
using athymic animals, our study was unable to take ac-
count of the effect of T cells on the bio-activity of
MYJ1633 in vivo. For example, using a syngeneic tumor
mouse model would have been definitely ideal for validat-
ing the effect of MYJ1633 in a more clinical-relevant set-
ting. Since our team is focused on autologous NK cell-
based therapeutics, we also envision an animal model sys-
tem where collecting and expanding NK cells from the
PBMCs of syngeneic mice. Taken together, our ex vivo-
expansion protocol is very effective for potentiating the
cytotoxicity of NK cells and Tc cells (MY]J1633) and these
results suggest possibility of clinical application of
MY]1633 for liver cancer immunotherapy.

Conclusions

In conclusion, we developed and empirically verified a
new and simple ex vivo-expansion protocol using IL-2, IL-
12, IL-18, CD16, CD56 and NKp46 for preparing high ra-
tio of NK cells in effector cells (MYJ1633) and demon-
strated their cytotoxicity against liver cancer in vitro and
in vivo. These results provide a meaningful experimental
and theoretical base for future progression of NK cell-me-
diated anti-tumor immunotherapy.

Additional file

Additional file 1: Figure S1. NK, NKT, and T cell composition of
MYJ1633. (A) Composition of NK cells (CD3"CD167CD56"), NKT cells
(CD3*CD16CD56"), and T cells (CD3*CD167CD567) in freshly isolated
PBMCs and MYJ1633 (B) Proportion of helper T cells (Th cells; CD4") and
cytotoxic T cells (Tc cells; CD8¥) among CD3™ cells of MYJ1633. Figure
S2. Expression of activating, natural cytotoxicity and inhibiting receptors
on CD16"CD56" cells of MYJ1633. Using 14 day cultured MYJ1633 from 6
individuals, the expression of activating receptors (NKG2D and DNAM-1),
natural cytotoxicity receptors (NKp44 and NKp46), and inhibiting receptor
(NKG2A) was determined by flow cytometry. Figure S3. Time-dependent
expression change of activating and natural cytotoxicity receptors on
CD16%CD56" cells of MYJ1633. The expression of activating receptors and
natural cytotoxicity receptors of 7 day cultured and 14 day cultured
MYJ1633 from 6 individuals was examined by flow cytometry. The data
represented as mean + SEM. (PDF 839 kb)
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