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Background: Longitudinal studies of tumor volume have used certain named mathematical growth models. The
Bertalanffy-Putter differential equation unifies them: It uses five parameters, amongst them two exponents related
to tumor metabolism and morphology. Each exponent-pair defines a unique three-parameter model of the

Bertalanffy-Putter type, and the above-mentioned named models correspond to specific exponent-pairs. Amongst

Method: The best fitting model curve within the Bertalanffy-Putter class minimizes the sum of squared errors
(SSE). We investigate also near-optimal model curves; their SSE is at most a certain percentage (e.g. 1%) larger
than the minimal SSE. Models with near-optimal curves are visualized by the region of their near-optimal
exponent pairs. While there is barely a visible difference concerning the goodness of fit between the best
fitting and the near-optimal model curves, there are differences in the prognosis, whence the near-optimal
models are used to assess the uncertainty of extrapolation.

Results: For data about the growth of an untreated tumor we found the best fitting growth model

which reduced SSE by about 30% compared to the hitherto best fit. In order to analyze the uncertainty

of prognosis, we repeated the search for the optimal and near-optimal exponent-pairs for the initial

segments of the data (meaning the subset of the data for the first n days) and compared the prognosis
based on these models with the actual data (i.e. the data for the remaining days). The optimal exponent-pairs
and the regions of near-optimal exponent-pairs depended on how many data-points were used. Further,

the regions of near-optimal exponent-pairs were larger for the first initial segments, where fewer data were

Conclusion: While for each near optimal exponent-pair its best fitting model curve remained close to the
fitted data points, the prognosis using these model curves differed widely for the remaining data, whence
e.g. the best fitting model for the first 65 days of growth was not capable to inform about tumor size for the
remaining 49 days. For the present data, prognosis appeared to be feasible for a time span of ten days, at
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Background

Bertalanffy-Piitter differential equation

Historically, the systematic application of mathemat-
ical models for tumor growth has begun in the 1960s
[1-3]. In the meantime, so many different approaches
towards modeling were developed that concerns about
a “model muddle” have evolved [4-6]. The focus of
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this paper is on longitudinal studies of tumor volume,
which use tumor growth curves that are defined from
certain first order ordinary differential equations [7].
Such studies aim at biophysical explanations for
tumor growth and at tools for prognosis and therapy
[8-10]. In this context, the Bertalanffy-Piitter [11-13]
differential eq. (1) has been recommended as “a
macroscopic model variant that can be conceived as

an optimal condensed modeling approach that to a
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high degree preserves complexity with respect to ...
more complex modeling variants” [14]:

P _ potoy-quie) 1)

This equation describes tumor volume v(f) in mm?>
over time ¢ in days, using five model parameters that
are to be determined from fitting the model to size-at-
age data: Four parameters are displayed in the equa-
tions, namely the non-negative exponent-pair a <b and
the constants p and g. A fifth parameter is the initial
tumor volume at the start of monitoring, i.e. v (0) =
Vo > 0.

In this paper, we perceive eq. (1) as a definition of
a two-parameter family of growth models, whereby
each exponent-pair (4, b) defines a unique model with
three free parameters (p, ¢, and vy). Thus, for these
models the “model muddle” can be reduced by con-
sidering them within the context of the larger unify-
ing class (1) of models. Figure 1 displays (in blue)
several “named models” that can be defined from cer-
tain exponent-pairs and displays (in yellow) additional
exponent-pairs that in view of their closeness to the
named ones we deemed as biologically meaningful;
we considered them for an initial search. For
example, the exponent-pair (a, b)=(0, 1) defines
exponential growth (i.e. ¥(t) = vy-e™?, assuming p = 0, g < 0),
and bounded exponential growth (i.e. v(t) = (p/q)-(1-d-e'??),
assuming p, ¢, Vo > 0 and defining d from these parameters).
The logistic growth model of Verhulst [15] is defined from
eq. (1) using the exponent-pair (a, b)=(1, 2). The
Gompertz [16] model is the limit case a =b=1; it uses a
different differential equation [17]. These models are
amongst the most common models in this field (Google
Scholar: 237,000 hits for “tumor growth model, exponential
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growth”, 122,000 hits for “tumor growth model, logistic”
and several thousand hits for other named growth models).

Richards’ [18] model (Fig. 1: grey line a =1, b>1) and
the generalized Bertalanffy model (Fig. 1: grey line b =1,
0<a<1) are represented as classes of models. In the
theory of economic growth, the latter model (class) is
known as Solow-Swan model [19-22].

A drawback of this type of phenomenological
models is the difficulty in relating the comparatively
easy to observe macroscopic data (size-at-age) to ac-
tual biological processes. According to von Bertalanffy
[11, 14], the parameters of eq. (1) relate to resource
utilization, metabolism and morphological structures
of tumors: [11] has chosen the exponent a=2/3, as
the inflow of energy would be proportional to the
surface area (i.e. proportional to volume”2/3), and the
exponent b=1, as the energy needs for sustenance
would be proportional to volume (cell count). This
model appears to be plausible for the avascular stage
of a solid tumor (nutrients enter only through the
periphery). However, other authors proposed different
biophysical explanations of growth and different
exponent-pairs [23, 24]. Thus, the tumor surface may
be fractal, whence the first exponent () may be
above the value 2/3 of [11]. Further, as noted by [25],
a static bio-mechanical explanation of growth may
not capture growth for changing biological drivers
due to e.g. the formation of new blood and lymphatic
vessels (angiogenesis, lymphangiogenesis) or due to
growth beyond the bounds of the original organ
(extracapsular extension). [26, 27] analyzed the rea-
soning of [11] in the context of the biology of fish
and they recommended the use of more general
model classes, namely the generalized Bertalanffy
model and later all models for eq. (1). Other authors
recommended the analysis of the relative growth rates
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v’/v over time, as these would inform about metabol-
ism [28].

A different modeling approach describes tumor growth
at the more detailed tissue scale in terms of partial differ-
ential equations related to invasion-proliferation and
diffusion-reaction; e.g. Fisher-Kolmogorov equation [29,
30]. For such an approach the explanations of growth rest
on firm theoretical ground, but for the study of concrete
tumors complex data about their spatial evolution over
time would be needed; simple size-at-age data would not
suffice.

Problem of the paper

We reconsider the findings of [31]. They compared
seven models. Of them, the models of von Berta-
lanffy, Gompertz, and Verhulst, would be “particularly
popular choices for modeling tumor growth ... be-
cause they include a biologically realistic slowing of
the growth rate as the tumor increases. Yet it is pre-
cisely this feature that results in the poor predictive
value of the models.” They supported their claim
through data, where the best fitting model underesti-
mated future tumor growth.

As these findings depended on a few models only,
and as there is no generally valid tumor growth
model, which ensures a clear understanding and prog-
nosis of tumor growth, the present paper revisits this
issue and considers models from a more comprehen-
sive class. The differential eq. (1) defines such a class
that encompasses the most popular models (see
above). We therefore aim at comparing the models
from the model class (1) in terms of their goodness
of fit (see methods) to the data of [31] and we assess
their utility for prognosis.

This approach has the following advantages: First,
using a larger class of models with different growth
patterns for comparison will provide a high flexibility
in data-fitting and results in a better fit of the overall
optimal model; for such a model we expect a better
prognosis. Second, using a large class of models al-
lows for a better comparability of the results with the
literature. For even if a certain model may not be an
element of the large class, some other element of the
class may approximate it. And third, this approach al-
lows estimating the uncertainty of prognosis. We
claim that there may be limits to prognosis that are
inherent to the research problem (c.f. prognosis of
weather), and that near-optimal models might high-
light these limits. For near-optimal models [32-34]
the fit to the data does not differ significantly from
the best fit model (see methods), but their forecasts
may differ. This approach improves upon the trad-
itional sensitivity analyses (variation of model parame-
ters) insofar, as for the present models and data even
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slight changes in the parameters (some parameters
are of size 107°°) may result in very poorly fitting
model curves.

This working plan has not yet been implemented in
literature, because the optimization of the five parame-
ters a, b, p, g, and vy of (1) may fail with standard
optimization software. We will therefore also explain the
optimization tools.

Methods

Data

We aim at explaining the findings of [31] and we there-
fore use the data of that paper; they originate from [35].
Human breast cancer cells of type GI-101A were
injected subcutaneously into nude mice and the subse-
quent tumor growth was observed for 114 days for a
treatment group and a control group (8 animals). At 14
points of time tumor volume was measured (Table 1);
Fig. 2 plots the data and an interpolation function that
was obtained by the method of cubic splines [36].

We demonstrate our method to find the best fitting
and the near-optimal models for this dataset, only, as
the paper aims at a “proof of principle”. While the
conclusions about the limitations of prognosis may
not apply to other data, the method to obtain such
conclusions for concrete data generalizes. As a visual
inspection of the data (Fig. 2) would suggest that the
first and the second half of the growth process may
have been driven by different biological processes
(steeper slope for the second half), there also arises
the question, if a single model of the type of eq. (1)
suffices to approximate the data accurately. (If two
models were needed to describe two phases of
growth, this would require 11 parameters, five for
each model and one for the moment of model
change. Reasonable modeling would require signifi-
cantly more data-points.)

Table 1 Size-at-age data as retrieved from a graphic

Time (days) Volume (mm?) Time (days) Volume (mm?)
0 225 76 1,464
9 300 82 1911
20 582 87 2,184
32 650 93 2,570
43 680 98 2,721
54 930 107 2,948
65 1,225 114 3,503

Note: We extracted the data from the original source, the red line in the right-
hand plot of Fig. 1a of [35], using Digitizelt® software of Bormisoft, and
rounded to integers. The original data plotted the average volume v; in mm?
atday t, wherei=1,2,... 14and t; =0
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Models

The yellow region in Fig. 1 displays the models that we
considered initially; i.e. each of the displayed exponent-
pairs defined a unique model of type (1) with three free
parameters. For numerical purposes, we worked with an
accuracy of 0.01 for the exponent-pairs, whence we con-
sidered only exponent-pairs on a grid (a=m-0.01, b=
a +n0.01, with integers m >0, n>1). If the exponent-
pair of the best fitting model was attained on the upper
boundary line or on the right boundary line of this grid
(yellow region of Fig. 1), then further grid-points were
added for the search to verify the optimality of this
exponent-pair or replace it by a better one.

The diagonal a =b was not considered, as for expo-
nents a = b the differential eq. (1) needs to be replaced
by another differential equation from [17] of the
Gompertz-type (e.g. the Gompertz-model for a=5b=1).
Thus, if the exponent-pair with the best fitting model
curve was a grid point next to the diagonal, then there
remained the possibility that a Gompertz-type model
could fit better. However, we expected that the improve-
ment would be small. For, as noted by [17], the
Gompertz-type models are limits of models of type (1)
with exponents a < b.

Fit to the data

[31] assessed the fit of models to data by means of the
sum of squared errors SSE, which is defined as follows;
V() is a solution of eq. (1), using certain exponents a < b
and parameters p, ¢, Vo, and v; are the data from above:

SSE = Z?Zl("i_"(ti))z (2)

Thus, each exponent-pair (a, b) defines a unique
model from class (1) with three free parameters (p, g,

Vo). For each of these models (exponent-pairs) we wished
to identify the best fitting model parameters p, g, vo.
Thereby, we used the method of least squares; i.e. for
each exponent-pair (a, b) on the grid we sought parame-
ters (p, q, vo) that minimized SSE. This defined the fol-
lowing function on the grid to identify, for each
exponent-pair 4 <b, the minimal SSE that can be
achieved:

SSEopt (a,b)

= min(SSE), assuming model (1) with exponentsa, b
Vo.Pq
(3)

In terms of this definition, an exponent-pair (a, b)
from the grid of Fig. 1 (yellow region) was defined as op-
timal, if the function SSE,,, attained the minimum over
the grid at this exponent-pair. The exponent-pair was
defined as near-optimal, if SSE,,(a, b) was at most a cer-
tain percentage (we considered the thresholds 1, 5, and
10%) larger than this minimal SSE.

Using SSE to assess the goodness of fit emphasizes
the accuracy of the interpolation by means of the
model curve. It is also common in forecasting,
whereby the Verhulst and Gompertz models are
amongst the most popular growth models in that field
[37, 38]. Thus, SSE appears to be suitable for the
present paper, as the goal is the study of the limita-
tions of the prognosis of the growth of individual
tumors.

As using SSE is based on the implicit assumption
that the fit residuals (differences between the ob-
served data and the fitted model curve) are normally
distributed, we tested this assumption using the
Anderson-Darling and Cramér-von Mises distribution



Kihleitner et al. BMC Cancer (2019) 19:683

fit tests [39]. We investigated also an alternative stat-
istical assumption, a lognormal distribution, where
the standard deviation of volume is approximately
proportional to volume. However, as the prognosis in
this case tended to underestimate growth, the results
are not discussed here.

Alternative criteria for model selection, e.g. the well-
known Akaike information criterion AIC [40-42], focus
on parsimony (suitable e.g. for the comparison of theor-
ies of growth). As noted by [31], for their data the most
parsimonious of their models, exponential growth,
falsely predicted unbounded growth. Therefore, for this
paper we do not consider this approach.

Optimization

The computation of SSE,,; (i.e. optimization) was
done using Mathematica® 12.0 software of Wolfram
Research. The authors provide a Mathematica file as
supporting material. The output was exported to a
spreadsheet, Microsoft Excel®. It is provided as a
supporting material in the format (a, b, vo, p, ¢,
SSE,,a, b)) of the table.

For optimization, the grid-point exponent-pairs (a,
b) were visited by means of an outer loop running
through a = m-0.01 and an inner loop that for each a
ran through the values b =a + n:0.01. Given (a, b), the
optimization of p, ¢, and v, was done using a
custom-made variant of the method of simulated an-
nealing [43], as this made the optimization process
fully automated. A typical step of simulated annealing
started with given candidates p, ¢, vo>0 for optimal
parameters. The candidate parameters were altered by
multiplying them with positive random numbers close
to 1. (This preserved positivity in order to obtain
bounded growth curves and insofar it differed slightly
from the conventional approach of adding small ran-
dom numbers.) These new parameters were accepted
as new candidates, if for them SSE became smaller,
but in order to escape from suboptimal solutions,
with a certain probability new parameter values were
also accepted, if for them SSE became larger. (Other-
wise, the old candidates were retained.) This step was
then repeated with the accepted parameter. At the
begin of each inner loop, i.e. at a grid point near the
diagonal of the form (a, a +0.01), the optimization of
P, g, vo used 50,000 of these simulated annealing
steps, starting with the estimate p =g =1 and the ini-
tial condition v(¢;) = v; (first data point). For the sub-
sequent grid points in the b-direction (inner loop),
the previous optimization results were used as start-
ing values and improved in 10,000 annealing steps.
Thereby, after each 1000 steps the simulated anneal-
ing restarted with the hitherto best parameters.
Further, the probability of accepting parameters with
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a higher SSE was lowered slightly. (This was made
dependent on the hitherto obtained optimization re-
sults and is known as adaptive cooling: [43].) To as-
sess the output, a plot of the near-optimal exponent-
pairs with threshold 1% for near-optimality (i.e. SSE,,,
exceeded the minimum SSE by at most 1%) was visu-
ally inspected. Where the plot had a frayed appear-
ance, the optimization exercise was repeated with
more simulated annealing steps. CPU-time for the
computations took about one week.

The optimal parameters from simulated annealing
were finally used as starting values for a nonlinear re-
gression for the model with the optimal exponent-
pair, using standard methods to determine vy, p, ¢
(Mathematica command NonlinearModelFit) and fur-
ther improve SSE,,..

Results

Growth over 114 days

The best fitting model satisfying eq. (1) was sought
for. Figure 3 plots the extended search grid, the opti-
mal and the near-optimal exponent-pairs for different
thresholds. Simulated annealing achieved the best fit
SSE,,: (1.62, 2.44) = 1.274-10° with the parameters vy,
p, and ¢ from the caption of Fig. 3. Another round of
simulated annealing (50,000 steps to optimize also the
exponent-pair) did not improve the solution.
However, using the parameters vy, p, and g as starting
values for a standard nonlinear regression for the model
defined from the exponent-pair a = 1.62, b = 2.44 resulted
in a slight improvement below the displayed accuracy.
Figure 4 plots the best fitting model curve. For comparison,
amongst the seven models of [31] the best fit was achieved

for the logistic model (Verhulst) with SSE,, = 1.61-10°.
([31] obtained the slightly worse value SSE,,, = 1.67-10°:

Fig. 3 of the cited paper.) Thus, SSE,, of the Verhulst
model exceeded the least SSE by 26%.

The best fitting model curve supported the hypoth-
esis of bounded growth, as its asymptotic volume of
4,034 mm?® (computed as the limit of the model curve
v(t) for infinite f) remained close to the maximally
observed volume (16% increase from 3,503 mm?,
whereas 50% increase might be excessive [32]) and as
the inflection point could be discerned from the data.
(It was attained during the observed time span at the
volume of 2,450 mm?®, which is 70% of the maximally
observed volume.) Further, as shown by Fig. 4, the
best fitting model curve was close to the data whence
there did not arise concerns about outliers in the data
or about the convergence of optimization; the
standard deviation of the fit residuals was 99 mm?®.
Distribution fit tests did not refute the implicit as-
sumption for using the method of least squares, nor-
mally distributed fit residuals (p-value 0.42 for a sign
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Fig. 3 Extended search grid (yellow) with 106,599 grid-points; selected exponent-pairs (blue); optimal exponent-pair (black) a=1.62, b= 2.44 for
the fit to the growth data over 114 days; 17,403 and 9,416 and 2,315 near-optimal exponent-pairs (red, gray, and green) for the thresholds 10, 5,
and 1%, respectively (i.e. for the exponent-pairs SSE.,; exceeded the minimal SSE by at most that threshold). The optimal parameters obtained
from simulated annealing are displayed in Table 2. The parameters were slightly improved in Fig. 4

test for median O and p-values 0.66-0.67 for the
Anderson-Darling and Cramér-von Mises tests for
normality).

Predictive power

To explore the potential for prognosis, [31] fitted sev-
eral models to the first seven growth data covering a
time span of 65days. This paper therefore repeated
the above computations for the data of the first 65,
76, 87, 98, and 107 days and compared them with the
full data.

Table 2 reports the optimal exponent-pairs and pa-
rameters of the best fitting model curves for each of
these data and Fig. 5 plots the optimal exponent-pairs
(labeled by the considered time spans). For the data
over a time span of 65days, [31] identified the von

Bertalanffy model as best fitting model and reported
SSE = 33,700 (caption to Fig. 1 of that paper). Simu-
lated annealing improved this fit for the von Berta-
lanffy model to SSE,,; (0.67, 1) =32,177 and identified
a still smaller SSE,,, (0.68, 0.69) = 32,087 (rounding to
integers).

Figure 6 is the counterpart to Fig. 3 but restricted
to near-optimal exponent-pairs within the initial
search grid of Fig. 1 and using the 5% threshold for
defining near-optimality. (This threshold reduced
overlaps.) Except for the data over 65 and 76 days, all
optimizations needed extensions of the initial search
grid of Fig. 1. Compared to Fig. 3 (gray region) the
region of near-optimal exponents for the data over a
time span of 65days was huge. This high variability
indicates that the data did not suffice to identify a
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Fig. 4 Data (black dots); single prediction band (95% confidence: blue); best fitting model curve (green): optimal exponent-pair a=1.62, b =244
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Table 2 Optimal exponents and parameters for different data

Time  Exponents  Parameters Goodness of fit

span g ey, p q SSEape  SSE (all)
65 068 069 2662 0.185 866107  32110" 237:10°
76 074 075 2703 0.140 0.019 32210 1.8310°
87 132 157 3215 266107° 14710°° 55710" 56910°
98 14 104 3317 150107 136107 58310" 55510°
107 134 883 3235 2271072 228107% 61210* 36310°
114 162 244 3185 50210°% 555107  127410°

Note: The table reports the results of simulated annealing (rounded) without

additional optimization steps. The first column identifies the data by their time
spans (days of observation). As to the last columns, SSE,,; was computed over
the indicated timespan and SSE (all) was computed over the data for 114 days

suitable growth model. One reason was the small number
of only seven points of time for fitting a solution of eq. (1)
with five free parameters. This was demonstrated by the
region of near-optimal exponent-pairs for the data over a
time span of 76 days, which was smaller.

The optimization for the data for 98 and 107 days was
particularly time consuming, as 63,377 and 64,150 grid
points were searched. For the latter data, Fig. 7 plots the
search grid (its zig-zag shape was due to the successive
addition of grid points) and the optimal (black) and
near-optimal (red, threshold 5%) exponent-pairs. For
these models, the large exponents, b, necessitated the
use of extremely small parameters, g. The frayed charac-
ter of the red region reflects the numerical problems of
using such exponents and parameters; due to such prob-
lems conventional all-purpose optimization software was
doomed to fail. For the former data, the optimal
exponent-pair was still on the upper boundary of the
search grid, whence the optimality of the exponent-pair
was not secured.

Figure 8 plots the optimal model curves defined in
Table 2. Each model curve had a good fit to the data that
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it intended to approximate. For most curves the fit to
the next data point was acceptable, but the prognosis for
more than 10 days was poor.

Discussion

Our results confirm the finding of [31], that the selec-
tion of the model with the best fit to an initial segment
of the data may “not guarantee the selection of the best
model for predicting future behavior”, which we repre-
sented by the full dataset. However, our conclusion dif-
fers: The failure of prognosis may not necessarily be due
to the choice of a false model. Rather it may be the data
that limit the time horizon for forecasting.

Figure 8 explains the reasons for the failure of the
prognosis for the present data. The red curve was fit-
ted to the first seven data (65 days) and its prognosis
for day 76 was acceptable, as it extrapolated the ap-
parent trend, whereas its prognosis for the remaining
days was too low. The violet curve (76 days) extrapo-
lated this trend, too, and so its prognosis failed. The
blue curve was fitted to the first ten data (87 days)
and it correctly identified another trend with a
steeper ascent till day 93. However, its extrapolation
for the following days was too high. The orange and
the gray curves used the first 12 and 13 data points
(98 and 107 days) and they identified the slowing
down of growth, but they overestimated it and could
not forecast the volume for the last data point (day
114). Thus, the present data seemed to display two
apparent changes of trend, an acceleration of growth
after day 76 and a slowing down after day 93, result-
ing in the typical S-shape of bounded growth.

For a practitioner, who uses the past data to extrapo-
late into the future, the failure of forecasting may indi-
cate problems for the patient, e.g. a different phase of
growth, where the apparent trend of the growth curve
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Fig. 5 Optimal exponent-pairs for different data, labeled by their time spans of observation. The yellow line is the lower bound for the exponent-
pair region (diagonal a = b)
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three named models were displayed for better orientation (dark blue)

changes due to a biological cause (e.g. angiogenesis).
It may indicate problems with the data, such as the
presence of outliers. Or it may merely indicate that
the true nature of the growth curve could not be
identified, because its S-shape could not (yet) be dis-
cerned from the data.

For the present data the latter reason may apply, as
Fig. 8 displays a growth curve with a good fit to the
data (green curve) and Fig. 4 shows that with 95%
confidence all observations were within its single pre-
diction band (no outliers). Figures 9 confirms this. It
uses the data for all 114 days of observation and plots
the relative growth rates v’/v over time for the best
fitting models of the top-1% of the near-optimal ex-
ponents. Its reverted U-shape suggests that the tumor

size may have approached the carrying capacity,
whence further growth would be inhibited by lack of
resources, unless other drivers of growth (e.g. angio-
genesis) were activated. This information might not
have been readily available, if v’/v were estimated
from a numeric differentiation of the data (blue line).

The analysis of relative growth rates in Fig. 10 con-
firms the conclusion that the different forecasts may
have been due to apparently different trends, that
nevertheless could be reconciled into one well-fitting
model function. Judging only from the initial data till
day 76 the relative growth rate appeared to slow
down. With the data for 87 and more days, this pic-
ture changed; the best fitting model curves had in-
creasing relative growth rates also for the initial days.

exponent b

10

(o]

0.5

Fig. 7 Search grid (yellow), optimal exponent-pair (black) for finding the best fitting model curve to the data of the first 107 days of tumor
growth, and near-optimal exponent pairs (red), using a threshold of 5%

exponent a
1.0 1.5
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Fig. 8 Model curves (exponents and parameters in Table 2) with the best fit to the following data (black dots): data for 65 days (red); data for 76
days (violet); data for 87 days (blue); data for 98 days (orange), data for 107 days (gray) and data for 114 days (green)

However, the data for the first 87 days could not
recognize the subsequent slowing of growth. Thereby,
owing to the lack of more long-term observations,
the models based on the data for 98 and 107 days
overestimated this slowing.

Further, the size of the region of near-optimal
exponent-pairs is related to the information inherent to
the growth data: The larger the region is, the fewer in-
formation can be retrieved, as for a larger region the
data would be compatible with more (too many) possible
shapes of the growth curve. As was shown in Fig. 6, the
data for 65 days resulted in a huge region, whence no re-
liable prognosis could be expected. For the full set of
data for 114 days, the region of near-optimal exponents
was smaller (Fig. 3).

Conclusions

For the data of [31] the prognosis of tumor growth
was feasible only for a short time span into the fu-
ture: Past growth data could not identify, if and when
there would be a change in the apparent trend or
even a change in the biological mechanism of growth.
Insofar, the data appeared to be peculiar, but we did
not check, if this peculiarity would be typical for
growth data of cancer. For instance, concerning bio-
logical interpretations of the best fitting model curve,
the exponent-pairs of the named models were remote
from the optimal and near-optimal exponent-pairs for
the data over 114 days (Fig. 3). Further, the optimal
exponent-pairs obtained from initial segments of the
data did not show a clear pattern (e.g. convergence)

percent/day

8

6

N

20 40

Fig. 9 Relative growth rates (percent/day) of the best fitting model curves from 2,315 near-optimal exponent-pairs (their SSE,,; exceeds the
minimal SSE by at most 1%). The shaded area is the region between the minimal and maximal growth rates that some model reached at that
day. The blue curve is the relative growth rate computed from the spline interpolation function of Fig. 2 (a method for the numeric
differentiation of the data)
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Fig. 10 Relative growth rates (percent/day) based on the best fitting model curves for different data: data for 65 days (red); data for 76 days
(violet); data for 87 days (blue); data for 98 days (orange), data for 107 days (gray) and data for 114 days (green)

80 100

that would relate them to the optimal exponent-pair
of the data over 114 days (Fig. 5). Thus, the biophys-
ical arguments that supported the named models may
not apply in the present context.

However, even for peculiar data, prognosis is not futile,
as for practitioners any discrepancy between observed
and forecasted growth may be an important warning sig-
nal that the tumor biology may change. The present
paper provided methods for a more accurate prognosis.

In addition to prognosis, practitioners may use best fit-
ting model curves to assess the character of past growth
in terms of the relative growth rate v’/v. However, for
the present data also this analysis of the past did depend
on how much information about the growth was avail-
able at the time when the assessment was done. For, the
assessment switched from an initially decreasing relative
growth rate, if only seven or eight data points were con-
sidered, to an initially increasing relative growth rate,
when more data were utilized (Fig. 10).
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SSE: is the sum of squared errors (i.e. the fit residuals)
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