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Abstract

Background: Genetic profiling of cancers for variations in copy number, structure or expression of certain genes
has improved diagnosis, risk-stratification and therapeutic decision-making. However the tumor-restricted nature of
these changes limits their application to certain cancer types or sub-types. Tests with broader prognostic
capabilities are lacking.

Methods: Using RNAseq data from 10,227 tumors in The Cancer Genome Atlas (TCGA), we evaluated 212 protein-
coding transcripts from 12 cancer-related pathways. We employed t-distributed stochastic neighbor embedding (t-
SNE) to identify expression pattern difference among each pathway’s transcripts. We have previously used t-SNE to
show that survival in some cancers correlates with expression patterns of transcripts encoding ribosomal proteins
and enzymes for cholesterol biosynthesis and fatty acid oxidation.

Results: Using the above 212 transcripts, t-SNE-assisted transcript pattern profiling identified patient cohorts with
significant survival differences in 30 of 34 different cancer types comprising 9350 tumors (91.4% of all TCGA cases).
Small subsets of each pathway’s transcripts, comprising no more than 50-60 from the original group, played
particularly prominent roles in determining overall t-SNE patterns. In several cases, further refinements in long-term
survival could be achieved by sequential t-SNE profiling with two pathways’ transcripts, by a combination of t-SNE
plus whole transcriptome profiling or by employing t-SNE on immuno-histochemically defined breast cancer
subtypes. In two cancer types, individuals with Stage IV disease at presentation could be readily subdivided into
groups with highly significant survival differences based on t-SNE-based tumor sub-classification.

Conclusions: t-SNE-assisted profiling of a small number of transcripts allows the prediction of long-term survival
across multiple cancer types.
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Background

Molecular genetic advances, particularly next-generation
DNA and RNA sequencing, have identified gene copy
number variations, recurrent mutations, rearrangements
and transcript expression differences in many cancers.
These may be associated with specific tumor subtypes,
biological behaviors, therapeutic responses and outcomes
not otherwise revealed by more traditional histologic or
immuno-histochemical assessments [1-5]. However, such
tests tend to focus upon and be of value for only specific
cancer types or subtypes and are generally not more
broadly applicable. There is thus a clear need to assess
these parameters more globally and across multiple can-
cers with a common and preferably small set of genes.
The availability of such a test could greatly simplify and
expand the molecular evaluation of cancers, further im-
prove prognostication and therapeutic stratification and
aid in decisions regarding the frequency and intensity of
post-therapy follow-up.

Using the machine learning algorithm “¢-distributed
stochastic neighbor embedding” (¢-SNE) [6] we have pre-
viously demonstrated that the expression patterns of
ribosomal protein transcripts (RPTs) differ among nor-
mal tissues and cancers in distinct and reproducible
ways that are largely independent of absolute expression
levels [7, 8]. Most cancers contained two-five distinct
RPT t-SNE expression patterns (“clusters”) and in seven
cancer types these correlated with long-term survival
[8]. More recently, we made similar observations with
transcripts encoding enzymes involved in cholesterol
biosynthesis and fatty acid oxidation (FAO) [9].

Ribosomal biogenesis, cholesterol biosynthesis and FAO
are only three of numerous growth- and metabolism-
related pathways that are de-regulated in cancer [8-11].
To investigate whether other transcripts are similarly in-
formative of long-term survival, we used t-SNE-assisted
clustering to ascertain the expression patterns of 212
protein-coding transcripts from twelve additional cancer-
related pathways. We found these patterns to be predictive
of survival for 30 of the 34 distinct cancers, comprising
91.4% of the 10,227 tumors from The Cancer Genome
Atlas’ (TCGA) PanCancer Atlas collection [12].

Methods

Selection of pathways and RNAseq data

Transcripts for 8 of the 12 cancer-related pathways listed
in Additional file 1: Table S1 were obtained from San-
chez et al. [11]. Additional transcripts encoding enzymes
of the Purine and Pyrimidine Biosynthetic Pathways and
Pentose Phosphate Pathway were selected because of
their established roles in providing critical anabolic pre-
cursors for nucleic acid synthesis [12-14]. TCA Cycle
transcripts were selected because oxidative phosphoryl-
ation is often altered in cancer cells as they reprogram
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glucose, fatty acid and glutamine metabolism [15]. RNA-
seq expression data (FPKM-UQ) were taken from the
TCGA GDC PANCAN dataset and accessed through the
UCSC Xenabrowser [16]. These represent RNAseq re-
sults from 10,227 untreated primary tumors. The only
exception to this was uveal melanomas where all tumors
were metastatic (SI Appendix Table S2). Expression
values were initially stored as the base-two logarithm of
the incremented-by-one FPKM-UQ value. The inverse
of this transformation was applied to the values to ob-
tain the true FPKM-UQ values.

Depiction of cancer pathway transcript patterns

Prior to t-SNE visualization, RNA expression data were
centered and normalized for each pathway [8]. Briefly,
every primary tumor sample was assigned an “expression
vector” in n-dimensional space for each pathway, where
n was equal to the number of genes in the pathway and
each element of each vector was equal to the FPKM-UQ
expression value of a particular gene. For each pathway-
cancer type combination, the associated expression vec-
tors were centered by subtracting from each one the
mean value of all the vectors. The centered vectors were
then normalized by their magnitudes. The result was
that all centered expression vectors were projected onto
a hyper-sphere in n-dimensional space. For each cancer
type and pathway, the vectors on this hypersphere were
the input to t-SNE. t-SNE analyses of each pathway’s
transcript patterns were performed using Tensorboard
Release 1.12.0 [17] in three dimensions to maximize the
appreciation of the compactness and separateness of the
resulting clusters. Multiple t-SNE runs were initially
attempted with perplexities ranging between 5 and 30,
and learning rates of 0.1, 1, 10, or 100. For each cancer-
pathway combination, parameters that produced obvi-
ously distinguishable clusters were selected for further
validation by multiple runs. Cancer-pathway combina-
tions for which no set of parameters could be found that
produced obviously distinguishable clusters were
rejected for further analysis. We heuristically defined an
obvious cluster as a densely distributed collection of
points in the embedding space separated from other
such dense regions by clearly discernable regions con-
taining no embedded points. For the final selected pa-
rameters, t-SNE was run for at least 2500 iterations and
until the embedding stabilized. After embedding, the
number of clusters was recorded. Members of the clus-
ters were specified using Gaussian mixture models im-
plemented through MATLAB’s “fitgmdist” and ‘cluster’
functions. Though a Gaussian mixture models were used
to assign samples to clusters we refer to the clusters as
“t-SNE clusters”. The default “K-means++” algorithm
was used to set initial conditions in all cases. In some
cases, the output t-SNE data were randomly perturbed
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by 5% of the radius of the smallest sphere that contained
all the output points before clustering. The number of
Gaussian components used was equal to the number of
clusters previously identified. For each t-SNE profile,
every combination of full or diagonal covariance matri-
ces, shared or unshared covariance and the application
or non-application of the aforementioned perturbation
were iteratively tried when fitting the Gaussian mixture
model, for a total of eight attempts with different param-
eter settings. The output that best preserved the unity of
the obviously distinguishable clusters in the t-SNE were
chosen for display in all figures and for further analysis.
Finally, the aforementioned perturbation was applied to
the actual output t-SNE scatterplot displayed in the fig-
ures in cases where clusters were so dense as to prevent
its individual component members from being readily vi-
sualized. The parameters used for each tSNE and Gauss-
ian mixture clustering are listed in Additional file 1:
Table S3. Parametric t-SNE [18] was used to confirm the
clusters found with the initial t-SNE assisted clustering,
using the same perplexity as in that initial analysis,
where three-quarters of the data were used for training
and one quarter was withheld as a test set.

Comparing t-SNE clusters

Clinical and survival data for TCGA cancer cohorts were
accessed using the UCSC Xenabrowser [16] under the
data heading “Phenotypes”. Kaplan-Meier survival curves
for each each ¢-SNE cluster were compared using
Mantel-Haenszel (log-rank) methods through the “Mat-
surv” function on the MATLAB file exchange [19] and
confirmed in Graphpad Prism 7.

Random forest analyses

To identify genetic features that differed the most
among t-SNE clusters, a random forest classifier model
[20, 21] was employed through MATLAB’s ‘“TreeBagger’
function in the ‘Statistics and Machine Learning Tool-
box, with NumTrees’ equal to 100, ‘OOBPredictorIm-
portance’ turned on, NumPredictorsToSample’ set to ‘all;
and ‘PredictorSelection’ set to ‘interaction-curvature’.
The importance of the transcripts in distinguishing the
clusters from one another were indicated by the ‘OOB-
PermutedPredictor’ field of the object returned by the
‘TreeBagger’ function.

Comparing t-SNE clusters with hierarchical groups

To investigate relationships between t-SNE clusters and
the entire expressed protein-coding genome, four cancer
types were selected for full transcriptome visualization
by hierarchically clustered heat maps. RNAseq-based
heat maps of the cancers of interest were downloaded
from the TCGA Next-Generation Heat Map Compen-
dium [22]. We selected the platform “RNA Expression”
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and heat map type selected as “Gene/Probe vs Sample”.
Tumor and t-SNE samples represented in this heat map
had significant overlap. Samples were pre-divided into
hierarchical groups (hereafter referred to as “Dendros”
to avoid confusion with the t-SNE clusters). Individual
tumors within each Dendro were then identified accord-
ing to the t-SNE clusters with which they associated. Sig-
nificance of survival differences between these groups
within each Dendro was assessed in Graphpad Prism 7
using log-rank tests.

Results

Transcript patterns from cancer-related pathways
correlate with survival

Our previous finding that the expression patterns of
transcripts encoding ribosomal proteins and enzymes in-
volved in cholesterol biosynthesis and FAO pathways
raised the question of whether t-SNE patterns of other
transcript families also correlated with survival [7-9].
We therefore assembled a core group of 212 transcripts
representing 12 pathways with well-defined roles in can-
cer cell proliferation, survival and metabolism and whose
members are frequently subject to mutations that drive
cancer pathogenesis (Additional file 1: Table S1) [13-17,
19]. In 10,227 samples from TCGA representing 34 can-
cer types, t-SNE profiling identified distinct and multiple
tumor type-specific transcript patterns for most path-
ways (Fig. 1 and Additional file 1 Figures S1-12).

The t-SNE clusters of individual pathways correlated
with survival in 3—-14 cancer types comprising 9.6—38.9%
of the entire TCGA population (Figs. 2 and 3 and Add-
itional file 1: Figures S13—14). Collectively, survival for
all cancers for which t-SNE-assisted clustering was use-
ful could be predicted from a mean of 3.7 pathways.
This ranged from nine pathways for low-grade gliomas
and clear cell kidney cancer to as few as a single pathway
each for colon, prostate and colo-rectal cancers (Fig. 3).
t-SNE-assisted clustering did not predict survival in dif-
fuse large B-cell lymphoma, squamous cell lung cancer,
phenochromocytoma/paraganglioneoroma and testicular
germ cell tumor, collectively comprising 8.6% of the
TCGA population. t-SNE patterns from at least one
pathway, and more often multiple pathways, thus pre-
dicted survival in 30 of 34 cancer groups, comprising
91.4% of all tumors (Fig. 3).

Certain RPT transcripts disproportionately and recur-
rently shape t-SNE clusters [8, 9]. We therefore applied
a Random Forest classifier [20] to identify such key tran-
scripts in each of the above 12 pathways. These were
relatively few in number, ranging from as few as one-two
to as many as four-six depending both on the tumor
type and the specific pathway (Additional file 1: Figures
§25-36). Thus, a much smaller subset of the original
212 transcript collection, comprising no more than 50—
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Fig. 1 3D t-SNE plots of transcript clusters from each of the 12 cancer-related pathways. For each pathway (Additional file 1: Table S1), two
representative tumor types are shown. See Additional File 1: Table S3 in the Supplementary Appendix for the specific parameters used to
generate each t-SNE cluster. Additional file 1: Figures S1-S12 show t-SNE profiles of additional relevant tumor types for each pathway. Axes here
and in Additional file 1: Figures S1-S12 are unlabeled as t-SNE parameters are non-linear, dimensionless and not meaningfully interpretable (49)

60 members, contributed disproportionately to the t-
SNE profiles of most cancers.

Additional predictive value from sequential t-SNE analysis
and whole transcriptome profiling

Because t-SNE profiles for more than one pathway cor-
related with survival in 25 of 34 cancers (Fig. 3) we
asked whether a second, sequential analysis performed
on an initial set of t-SNE clusters could be used to fur-
ther refine survival predictions. Figure 4a shows the ori-
ginal Kaplan-Meier survival curves of the four patient
cohorts with clear cell kidney cancer profiled with Pur-
ine Biosynthesis Pathway transcripts (Additional file 1
Figure S17). Subsequent t-SNE-assisted profiling with
Notch Pathway members allowed for additional subdivi-
sions of two of these groups. Cluster 1, with relatively
poor prognosis (median survival = 2419 days), could be
sub-divided into a large sub-group with slightly longer
median survival (2564 days) and a smaller sub-group
with a particularly poor median survival of only 1111
days (P=0.0057) (Fig. 4b). Neither Clusters 2 nor 3
could be further subdivided (Fig. 4c and d). Similarly,
Cluster 4, with the best overall survival of >3700 days,
could be subdivided into two groups with median sur-
vivals of >4700days and 2241 days, respectively (P=
0.00045) (Fig. 4e). At least two additional examples of
initial t-SNE clusters (generated from sarcomas and head
and neck squamous cell cancers) that could be sub-
classified with a second pathway’s transcripts are shown
in Additional file 1 Figures S37 & 38).

Whole transcriptome profiling can molecularly classify
tumors and predict survival and therapeutic responses
[23, 24]. To determine whether t-SNE-assisted clustering
could also be employed to further refine survival predic-
tions based on this approach or vice versa, we retrieved
RNAseq data from several tumor types, generated heat
maps of all expressed protein-coding transcripts and
sub-classified tumors using hierarchical clustering [22,
25]. We initially focused on pancreatic ductal adenocar-
cinoma in which t-SNE analysis with Purine Biosynthesis
Pathway transcripts had previously identified three dis-
tinct cohorts with differential survival (Additional file 1
Figures S5 and S17). Hierarchical clustering revealed
three molecular subgroups (Fig. 5a), two of which, “Den-
dro 1” and “Dendro 3”, were associated with inferior sur-
vival (Fig. 5b). Tumors from the three t-SNE clusters
were about evenly distributed among these Dendro
groups (Fig. 5a). t-SNE Cluster 1 tumors could be

further subdivided into groups with significant differ-
ences in survival based upon their dendrogram identities
(Fig. 5¢). Similarly, t-SNE Cluster 3 tumors could also be
divided into groups with significant differences in sur-
vival (Fig. 5d). Thus, t-SNE clusters, already predictive of
survival, could be further stratified based on hierarchical
clustering. Similarly, dendrogram groups contained pa-
tients whose survival could be further stratified based on
t-SNE profiles.

Related findings were made in clear cell kidney cancer,
where whole transcriptome profiling generated 4 den-
drograms (Dendro 1-4) with Dendro 1 having particu-
larly unfavorable survival (Additional file 1 Figure
S39A&B). Unlike the more random distribution of t-SNE
clusters seen in Fig. 5a, Dendro 1 group was overly pop-
ulated by Pyrimidine Biosynthetic Pathway t-SNE Clus-
ter 2 tumors (also with unfavorable outcomes-Fig. 2)
whereas the Dendro 3 group with a favorable outcome
contained a preponderance of t-SNE 1 cluster tumors,
also with more favorable outcomes. However, both t-
SNE groups could be further sub-divided into distinct
survival cohorts when categorized by their respective
dendro group (Additional file 1 Figure S39 C&D). Add-
itional variations of these general themes were seen with
Myc Pathway transcripts in sarcomas and TCA Cycle
Pathway transcripts in Bladder Cancer (Additional file 1:
Figures S40 & S41). t-SNE-based analysis is thus com-
parable and in some cases even superior to whole tran-
scriptome profiling for forecasting long-term survival
As with sequential t-SNE profiling, the two methods can
be used in tandem to better define tumor subgroups and
long-term survival.

T-SNE compliments sub-classification and clinical staging
for certain cancers

Triple-negative breast cancer (TNBC), which repre-
sents 10-20% of all tumors, is defined by the lack of
immuno-histochemical staining for the estrogen and
progesterone receptors and the cell surface epidermal
growth factor receptor HER2. It has the most un-
favorable outcome of all breast cancer subtypes due
primarily to its propensity for early metastatic recur-
rence [26, 27]. In contrast, the Luminal A form,
representing 50-60% of all cases, has the most favor-
able long-term survival [28, 29]. Belying the apparent
simplicity of this long-standing classification scheme,
however, is the fact that TNBC and Luminal A vari-
ants have each been recently sub-classified into
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Fig. 2 Kaplan-Meier survival curves of patients based on t-SNE profiles. The survival curves shown here are those for the t-SNE clusters in Fig. 1.
Patient groups are indicated by the same colors used to present the t-SNE clusters. P values between individual groups are indicated only when
significant. See Additional file 1: Figures S13-5S24 for other relevant survival curves that correspond to the t-SNE profiles depicted in Additional file

1: Figures S1-12

several distinct molecular entities based on whole
transcriptomic profiling [26, 27, 30, 31].

To determine whether t-SNE-based analyses could
aid in refining the survival prediction for these two
forms of breast cancer, we first confirmed these dif-
ferences using data from the TCGA database and ref.
23 (Fig. 6a). Because Wnt Pathway transcript t-SNE
patterns had been predictive of survival in all breast
cancer patients (Fig. 3, and Additional file 1 Figures
S2 and S14), we applied these analyses to the individ-
ual TNBC and Luminal A subtype populations.
TNBCs comprised 17.9% of all tumors (197 of 1097)
and occupied the same original five t-SNE clusters as
their non-TNBC counterparts (Fig. 6b). However,
these tumors were disproportionately grouped into
Cluster 2, which contained 62.8% of the total TNBC
population (P=4.2x10"% based on Fisher’s exact
test), with the remaining four clusters each containing
5.3—11%. Luminal A cancers (46.5% of all tumors)
were evenly distributed among t-SNE clusters 1,3,4

and 5 (48-56.3%) but were relatively depleted from
Cluster 2 (19.5%. P=4.37x10"'®). Thus, Cluster 2
was disproportionately comprised of a relative excess
of TNBCs and a paucity of luminal A cancers. As a
group, this Cluster’s survival was identical to that of
Clusters 1,3 and 4 whereas the smaller number of
TNBCs within Cluster 5 (20/197 = 10.1%) was associ-
ated with a significantly worse long-term survival
(Fig. 6¢). Wnt pathway transcript patterns were not
predictive of survival for luminal A cancers.

t-SNE-based profiling of breast cancers with Myc
Pathway member transcripts did not initially identify
groups with significantly different survival (Fig. 3). How-
ever, the analysis of Luminal A tumors but not TNBCs
with this pathway’s transcripts did further enhance sur-
vival prediction (Fig. 6d&e). Taken together, these results
demonstrate that, at least in the case of breast cancer,
well-defined molecular subtypes could be further catego-
rized by the subsequent interrogation with t-SNE-based
transcriptional profiling.
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Fig. 4 Additional predictive power of sequential t-SNE analyses. a. The survival curves of clear cell kidney cancer patients based on t-SNE clusters
from the Purine Biosynthesis Pathway taken from Additional file 1: Figure S17. b. Cluster 1 patients from (a) were further analyzed based on
whether they could be categorized as Cluster 1 or Cluster 2 when analyzed for Notch Pathway transcripts. c-e Clusters 2—4 patients from (a) were
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On average, Random Forest classification had shown
that approximately three Wnt Pathway transcripts were
the major determinants of t-SNE cluster profiles among
the 12 different cancer types, including all breast can-
cers, where differential survival among Clusters was ob-
served (Fig. 3). The most prominent of these transcripts
were Sfrp2, Ctnnbl and Dkk1/3 (Feature Importance >
1, Additional file 1 Figure S26). In the case of TNBC,
however, this patterning was determined exclusively by
Sfrp2 (Fig. 6f). Consistent with this, Cluster 5 tumors
expressed the highest levels of Sfrp2 transcripts (Fig. 6g).

t-SNE clusters generated by Myc Pathway transcripts
in 11 relevant tumor types were also determined by an
average of three transcripts/tumor type with the most
common ones being Myc, N-Myc and Mxd2 (Additional
file 1 Figure S34). The t-SNE clusters of Luminal A can-
cers, in contrast, were more driven by Myc and Mxd2
(Fig. 6h). Interestingly, the Cluster 1 tumors of this sub-
set, which expressed high levels of Myc and Mxd2 were
associated with the worst prognosis (Fig. 6i&j).

Lastly, we asked whether the survival of patients
with advanced stage disease at the time of diagnosis

could also be better stratified by t-SNE analysis. To
this end, we re-analyzed the bladder cancers in TCGA
(SI Appendix Table S2), 135 of which originated from
patients with Stage IV disease. A Chi-square test indi-
cated that the tumors were randomly distributed
among the three previously identified t-SNE clusters
(P=0.073), Fig. 7a&b and Additional file 1 Figure
S11). Just as t-SNE profiling had previously predicted
differential survival in all patients with bladder cancer
(Additional file 1 Figure S23), so too was it predictive
of survival in individuals with Stage IV tumors with
Cluster 3 tumors being associated with significantly
more favorable survival (Fig. 7c).

Similar findings were made in head and neck squa-
mous cell cancers (SI Appendix Table S20 where t-SNE
profiling with Myc Pathway transcripts had previously
identified four distinct clusters with significant survival
differences (Figs. 1 and 2). As with bladder cancers, the
primary tumors from 247 Stage IV cancers were ran-
domly distributed among these groups (P =0.075, Fig.
7d). Among these tumors, however, t-SNE Cluster 4 was
associated with a significantly longer median survival
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(2120 days) than the other clusters (combined median
survival = 915 days).

Discussion

Molecular tests such as MammaPrint™ and ThyroSeq™
have proven highly useful in guiding the diagnosis and
prognosis of select cancers [4, 5]. In the former case, a
70 gene expression signature in Stage I and II breast
cancer can accurately predict the likelihood of recur-
rence following surgical extirpation and thus inform the

need for adjuvant chemotherapy [4]. ThryoSeq™ utilizes
a collection of ~ 140 gene copy number variations, fu-
sions and transcript expression differences to diagnose
and classify malignant thyroid nodules of indeterminate
histology [5]. Despite their utility, these tests are relevant
only to their respective tumor types or, more specifically,
certain stages or subtypes and lack broader applicability.

We have demonstrated here the feasibility of predict-
ing survival in multiple cancer types based on the ex-
pression patterns of small, functionally related subsets of
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Fig. 6 t-SNE profiling can further refine survival prediction in specific breast cancer subtypes. a Kaplan-Meier survival of patients with TNBC and
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from (a) using Wnt Pathway transcripts. These were derived from Additional file 1: Figure S2. . Kaplan-Meier survival of each of the t-SNE groups
from (b). NS = not significant (d). t-SNE profiling of TNBC and Luminal A tumors using Myc Pathway transcripts. (e). Kaplan-Meier survival of each
of the t-SNE groups from (d). f Random Forest classification of transcripts from the Wnt Pathway that were the most deterministic of survival for
all TNBC patients from (a). g Expression levels of Sfrp2 transcripts in each of the t-SNE clusters of TNBCs from (b). h. Random Forest classification
of transcripts from the Myc Pathway that were the most deterministic of survival for all Luminal A patients from (a). i. Expression levels of Myc

transcripts in each of the t-SNE clusters of Luminal A tumors from (d). j. Expression levels of Mxd2 transcripts in each of the t-SNE clusters of
Luminal A tumors from (d)

a 212 member transcript collection. These were drawn
from 12 canonical pathways with well-established roles
in cancer cell proliferation, survival and metabolism
[11-15, 25, 32, 33]. However, unlike whole transcrip-

reported here lies in the expression patterns of small
numbers of transcripts across multiple tumor types. In-
deed, in 30 of 34 cancers, these patterns were so highly
predictive of survival that transcripts from a single path-

tome profiling where gene expression levels correlate
with survival in specific cancers (Fig. 5a, Additional file
1 Figures S39-S41) [22], the value of the analyses

way sufficed for this purpose. Examples include the Cell
Cycle Pathway (15 transcripts) in acute myelogenous
leukemia, the PI3K Pathway (18 transcripts) in low-
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grade gliomas and any one of nine pathways, each com-
prised of 6-30 transcripts, in clear cell kidney cancer
(Fig. 3). Indeed, of the 30 cancer types for which t-SNE-
assisted profiling was useful, an average of 3.7 pathways/
tumor type correlated with survival, thus providing
coverage of 91.4% of all cancers archived in TCGA. Our
previous t-SNE profiling with transcripts encoding ribo-
somal proteins and enzymes involved in cholesterol bio-
synthesis and FAO [7-9] was also prognostic for 17 of
the listed cancers and also did not include any of the
four not covered by the current 12 pathways (Fig. 3).
The future addition of new pathways may eventually
prove to be of prognostic value in these four cancer
types. It is worth considering the possibility that the fail-
ure of this approach in testicular germ cell tumor may
reflect this cancer’s extraordinarily high cure rate [34].
For these reasons, the current numbers must be consid-
ered provisional and likely to expand. The precise frac-
tion of cancers for which t-SNE profiling will prove
useful is also likely to change somewhat given that the
TCGA database is biased both for and against particular

cancer types (for example, it excludes many rare cancers
and most pediatric cancers).

Unsurprisingly, many of above pathways’ transcripts
encode known oncoproteins and tumor suppressors
such as Myc, PTEN, p53 and IDH1/2 whose mutation,
expression level and/or de-regulation frequently correl-
ate with various individual cancers and their outcomes
(SI Appendix Table S1) [11, 35—41]. However, we show
that an additional and more powerful prognostic aspect
of these transcripts resides in the patterns they assume
relative to other transcripts in their respective pathways.
These patterns likely serve as surrogate reporters for the
unique transcriptional and post-transcriptional environ-
ments that characterize each cancer type and that dictate
its relevant behaviors in much the same way as does
whole transcriptome hierarchical clustering [42-44].
Such patterns are undoubtedly determined by numerous
interdependent factors including chromatin conform-
ation; the binding and activities of promoter-proximal
complexes such as RNA polymerase II and Mediator;
the binding and activities of adjacent transcriptional
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factors; the long-range contribution of protein-bound
enhancers and super-enhancers and the regulation of all
these by post-translational modifications, metabolites
and additional tissue-specific proteins [42, 45-48]. Dif-
ferences in mRNA splicing and stability further influence
mature transcript expression levels in tissue- and tumor-
specific ways [49, 50]. That transcript patterns may re-
flect a more complex control than do absolute levels is
suggested by the fact that, in at least some cases, these
two do not correlate (Fig. 5a). Based on presumably
similar regulatory dependencies, it seems likely that t-
SNE patterns will also correlate with other important
tumor behaviors such as therapeutic responses and their
durability.

Also to be emphasized is that the entire 212 transcript
repertoire reported here is unnecessary for assessing any
individual tumor type. Rather, only those pathways of
previously demonstrated predictive value for a particular
tumor type need be selected (Additional file 1 Figures
S$25-36). In the case of low-grade gliomas and clear cell
renal cancer, for example, this could be as many as nine
pathways or as few as a single one for colo-rectal and
prostate cancers (Fig. 3).

In some cases, additional prognostic information was
extracted using sequential t-SNE analysis or whole tran-
scriptome profiling (Figs. 4 and 5 and Additional file 1
Figures S37-S41). It is in tumor types such as pancreatic
ductal adenocarcinoma where particular t-SNE profiles
are more evenly distributed across the entire transcrip-
tome spectrum that the combined advantages of these
two independent approaches are likely to have the great-
est impact (Fig. 5).

Importantly, more traditional and clinically well-
integrated ways of classifying tumor can also be com-
plemented using the t-SNE-based profiling described
here so as to allow for the identification of more or
less challenging tumor subsets. This was well-
illustrated for breast cancer where the TNBC and
Luminal A subtypes, already long-known as having
distinct outcomes [23, 24, 26—29], could both be sub-
divided, albeit with different set of transcripts (Fig. 6).
The high-risk TNBC group was particularly interest-
ing as these patients’ t-SNE profiles and their long-
term survival, were entirely driven by the expression
of Sfrp2 (Fig. 6b,c & g). Sfrp2 (“secreted frizzled-
related protein”) is a cell surface protein that is highly
expressed by breast cancer-associated endothelial cells
and correlates inversely with survival [51]. Monoclo-
nal antibody-mediated inhibition of Sfrp2 has been
show to reduce tumor growth and prolong survival in
a mouse model of TNBC [52]. This suggests the intri-
guing possibility that some transcripts that are pre-
dictive of survival may not necessarily be expressed
by actual tumor cells but rather by stromal elements
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that play critical roles in maintaining tumor growth,
nutrition and oxygenation [53].

For both bladder and head and neck squamous cell
cancer, t-SNE profiling also complemented and strength-
ened the well-recognized prognostic power of classical
clinical staging, which is largely predicated on well-
established clinico-pathologic criteria such as tumor size
and location, local invasion, lymphatic involvement and
distant metastatic spread, with the latter being indicative
of the most advanced, i.e. Stage IV, disease [54]. The fact
that the t-SNE clusters of stage IV tumors were indistin-
guishable from those of their less advanced counterparts
(Fig. 7b&d) argues that, rather than simply being corre-
lated with and perhaps the result of more advanced dis-
ease, transcript expression patterns are a fundamental
property of their respective tumor that likely precedes
the onset of metastatic dissemination. More extensive
testing involving additional cancers and transcript path-
ways will be required to determine how t-SNE-based
analyses can best be integrated with these more trad-
itional types of evaluation so as to establish the best clin-
ical practice.

It is important to emphasize that, like all other clinic-
pathologic, biochemical and molecular analyses, the re-
sults generated by t-SNE profiling must be interpreted
cautiously and in light of other factors that are not ne-
cessarily accounted for by the analysis itself and that, ei-
ther individually or together, could affect long-term
outcomes. These might include such non-mutually ex-
clusive factors as age and frailty, co-existing organ dys-
function that limits chemotherapy dosing, disparities in
the quality of care or the inability to initiate or continue
treatment.

Conclusions

Collectively, our results demonstrate that the expression
patterns rather than the absolute levels of small, func-
tionally related sets of transcripts can be used to achieve
highly accurate projections of long-term survival in the
vast majority of cancer patients. In most instances, sev-
eral different pathways can be selected for the analysis of
any particular tumor type. Together, the pathways can
be used to predict survival in at least three and as many
as 14 different tumor types for which the approach is ap-
plicable. Additional versatility is demonstrated by the
fact that tandem t-SNE profiling or t-SNE profiling in
conjunction with whole transcriptome analysis affords
even greater refinement of survival prediction. This re-
mains true when t-SNE profiling is combined with more
traditional forms of tumor assessment such as immuno-
histochemical staining and clinic-pathologic staging. Fu-
ture efforts should continue to focus on and improve
the benefits offered by such combinatorial analyses.
While the prognostic advantages of these sequential
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approaches may initially be somewhat limited in their
statistical power by relatively small patient numbers, this
is likely to diminish with the accrual of additional data.

Additional file

Additional file 1: Table S1. Component Transcripts and NCBI Gene ID
Numbers Used for t-SNE Profiling in Each of Twelve Cancer-Related Path-
ways. Note that, although there are a total of 221 transcripts listed, 9 of
those in the Purine and Pyrimidine Biosynthesis Pathways (depicted in
bold) are common. Thus, a total of 212 unique transcripts were used for
generating t-SNE profiles. Table S2. Abbreviations for and Number of
Cancers in Each of the TCGA Groups and Those for Which Survival Data is
Unavailable. Table S3. t-SNE clustering parameters. For “Diagonal” covari-
ance matrices only the diagonal entries were non-zero, and the principle
axes of the fitted Gaussians were parallel to the X,Y, and Z axes. For “Full”
covariance matrices any entry could be nonzero and the principle axes of
the fitted Gaussians could be oriented in any direction. Shared Covari-
ance: in cases where this is “TRUE" each fitted Gaussian had the same co-
variance matrix. Where this was “FALSE" every fitted Gaussian had a
unique covariance matrix. Perturb Input: where this is “TRUE" the t-SNE
data were randomly perturbed by a maximum of 5% of the radius of the
sphere enclosing them prior to clustering. Perturb Output: Where this is
"TRUE", the t-SNE scatter-plots displayed in the figures have the afore-
mentioned perturbation applied. Figure S1. Additional t-SNE profiles for
select tumor types, excluding those shown in Fig. 1, demonstrating Cell
Cycle Pathway transcript clustering. Figure S2. Additional t-SNE profiles
for select tumor types, excluding those shown in Fig. 1, demonstrating
Wnt Pathway transcript clustering. Figure S3. Additional t-SNE profiles for
select tumor types, excluding those shown in Fig. 1, demonstrating
Notch Pathway transcript clustering. Figure S4. Additional t-SNE profiles
for select tumor types, excluding those shown in Fig. 1, demonstrating
PI3K Pathway transcript clustering. Figure S5. Additional t-SNE profiles
for select tumor types, excluding those shown in Fig. 1, demonstrating
Purine Biosynthesis Pathway transcript clust. Figure S6. Additional t-SNE
profiles for select tumor types, excluding those shown in Fig. 1, demon-
strating Pyrimidine Biosynthesis Pathway transcript clustering. Figure S7.
Additional t-SNE profiles for select tumor types, excluding those shown
in Fig. 1, demonstrating TP53 Pathway transcript cluste. Figure S8. Add-
itional t-SNE profiles for select tumor types, excluding those shown in
Fig. 1, demonstrating TGF-f Pathway transcript clustering. Figure S9.
Additional t-SNE profiles for select tumor types, excluding those shown
in Fig. 1, demonstrating Hippo Pathway transcript clustering. Figure S10.
Additional t-SNE profiles for select tumor types, excluding those shown
in Fig. 1, demonstrating Myc Pathway transcript clustering. Figure S11.
Additional t-SNE profiles for select tumor types, excluding those shown
in Fig. 1, demonstrating TCA Cycle transcript clustering. Figure S12. Add-
itional t-SNE profiles for select tumor types, excluding those shown in
Fig. 1, demonstrating Pentose Phosphate Pathway transcript clustering.
Figure S13. Additional Kaplan-Meier survival curves for patients with dis-
tinct groups of Cell Cycle Pathway t-SNE clusters, excluding those shown
in Fig. 2. Figure S14. Additional Kaplan-Meier survival curves for patients
with distinct groups of Wnt Pathway t-SNE clusters, excluding those
shown in Fig. 2. Figure S15. Additional Kaplan-Meier survival curves for
patients with distinct groups of Notch Pathway t-SNE clusters, excluding
those shown in Fig. 2. Figure $16. Additional Kaplan-Meier survival
curves for patients with distinct groups of PI3K Pathway t-SNE clusters,
excluding those shown in Fig. 2. Figure S17. Additional Kaplan-Meier sur-
vival curves for patients with distinct groups of Purine Biosynthesis Path-
way t-SNE clusters, excluding those shown in Fig. 2. Figure S18.
Additional Kaplan-Meier survival curves for patients with distinct groups
of Pyrimidine Biosynthesis Pathway t-SNE clusters, excluding those shown
in Fig. 2. Figure S19. Additional Kaplan-Meier survival curves for patients
with distinct groups of TP53 Pathway t-SNE clusters, excluding those
shown in Fig. 2. Figure S20. Additional Kaplan-Meier survival curves for
patients with distinct groups of TGF- Pathway t-SNE clusters, excluding
those shown in Fig. 2. Figure S21. Additional Kaplan-Meier survival
curves for patients with distinct groups of Hippo Pathway t-SNE clusters,
excluding those shown in Fig. 2. Figure $22. Additional Kaplan-Meier
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survival curves for patients with distinct groups of Myc Pathway t-SNE
clusters, excluding those shown in Fig. 2. Figure S23. Additional Kaplan-
Meier survival curves for patients with distinct groups of TCA Cycle Path-
way t-SNE clusters, excluding those shown in Fig. 2. Figure S24. Add-
itional Kaplan-Meier survival curves for patients with distinct groups of
Pentose Phosphate Pathway t-SNE clusters, excluding those shown in Fig.
2. Figure S25. Additional Random Forest Classifiers showing the individ-
ual transcripts in the Cell Cycle Pathway that were most deterministic of
t-SNE profiles for each relevant tumor type. Figure S26. Additional Ran-
dom Forest Classifiers showing the individual transcripts in the Wnt Path-
way that were most deterministic of t-SNE profiles for each relevant
tumor type. Figure $27. Additional Random Forest Classifiers showing
the individual transcripts in the Notch Pathway that were most determin-
istic of t-SNE profiles for each relevant tumor type. Figure S28. Additional
Random Forest Classifiers showing the individual transcripts in the PI3K
Pathway that were most deterministic of t-SNE profiles for each relevant
tumor type. Figure $29. Additional Random Forest Classifiers showing
the individual transcripts in the Purine Biosynthesis Pathway that were
most deterministic of t-SNE profiles for each relevant tumor type. Figure
$30. Additional Random Forest Classifiers showing the individual tran-
scripts in the Pyrimidine Biosynthesis Pathway that were most determinis-
tic of t-SNE profiles for each relevant tumor type. Figure S31. Additional
Random Forest Classifiers showing the individual transcripts in the TP53
Pathway that were most deterministic of t-SNE profiles for each relevant
tumor type. Figure $32. Additional Random Forest Classifiers showing
the individual transcripts in the TGF-3 Pathway that were most determin-
istic of t-SNE profiles for each of 11 relevant tumor types, not including
those shown in Fig. 4. Figure S$33. Additional Random Forest Classifiers
showing the individual transcripts in the Hippo Pathway that were most
deterministic of t-SNE profiles for each relevant tumor type. Figure S34.
Additional Random Forest Classifiers showing the individual transcripts in
the Myc Pathway that were most deterministic of t-SNE profiles for each
relevant tumor type. Figure $35. Additional Random Forest Classifiers
showing the individual transcripts in the TCA Pathway that were most
deterministic of t-SNE profiles for each relevant tumor type. Figure S36.
Additional Random Forest Classifiers showing the individual transcripts in
the Pentose Phosphate Pathway that were most deterministic of t-SNE
profiles for each relevant tumor type. Figure S37. Additional predictive
power of sequential t-SNE analyses. (A). The survival curve shown in Fig. 2
of sarcoma patients based on t-SNE clusters from the Purine Biosynthesis
Pathway. (B). Cluster 1 patients from A were further analyzed based on
whether they could be categorized as Cluster 1 or Cluster 2 when ana-
lyzed for TGF-B Pathway transcripts. (C). Cluster 2 patients from A were
similarly categorized as in B. (D). Cluster 3 patients from A were similarly
categorized as in B. (4). Cluster 4 patients from A were similarly catego-
rized as in B. Figure $S38. Additional predictive power of sequential t-SNE
analyses. (A). The survival curves of head and neck cancer patients based
on t-SNE clusters from the Myc Pathway taken from Fig. 2 in the Supple-
mentary Appendix. (B). Cluster 1 patients from A were further analyzed
based on whether they could be categorized as Cluster 1, Cluster 2, or
cluster 3 when analyzed for cell cycle Pathway transcripts. (C-E). Clusters
2-4 patients from A were similarly categorized as in B. Figs. Figure S39.
Whole transcriptome analysis refines the predictive power of Pyrimidine
Pathway t-SNE profiling in renal clear cell carcinoma (KIRC). (A). Hierarch-
ical clustering of all KIRCs based on whole transcriptome profiling. Each
tumor’s t-SNE cluster is indicated and is derived from Fig. 2. (B). Kaplan-
Meier survival curves of each of the Dendro groups from A. (C). All t-SNE
Cluster 1 tumors with favorable survival (Fig. 2) were further categorized
based on their Dendro Groupings. It can be seen that these tumors were
associated with a worse overall survival if they fell into the Dendro 1
group. Similarly, t-SNE cluster 2 tumors with overall unfavorable survival
could be further sub-classified according to their Dendro group. Figure
S40. Whole transcriptome analysis refines the predictive power of Myc
Pathway t-SNE profiling in sarcoma (SARQ). (A). Hierarchical clustering of
all sarcoma patients identified 4 distinct Dendro Groups (1-4). The two t-
SNE Clusters into which these tumors fell are indicated at the bottom of
the heat map. Note that the Dendro 1 Group is particularly weighted
with t-SNE Cluster 2 tumors having favorable survival. To a somewhat
lesser extent, the Dendro 4 Group was more heavily populated by t-SNE
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Cluster 1 tumors with unfavorable survival. (B). Survival for each of the
Dendro Groups in (A) showing that Dendro Groups 1 and 2 were associ-
ated with relatively favorable survival whereas Dendro group 4 was asso-
ciated with unfavorable survival. (C). t-SNE Cluster 1 unfavorable survival
tumors could be further subdivided based on their Dendro Group iden-
tities. (D). t-SNE Cluster 2 favorable survival tumors could also be subdi-
vided further based on there whole transcriptome profile. Figure S41.
Whole transcriptome analysis refines the predictive power of TCA Cycle
Pathway in bladder urothelial cancer (BLCA). (A). Hierarchical cluster of all
tumors identified 4 Dendro Groups. Note that Dendro Groups 1 and 2
are over-represented by t-SNE Cluster 2 TCA Pathway tumors with an
intermediate survival whereas Dendro Group 4 is over-represented by t-
SNE Cluster 3 tumors with a relatively favorable survival (Figs. S11 and
S23in the Supplementary Appendix). (B). Kaplan-Meier survival curves of
each of the 4 Dendro Groups in (A). (C-E). Kaplan-Meier survival curves of
each of the 3 t-SNE Groups. Note that the t-SNE Cluster 1 could not be
further subdivided by further hierarchical clustering whereas both t-SNE
Clusters 2 and 3 could. (DOC 23261 kb)
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