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Abstract

Background: Liver cancer is among top deadly cancers worldwide with a very poor prognosis, and the liver is a
vulnerable site for metastases of other cancers. Early diagnosis is crucial for treatment of the predominant liver
cancers, namely hepatocellular carcinoma (HCC). Here we developed a novel computational framework for the
stage-specific analysis of HCC.

Methods: Using publicly available clinical and RNA-Seq data of cancer samples and controls and the AJCC staging

system, we performed a linear modelling analysis of gene expression across all stages and found significant
genome-wide changes in the log fold-change of gene expression in cancer samples relative to control. To identify
genes that were stage-specific controlling for confounding differential expression in other stages, we developed a
set of six pairwise contrasts between the stages and enforced a p-value threshold (< 0.05) for each such contrast.
Genes were specific for a stage if they passed all the significance filters for that stage. The monotonicity of gene
expression with cancer progression was analyzed with a linear model using the cancer stage as a numeric variable.

Results: Our analysis yielded two stage-l specific genes (CA9, WNT7B), two stage-Il specific genes (APOBEC3B,
FAM186A), ten stage-lll specific genes including DLG5, PARI, NCAPG2, GNMT and XRCC2, and 35 stage-IV specific genes
including GABRD, PGAM2, PECAM1 and CXCR2P1. Overexpression of DLG5 was found to be tumor-promoting contrary
to the cancer literature on this gene. Further, GABRD was found to be signifincantly monotonically upregulated across
stages. Our work has revealed 1977 genes with significant monotonic patterns of expression across cancer stages.
NDUFA4L2, CRHBP and PIGU were top genes with monotonic changes of expression across cancer stages that could
represent promising targets for therapy. Comparison with gene signatures from the BCLC staging system identified
two genes, HSP9OABT and ARHGAP42. Gene set enrichment analysis indicated overrepresented pathways specific to
each stage, notably viral infection pathways in HCC initiation.

Conclusions: Our study identified novel significant stage-specific differentially expressed genes which could enhance
our understanding of the molecular determinants of hepatocellular carcinoma progression. Our findings could serve as
biomarkers that potentially underpin diagnosis as well as pinpoint therapeutic targets.
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Fig. 1 Major causative pathways of hepatocarcinogenesis. All pathways converge to progressive genomic alterations, leading a normal cell to
acquire the hallmarks of cancer

Background cancer, accounting for nearly 85% of liver cancers. 78%
Liver cancer is the second most deadly cancer in terms  of all reported cases of HCC were due to viral infections
of mortality rate, with a very poor prognosis [60]. It (53% Hepatitis B virus and 25% Hepatitis C virus) [38].
accounted for 9.1% of all cancer deaths, and 83% of the There are several non-viral causes of HCC as well,
annual new estimated 782,000 liver cancer cases world- mainly aflatoxins and alcohol [10]. As shown in Fig. 1,
wide occur in developing countries [13]. Liver cancer all the factors converge to a common mechanism of
showed the greatest increase in mortality in the last dec-  genetic alterations that lead to the acquisition of cancer
ade for both males (53%) and females (59%) [8]. Liver  hallmarks [20] and the eventual emergence of a cancer
hepatocellular carcinoma (LIHC) or simply hepatocellu-  cell [11]. Genetic alterations constitute the heart of the
lar carcinoma (HCC) is the most common type of liver = problem, and studying changes due to these genetic

TCGA-02-0001-01 C—l()l D-01 82—01|

Sample Encoding:

01 - Primary solid tumour
02 - Recurrent solid tumour
11 - Solid tissue normal (control)

Fig. 2 TCGA ‘Hybridization REF' Barcode. The first 10 characters constitute an anonymized unique patient identifier and the following two
characters denote whether the sample is tumor or normal
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Fig. 3 Design matrices. a In the linear modeling, the control
samples served as the baseline expression (intercept) of each gene
against which the stage-specific expression was estimated. b the
design matrix for the contrasts analysis

alterations is paramount to understand HCC. Earlier
gene expression studies using EST data detected differ-
ential expression in cancer tissue compared to non-
cancerous liver and proposed the existence of genetic
aberrations and changes in transcriptional regulation in
HCC [58]. The Cancer Genome Atlas (TCGA) research
network [41] have subtyped and identified many
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potential targets for HCC based on a comprehensive
multi-omics analysis. An independent analysis of
TCGA RNA-Seq data encompassing 12 cancer tis-
sues has uncovered liver cancer-specific genes [37].
Zhang et al. [63] have performed mutation analysis
of HCC, and Yang et al. [59] combined TCGA ex-
pression data and natural language processing tech-
niques to identify cancer-specific markers.

The burden of disease and mortality rate are both in-
versely correlated with the cancer stage. The response
rate to therapy is also inversely correlated with stage. To
the best of our knowledge, there are no reported re-
search in the literature that have dissected the stage-
specific features of HCC. The cancer staging system is
based on gross features of cancer anatomical penetra-
tion, and one such standard is the American Joint Com-
mittee on Cancer (AJCC) Tumor-Node-Metastasis
(TNM) staging [2]. It is reasonable to hypothesize that
the stage-specific gross changes are associated with sig-
nature molecular events, and try to probe such molecu-
lar bases of stage-wise progression of cancer. We had
earlier published on stage-specific “hub driver” genes in
colorectal cancer [36]. A stage-focussed analysis of colo-
rectal cancer transcriptome data yielded negative results
vis-a-vis the AJCC staging system [25].

Methods

Data preprocessing

Normalized and log,-transformed Illumina HiSeq RNA-
Seq gene expression data processed by the RSEM pipe-
line [29] were obtained from TCGA via the firebrowse.
org portal [6]. The patient barcode (uuid) of each sample
encoded in the variable called ‘Hybridization REF’ was
parsed and used to annotate the controls and cancer
samples (Fig. 2). To annotate the stage information of
the cancer samples, we obtained the clinical information
dataset for HCC from firebrowse.org (LIHC.Merge_

Table 1 Contrast matrix with control. Each stage (indicated by '1') is contrasted against the control (indicated by -1') in turn

Stagel-control | Stage2-control | Stage3-control Stage4-control
Control -1 -1 -1 -1
Stagel 1 0 0 0
Stage2 0 1 0 0
Stage3 0 0 1 0
Stage4 0 0 0 |
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Fig. 4 A Venn representation of the pairwise stages contrasts. A gene could be differentially expressed in any combination of the four stages and
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that are differentially expressed in all four stages

this could be represented by a 4-bit string, one bit for each stage. For e.g, ‘1111" at the overlap of all four stages would be assigned to genes

Clinical.Level_1.2016012800.0.0.tar.gz) and merged
the clinical data with the expression data by match-
ing the “Hybridization REF” in the expression data
with the aliquot barcode identifier in the clinical
data. The stage information of each patient was
encoded in the clinical variable “pathologic stage”.
The pathologic stage is essentially the surgical stage,
prior to any treatment received, determined with the
tissue obtained at the time of surgery. This inter-
pretation is reinforced in the TCGA HCC sample in-
clusion criteria as follows: “Surgical resection of
biopsy biospecimens were collected from patients di-
agnosed with hepatocellular carcinoma (HCC), and
had not received prior treatment for their disease

(ablation, chemotherapy, or radiotherapy)” (The
TCGA [41]). The availability of this unequivocal in-
formation enables the analysis of cancer stages. The
substages (A,B,C) were collapsed into the parent
stage, resulting in four stages of interest (I, II, III,
IV). We retained a handful of other clinical variables
pertaining to demographic features, namely age, sex,
height, weight, and vital status. With this merged
dataset, we filtered out genes that showed little
change in expression across all samples (defined as
o <1). Finally, we removed cancer samples from our
analysis that were missing stage annotation (value
‘NA' in the “pathologic stage”). The data pre-
processing was done using R (www.r-project.org).

Table 2 Contrast matrix for inter-stage contrasts. There are six possible pairwise contrasts between the stages that are essential to

identifying stage-specific genes

Stage2- | Stage3- Stage3- Stage4- Stage4- Stage4-

Stagel Stagel Stage2 Stagel Stage2 Stage3
Control 0 0 0 0 0 0
Stagel -1 -1 0 -1 0 0
Stage2 1 0 -1 0 -1 0
Stage3 0 1 1 0 0 -1
Stage4 0 0 0 1 1 1
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Table 3 AJCC Cancer staging. The correspondence between the AJCC staging and the TCGA staging for LIHC is noted, along with
the number of LIHC cases in each stage in the TCGA dataset. Control indicates the number of normal tissue control samples, and

NA denotes cases where the stage information is unavailable

TCGA Stage | TNM classification Cases
1A T1a NO MO 172
1B T1b NO MO
2 T2 NO MO 87
3A T3 NO MO 65
3B T4 NO MO 8
3C - 9 85
3 - 3
4A T(any) N1 MO 1
4B T(any) N(any) M1 2 5
4 - 2
CONTROL - 50
NA - 24

Linear modelling

Linear modelling of expression across cancer stages relative
to the baseline expression (i.e, in normal tissue controls)
was performed for each gene using the R limma package
[42]. The following linear model was fit for each gene’s ex-
pression based on the design matrix shown in Fig. 3a:

y = a+Bixi + Byxa + P3xs + Byxa (1)

where the independent variables are indicator variables of
the sample’s stage, the intercept a is the baseline expression
estimated from the controls, and B; are the estimated stage-
wise log fold-change (Ifc) coefficients relative to controls.
The linear model was subjected to empirical Bayes adjust-
ment to obtain moderated t-statistics [34]. To account for
multiple hypothesis testing and the false discovery rate, the
p-values of the F-statistic of the linear fit were adjusted

using the method od Hochberg and Benjamini [22]. The
linear trend across cancer stages for the top significant
genes were visualized using boxplots to ascertain the regu-
lation status of the gene relative to the control.

Monotonic mean expression

The linear model in eqn. (1) would not be sufficient to
identify genes with an ordered monotonic trend of expres-
sion across cancer stages. Addressing this question would
also help assess whether monotonic changes of gene ex-
pression were observed with disease progression. Towards
this end, we designed a model of gene expression where
the cancer stage was treated as a numeric variable:

y=aX+b (2)

where X takes a value in [0,1,2,3,4] corresponding to
the sample stage: [control, I, II, III, IV], respectively. It
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Table 4 Summary of key demographic features of the dataset. For continuous variables (age height, weight and BMI), the mean +
standard deviation is given. BMI is calculated only for patients with both height and weight data

Characteristic | Control | Stagel Stage2 Stage3 Stage4 NA Overall
Number of 50 172 87 85 5 24 423
samples

Age (Years) 61.7£16.1 | 60.6£12.2 | 59.0+13.3 | 56.2+14.8 | 42.8+20.7 | 68.1£10.7 | 59.7+13.2

Height (cm) 170.6+9.5 | 166.5£12.3 | 167.9£8.3 | 169.0+8.9 | 162.3+4.9 | 166.2+11.1 | 167.7£10.6

Weight (Kg) 76.1+22.1 | 73.2+19.8 | 73.3+18.9 | 69.9+£18.8 | 72.3+21.5 | 79.7£19.8 | 73.2+19.7

BMI 262+7.8 | 2674102 | 260458 |243+6.0 |27.7+93 |29.147.6 |26.1+8.4
Sex | Male |28 122 60 55 1 14 280
Female | 22 50 27 30 4 10 143
Vital | Alive | 20 134 71 65 2 12 304
Status [pead | 30 38 16 20 3 12 119

Table 5 Top 10 genes of the linear model. The log-fold change expression of the gene in each stage relative to the controls are
given, followed by p-value adjusted for the false discovery rate, and the regulation status of the gene in the cancer stages with
respect to the control

Genes Stage I | Stage II | Stage III | Stage IV Adj. p Regulation status
Ifc (B1) | Ifc (B2) Ifc (Bs) Ifc (Ba) value
GABRD 5.08 5.11 5.24 6.55 5.529e-78 Up-regulated
PLVAP 3.51 3.24 3.24 3.79 7.498e-75 Up-regulated
CLEC4M | -8.32 -8.67 -8.48 -9.24 6.058e-74 | Down-regulated
CXORF36 | 2091 2.86 2.76 3.44 5.376e-73 Up-regulated
CLECI1B -7.85 -8.46 -8.05 -9.44 6.292e-71 Down-regulated
BMP10 -4.66 -4.75 -4.67 -5.25 1.447e-66 Down-regulated
CLEC4G -1.75 -8.23 -7.95 -8.75 2.437e-66 | Down-regulated
CDHI13 3.30 3.34 3.32 3.86 3.454e-66 Up-regulated
UBE2T 3.85 4.50 4.47 3.76 2.544e-65 Up-regulated
SLC26A6 3.10 3.39 3.34 3.07 7.438e-65 Up-regulated
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was noted the mean expression of a gene could show
the following monotonic patterns across cancer stages:

(i). monotonic upregulation, where mean expression
follows: control < I <II < Il <IV.

(ii). monotonic downregulation, where mean expression
follows: control > I >1I>III > IV.

The sets of genes conforming to either (i) or (ii) were
identified to yield monotonically upregulated and mono-
tonically downregulated genes. These two sets were
merged, and the final set of genes with monotonic
changes of expression with cancer progression was ob-
tained. This final set was ranked by the adj. p-values
from the model estimated by eqn. (2).

Pairwise contrasts

To perform contrasts, a slightly modified design matrix
shown in Fig. 3b was used, which would give rise to the
following linear model of expression for each gene:

Y = BoXo + Brx1 + Byxa + Byxs + Byxa (3)

where the controls themselves are one of the indicator
variables, and the f; are all coefficients estimated only
from the corresponding samples. Our first contrast of
interest, between each stage and the control, was achieved
using the contrast matrix shown in Table 1. Four contrasts
were obtained, one for each stage vs control. A threshold
of |lfc| >2 was applied to each such contrast to identify
differentially expressed genes (with respect to the control).
We used the absolute value of the lfc, since driver genes
could be either upregulated or downregulated. Genes
could be differentially expressed in any combination of
the stages or no stage at all. To analyze the pattern of dif-
ferential expression (with respect to the control), we con-
structed a four-bit binary string for each gene, where each
bit signified whether the gene was differentially expressed
in the corresponding stage. For example, the string ‘1100’
indicates that the gene was differentially expressed in the
first and second stages. There are 2* =16 possible out-
comes of the four-bit string for a given gene corresponding
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Fig. 6 Boxplots illustrating stage-specificity of differentially expressed genes. Extremal expression in a stage could be either maximal expression or
minimal expression relative to the control and all other stages, and could be termed maximal differential expression. Here we show genes with
maximal differential expression in stage-l (WDR72; minimum expression), stage-Il (GLI4, maximum expression; COLEC11, minimum expression),
stage-lll (CKAP2; maximum expression), and stage-IV (MAPK11; maximum expression)

to the combination of stages in which it is differentially
expressed. This is illustrated in set-theoretic terms in Fig. 4.
In our first elimination, we removed genes whose |lfc| <2
for all stages. For each remaining gene, we identified the
stage that showed the highest |Ifc| and assigned the gene as
specific to that stage for the rest of our analysis.

Significance analysis
We applied a four-pronged criteria to establish the signifi-
cance of the stage-specific differentially expressed genes.

(i). Adj. p-value of the contrast with respect to the
control < 0.001. The expression profile of a driver
gene in cancer samples would markedly depart
from that for the controls, which motivates the use
of a stringent threshold here.

(ii). (ii)-(iv) P-value of the contrast with respect to other
stages < 0.05. The use of a more relaxed cutoff would
improve the sensitivity of stage-specific detection.

To obtain the above p-values (ii) - (iv), we used the con-
trast matrix shown in Table 2, which was then used an an
argument to the contrastsFit function in limma.

Further analyses
Principal component analysis (PCA) were performed
using prcomp in R. To choose 100 random genes, we

used the rand function. Gene set enrichment analysis
were performed on KEGG (https://www.genome.jp/kegg/)
and Gene Ontology [5] using kegga and goana in
limma, respectively. In order to visualize outlier genes that
are significant with a large effect size, volcano plots could
be obtained by plotting the -log10 transformed p-value vs.
the log fold-change of gene expression. Heat maps of sig-
nificant stage-specific differentially expressed genes were
visualized using heatmap and clustered using hclust.
Novelty of the identified stage-specific genes was ascer-
tained by screening against the Cancer Gene Census v84
[14].

Results

The TCGA expression data consisted of expression values
of 20,532 genes in 423 samples. After the completion of
data pre-processing, we obtained a final dataset of expres-
sion data for 18,590 genes across 399 samples annotated
with the corresponding sample stage (available in Supple-
mentary File S1). The stagewise distribution of TCGA
samples along with the corresponding AJCC staging is
shown in Table 3. A statistical summary of demographic
details including age, sex, height, weight, and vital status is
shown in Table 4. The body mass index (BMI) distribution
was derived from patient clinical data that had both height
and weight (i.e, neither was ‘NA’). The average age of
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onset of HCC was around 60 years, and the average BMI
was about 26, indicating a possible link with ageing-
associated pathology and obesity.

The dataset was processed through voom in limma to
prepare for linear modelling [28]. At a p-value cutoff of
0.05, 14,843 genes were significant for the linear model
given by eqn. (1). Even raising the bar to 1E-5, 9618
genes remained significant in the linear modelling, thus
implying a strong linear trend in their expression across
cancer stages relative to control. This was not entirely
surprising since one of the hallmarks of cancer pheno-
type is genome-wide instability [20]. The linear model-
ling highlighted top ranked genes, some upregulated in
HCC (GABRD, PLVAP, CDH13) and some downregu-
lated (CLEC4M, CLECI1B, CLEC4G). The lfc for each
stage with respect to control of top ten genes (ranked by
adjusted p-value) are shown in Table 5, along with their
inferred regulation status. Boxplots of the expression of
the top 9 genes (Fig. 5) indicated elevated expression
across cancer stages relative to control for up-regulated
genes, while depressed expression across cancer stages
relative to control was indicative of downregulated
genes. (Boxplots of all other genes in the top 200 are
provided in the Supplementary Fig. S1) It is worthwhile
to note that a given gene might have maximal differen-
tial expression in any stage (not necessarily stage 4), and
the linear trend does not suggest the order of expression
across stages (Fig. 6).

A PCA of the top 100 genes from the linear model
was visualized using the top two principal components
(Fig. 7a). A clear separation of the controls and the can-
cer samples could be seen, suggesting the extent of dif-
ferential expression of these genes in cancer samples.
Hence linear modelling yields cancer-specific genes ver-
sus normal controls, and the results for the all the genes,
including the top 100, are provided in order in Supple-
mentary File S2. For comparison, a PCA plot of 100 ran-
domly sampled genes (Fig. 7b) failed to show any
separation of the cancer and control samples.

To ascertain an ordered trend of expression across
cancer stages, the linear model given by eqn. (2) was fit.
At a p-value of 0.05, 14,127 genes were significant, and
raising the bar to 1E-5 still left 8032 genes significant. A
goodness of fit with eqn. (2) does not equate with a
monotonic trend of expression; i.e., a a gene with a sig-
nificant linear fit is not required to follow a monotonic
trend of mean expression with cancer stage. Using the
definition of monotonicity given in the Methods section,
we found 2109 genes showing strictly monotonic expres-
sion with the cancer stage and reaching maximum abso-
lute mean expression in stage IV. Each such gene was
annotated and ranked with the p-value from eqn. (2).
This yielded 1977 genes with significant (i.e, p-val < 0.05)
monotonic trends of mean expression across cancer
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stages, with 1602 upregulated and 375 downregulated.
The top 20 such genes are presented in Table 6.

The results from the linear modelling were in contrast
with those obtained by Huo et al. [25] and were most
likely driven by an improved design and the inclusion of
51 controls in our study. These positive results provided
the impetus to pursue stage-driven analysis. Given the
conventional AJCC staging, gene expression differences
would play a major role in driving the cancer progression.
To identify the stage-specific differentially expressed
genes, we applied the first contrast matrix (Table 2) and
constructed the four-bit stage string of each gene. Based
on the stage strings, we binned all the genes, and the
string-specific gene lists corresponding to all the partitions
in the Venn diagram (Fig. 4) is made available in Supple-
mentary File S3. The size of each such partition is illus-
trated in Fig. 8. We eliminated the 16,135 genes
corresponding to the stage string ‘0000" (|lfc| <2 in all
stages). To establish the significance of the remaining
genes, we applied the second contrast (Table 3) and
passed each gene through the four filter criteria. The grad-
ual reduction in candidate stage-specific genes as each cri-
terion was applied, is shown in Table 7. Only genes that
passed all criteria were retained as significant stage-
specific differentially expressed genes. We obtained 2
stage-I specific, 2 stage-II specific, 10 stage-III specific and
35 stage-IV specific genes (Table 8). Figure 9 shows the
volcano plot of these 49 stage-specific genes.

In view of the limited sample size for stage-IV and
consequent low power for rejecting false-positives, we
stipulated that each stage-IV specific gene would display
a smooth increasing or decreasing expression trend
through cancer progression culminating in maximum
differential expression in stage-IV. On this basis, we
pruned the 35 stage-IV specific genes to just the top ten
by significance in the linear modelling. This yielded a
total of 24 stage-specifc genes of interest.

A heatmap of the lfc expression of these stage-specific
genes across the stages was generated (Fig. 10a) and re-
vealed a systematic gradient in expression relative to
control, involving both downregulation and overexpres-
sion. The map was clustered on the basis of differential
expression (i.e, |lfc|) both across stages and across fea-
tures (i.e, genes) (Fig. 10b). It was seen that stage I genes
clustered together, stage II genes co-clustered with
NCAPG2 and DLG5 from stage-III, all the other stage-
III genes clustered together, while the stage-IV genes
formed two separate clusters. It was interesting to note
that GABRD emerged as an outgroup to all the clusters,
demonstrating its uniqueness.

To identify the biological processes specific to each
stage, we used the genes with maximal |lfc| in each stage
and performed a stagewise gene set enrichment analysis
on two ontologies, the GO and KEGG pathways. Salient
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Fig. 7 Principal components analysis of cancer vs control. a The first
two principal components of the top 100 genes from linear
modeling are plotted. It could be seen that control samples (red)
clustered independent of the cancer samples (colored by stage). b
The same analysis repeated with 100 random genes failed to effect
a clustering of the control samples relative to the cancer samples

results with respect to KEGG pathways are presented
below (Table 9) and the complete KEGG and GO results
are available in Supplementary Tables S1 and S2, re-
spectively. In stage I, we found the significant enrich-
ment of cell-cycle signaling pathways (Hippo, Wnt, HIF-
1), and viral infection-related pathways (cytokine-cyto-
kine receptor interaction, human papillomavirus infec-
tion, HTLV-I infection). In stage II, key signalling
pathways (Ras, MAPK) were aberrant. Two liver-specific
pathways, alcoholism and cytochrome P450 mediated
metabolism of xenobiotics were enriched, as well as
standard cancer pathways of bladder, brain, stomach,
and skin that might involve generic genetic alterations
necessary for cancer cell growth. In stage III, we noticed
the significant enrichment of Metabolic pathways that
summarize cellular metabolism. This might indicate the
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metabolic shift needed by the cancer to grow and invade
neighboring tissues. Other salient significantly enriched
pathways pertained to increased cell cycle progression,
DNA replication, chemical carcinogenesis, p53 signaling
pathway and cellular senescence, all hallmark processes
critical to cancer progression. Stage IV gene set was sig-
nificantly enriched for bile-related processes (bile secre-
tion, primary bile acid biosynthesis)) and ABC
transporters (possibly conferring a drug-resistant ad-
vanced cancer phenotype). A signaling pathway related
to diabetic complications was enriched as well, indicat-
ing the role of co-morbidities in driving liver cancer pro-
gression. The enrichment analysis of the top 100 genes
of the linear model is included in the Supplementary
Table S3.

Discussion

When differentially expressed genes are identified in a
two-class cancer vs control manner, the information about
stage-specificity of differential expression is lost. By apply-
ing our protocol, this information is recovered and avail-
able for dissection. The top linear model genes and all the
stage-specific differentially expressed genes (Table 10)
were analyzed with respect to the existing literature.

Top genes of linear models

Three C-type lectin domain proteins (CLEC4M,
CLEC1B, CLEC4G) were detected in the top ten genes
of linear model given by eqn. (1). Interestingly, this iden-
tical cluster of three genes was detected as the most sig-
nificantly downregulated liver cancer-specific genes in a
qPCR study of an independent cohort of 65 tumor-
normal matched cases [21]. On screening the top 200
linear model (1) genes against cancer driver genes in the
Cancer Gene Census, only four genes were found,
namely BUB1B, CDKN2A, EZH2, and RECQLA4. The top
200 genes of the linear model given by eqn. (2) over-
lapped with 111 genes of linear model (1) and yielded
six genes from the Cancer Gene Census, namely BUB1B,
EZH2, CDKN2C, CANT1, POLD1, and STIL. Both
CDKN2A and CDKN2C are cyclin-dependent kinase in-
hibitors. CDKN2A was a member of the gene signatures
for HCC prognosis independently proposed by Gillet et
al. [16] and Yang et al. [59]. It was remarkable that
GABRD stood out as the top gene in both the linear
models, and with a monotonic order of expression with
the cancer stage. GABRD is discussed further in the sec-
tion on Stage-1V specific genes. A gene with a monoton-
icity of expression may be increasingly upregulated as
the cancer initiates, progresses and metastasizes, signal-
ling its oncogenic progression; or conversely, it may be
increasingly downregulated with the cancer stages, sig-
nalling the loss of tumor suppressor activity. Screening
the top 200 genes with monotonic expression against
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Table 6 Top 20 genes with significant monotonic patterns of expression. Intercept, Coefficient and Adj. p-value are from the linear
model given by egn.(2). Status indicates monotonic upregulation (UP) or monotonic downregulation (DOWN). The genes are sorted

by significance (adj.p-value)

Gene Intercept Coefficient Adj.p-value status
GABRD -0.96 1.09 2.33E-023 UP
PIGU 3.80 0.43 2.45E-023 UP
NDUFA4L2 2.42 0.80 3.09E-023 UP
CRHBP 2.59 -1.52 3.14E-023 DOWN
C200rf20 3.26 0.39 4.84E-023 UpP
PPIA 7.00 0.34 1.65E-022 UpP
C12orf47 2.31 0.39 2.75E-022 UP
VIPR1 2.40 -1.12 4.60E-022 DOWN
FLVCR1 0.73 0.72 5.12E-022 UpP
TTC13 2.73 0.50 1.06E-021 UpP
NXPH4 -2.29 1.31 3.53E-021 UpP
CACYBP 4.87 0.42 4.65E-021 UpP
MFSD5 3.98 0.34 5.15E-021 UP
PIGC 4.08 0.40 5.90E-021 UP
ATP6AP1 6.40 0.33 6.52E-021 UP
DYNLL1 6.37 0.32 7.09E-021 UpP
CCT4 6.28 0.30 1.02E-020 UpP
SLC41A3 4.29 0.36 1.11E-020 UP
ZBTB9 2.31 0.38 1.17E-020 UP
NEU1 5.92 0.43 1.20E-020 UP

the Cancer Gene Census yielded a completely different
set of six genes: HSP90OAB1, ALDH2, ESR1, PPP2R1A,
HIST1H41, SEPT5. HSP90ABI, a heat shock protein and
molecular chaperone, was a key result of Xu et al. [56]
where it played a dual role, one in the set of 50 hub
genes correlated with Barcelona Clinic Liver Cancer
(BCLC) staging of HCC patients, and another, in the set
of 13 hub genes correlated with overall survival of HCC
patients. HSP9OAB1 might have a significant role in the
aetiology of HCC, given that its expression is known to
be upregulated by hepatitis B virus encoded X protein
[31]. The monotonic changes in HSP90AB1 might fur-
ther facilitate its known roles in angiogenesis [19]. The
top 200 genes with monotonic expression had 15 genes
in common with the top 200 of linear model (1) and 16

genes in common with the top 200 of linear model (2).
However, only six genes were common to the top 200 of
all three (namely GABRD, PIGU, NDUFA4L2, CRHBP,
FLVCRI1, TTC13; Fig. 11). NDUFA4L2 has been identi-
fied as a target gene of HIF-1 (hypoxia-inducible tran-
scription factor-1), and a key factor driving the
metabolic  reprogramming in  hypoxic  micro-
environments [46]. Our findings established that not
only was NDUFA4L2 significantly overexpressed in
HCC (as noted in [27]), but its overexpression follows a
significant monotonic pattern across cancer stages, a
much stronger statement that would support the role of
NDUFA4L2 in driving HCC progression. Similarly, the
expression of CRHBP has been recently shown to be
negatively associated with the tumor size in HCC [55].
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Fig. 8 Venn illustration of the size of each 4-bit string. The numbers of genes with each pattern of differential expression are shown

Our study provides a more quantitative account of the
significant monotonic downregulation of CRHBP with
the HCC stage. Two proteins of the glycosylphosphati-
dylinositol (GPI) anchoring system, PIGU and PIGC,
were top genes with respect to significant monotonic ex-
pression (Table 6); of these, PIGU is a known bladder
cancer oncogene [18].

Stage-l specific DEGs (Fig. 12)

CA9 is a member of carbonic anhydrases, which are
a large family of zinc metalloenzymes that catalyse
the reversible hydration of carbon dioxide. Its ex-
pression in clear cell Renal carcinoma, but not in

functional kidney cells has gained attention for its
use as a pre-operative biomarker [30]. The WNT7B
protein is part of the Wnt family, a family of se-
creted signalling proteins. Elevated WNT7B in pan-
creatic adenocarcinoma has been found to mediate
anchorage independent growth [4]. Surprisingly, both
CA9 and WNT7B are downregulated in HCC, most
so in stage-I, contrary to their role in other cancers.
A concrete interpretation of the role of these genes
in HCC awaits appropriately designed experimental
studies.

It is pertinent to ask the following question here:
which genes are essential for the initiation of HCC?

Table 7 Number of genes in each step of the significance analysis. Differential expression is defined with respect to a threshold
llogfFC| = 2. Significance analysis proceeds first by significance (i.e, p-value) with respect to control, followed by p-value in each
possible pairwise contrast between the different stages. Exclusive DE genes refer to genes differentially expressed in only one of the
four stages (corresponding to the bit strings '1000', '0100', '0010" and '0001")

Filtering STAGE 1 STAGE 2 STAGE 3 STAGE 4 Total
criteria
Exclusive DE 40 75 223 481 819
genes
DE genes 122 407 844 1082 2455
Adj.p-value 120 406 839 293 1658
w.r.to control
p-value 1 x 2 26 187 - - 213
p-value 1 x 3 19 - 670 - 689
p-value 1 x 4 2 - - 88 90
p-value 2 x 3 - 13 70 - 83
p-value 2 x 4 - 2 - 46 48
p-value 3 x 4 - - 10 35 45
Final genes 2 2 10 35 45
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Table 8 Final set of highlighted genes in each stage. The genes in each stage are ordered by increasing adjusted p-values of the
linear modelling analysis. Stage-IV specific genes with monotonic changes of expression correlating with disease progression are

highlighted

STAGE 1 STAGE 2

STAGE 3 STAGE 4

CA9 FAM186A
WNT7B APOBEC3B

C120rf48 GABRD
C150rf42 PECAM1
ORC6L LOC25845
ECT2 CENDI1
WDHD1 GBX2
DLG5 PGAM?2
XRCC2 NRI1I2
NCAPG2 GDF5
GNMT CXCR2P1
PRR11 GPR1
MUSTN1
EHD?2
LOC143188
HIST3H2BB
CA12
CDX1
MYO16
CPE
LPPR3
ZMYNDI12
KCNF1
GPR126
MCCD1
GABRB?2
SNCB
TRIMS50
MT3
KCNQ2
DUXA
C14orf72
ECEL
FOXE
MYH13
ARHGAP42
BMP7

Clearly these genes would be differentially expressed in
stage I relative to control. All significantly differentially
expressed genes with maximal |lfc| in stage-I would be
the best candidates for genes involved in the initiation of
HCC. These 122 genes are provided in the Supplemen-
tary File S3.

Stage-ll specific DEGs (Fig. 13)

APOBEC3B, a DNA cytidine deaminase, is a known can-
cer driver gene in the Cancer Gene Census, but there
are no literature reports of its stage-specificity in any
cancer. It is known to account for half the mutational
load in breast carcinoma, and its target sequence context
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Table 9 Gene set enrichment analysis. Stage-specific gene sets (all the differentially expressed genes, corresponding to row 'DE
genes' in Table 6) were analyzed for significant enrichment with respect to KEGG Pathways. Significance was based on p-value <0.05

Stage Enriched pathways p-value
Stage 1 Hippo signalling pathway 3.276e-03
Cytokine-cytokine receptor interaction 1.218e-02

Whnt signalling pathway 1.528e-02

Human papillomavirus infection 1.763e-02

HTLV-I infection 2.552e-02

HIF-1 signalling pathway 2.787e-02

Stage 2 Bladder cancer 4.643e-03
Ras signalling pathway 5.264e-03

Pathways in cancer 6.211e-03

Glioma 6.457e-03

Alcoholism 1.027e-02

Gastric cancer 1.210e-02

MAPK signalling pathway 2.526e-02

Melanoma 3.183e-02

Metabolism of xenobiotics by cytochrome P450 3.472e-02

Stage 3 Cell cycle 2.881e-18
DNA replication 6.526e-11

Chemical carcinogenesis 1.233e-06

Metabolic pathways 1.204e-03

Cellular senescence 7.203e-03

p53 signalling pathway 7.275e-03

Stage 4 Bile secretion 2.479e-06
ABC transporters 7.146e-06

Primary bile acid biosynthesis 2.357e-03

AGE-RAGE signalling pathway in diabetic complications | 3.024e-02

was found to be highly mutated in Bladder, lung, cervix,
neck, and head cancers as well [7]. Further studies have
attributed specific hypermutation signatures across all
cancers to the APOBEC family, including APOBEC3B
[1]. Here APOBECS3B is upregulated, increasing its cap-
acity to inflict the hypermutator phenotype, and
highlighting an intriguing stage-specificity in its action.
FAM186A polymorphisms have been reported in GWAS
and SNP studies on colorectal cancer patients and shown
to have a significant odds ratio in risk heritability [48].

FAM163A was a component of the 8-gene signature used
for the risk stratification of HCC patients [39].

Stage-lll specific DEGs (Fig. 14)

C120rf48, also known as PARI, participates in the hom-
ologous recombination pathway of DNA repair, and its
overexpression has been reported in pancreatic can-
cer[35]. Further PARI was recently identified as a tran-
scriptional target of FOXM1 [62], which is a well-
validated upregulated gene in HCC [21]. DLGS5 is a cell
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Table 10 Stagewise effect sizes and significance of stage specific genes. The stagewise log foldchanges of differential expression of
each candidate stage-specific gene in tumor samples relative to normal control samples are shown, along with significance values,
and its inferred regulation status. In stage-IV, only the top 10 genes are shown. The stage-specificity of the genes are emphasized

GENE Bo B1 B2 Bs Bs | Adj.p.value | Adj.p.value | Regulation
(from (from linear status
contrasts model) (Up/Down)
against
control)
STAGE 1
CA9 01 | -251|-09 | 02 | 1.3 3.66e-05 3.44e-09 Down
WNT7B -18 | -23|-14 | -11| 03 5.45e-07 2.07e-06 Down
STAGE 2
APOBEC3B | -09 | 20 | 26 | 1.7 | -0.6 1.12e-10 1.17e-09 Up
FAM186A | -42 | 1.7 | 22 | 1.8 | 04 2.62e-18 1.50e-12 Up
STAGE 3
NCAPG2 1.5 | 15| 1.8 | 21 | 04 6.03e-25 1.76e-24 Up
DLG5 23 |1 1.8 | 21 | 25 | 11 1.23e-29 2.90e-29 Up
GNMT 69 | -16 | -2.6 | -3.6 | -1.3 | 9.69e-16 2.40e-15 Down
PRR11 38| 21 | 27 | 34 | 10 1.74e-14 4.65e-13 Up
WDHD1 -14 | 23 | 27 | 3.2 | 1.8 2.25e-31 8.87e-31 Up
XRCC2 38129 | 32 | 38 | 19 2.29e-28 7.06e-28 Up
C120rf48 -19| 28 | 32 | 3.7 | 24 5.88e-43 1.19e-43 Up
C150rf42 35| 3.7 | 42 | 47 | 3.2 1.52e-41 1.17e-42 Up
ECT2 02 | 25 | 3.0 | 35 | 22 2.62e-35 4.29e-35 Up
ORC6L 24| 31 | 35 | 40 | 26 4.19e-41 5.55e-42 Up
STAGE 4
GABRD -38 | 51 | 51 | 52 | 65 3.15e-17 5.53e-78 Up
PECAM1 38 | 1.3 | 1.2 | 1.2 | 21 4.69e-07 7.64e-24 Up
LOC25845 | 2.0 | 1.3 | 14 | 1.6 | 25 4.47e-06 1.29e-20 Up
CEND1 50| 22 |22 | 24| 41 4.42e-06 1.08e-17 Up
GBX2 63| 1.0 | 1.5 | 1.3 | 2.8 1.20e-05 2.59%e-13 Up
PGAM?2 -1.7 | 19 | 24 | 25 | 5.0 5.73e-05 1.72e-11 Up
NR1I2 56 | -1.5 | -23 | -29 | -5.8 | 8.41e-05 8.06e-11 Down
GDF5 61| 1.3 | 1.3 | 1.2 | 29 2.73e-05 8.22e-11 Up
CXCR2P1 2.0 -2 -2 | 22 | -4.0 | 4.52e-04 1.77e-10 Down
GPR1 55| 1.3 | 21 | 1.8 | 39 1.42e-04 4.33e-10 Up
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polarity gene and its downregulation has been impli-
cated in the malignancy of breast [32], prostate [49] and
bladder cancers [65]. It has been recently found that
lower DLG5 expression is correlated with advanced
stages of HCC and essential for invadopodium forma-
tion, an event critical to cancer metastasis [26]. It is sur-
prising that our study has identified a stage-III specific

emerging to lend support to our finding that DLG5
might be tumor-promoting. In a very recent review,
Saito et al. [43] reinterpreted published results on cell
polarity and cancer, and advanced an alternative per-
spective on the role of polarity regulators in cancer biol-
ogy. They argued that both cellular and subcellular
polarity would be regulated by DLG5 and related polar-

upregulation in DLG5. Interestingly, evidence is ity proteins. Subcellular polarity might improve the
CA9 WNT7B
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cellular fitness for proliferation and stemness, thereby
causing tumor promotion. Hence cell polarity regulation
is anti-tumorigenic and subcellular polarity regulation is
pro-tumorigenic, and our analysis has uncovered the pro-
tumorigenic upregulated activity of DLG5. ECT2 encodes
a guanine nucleotide exchange factor that remains ele-
vated during the G2 and M phase in cellular mitosis.
ECT2 is found to be upregulated in lung adenocarcinoma
and lung squamous cell carcinoma [66], as well as in inva-
sive breast cancer [52]. NCAPG2 is a component of the
condensing II complex and involved in chromosome seg-
regation during mitosis. NCAPG2 level were found to be
increased in non-small cell lung cancer, and its over-
expression was found to be correlated with lymph node
metastasis, thus enabling the use of NCAPG2 as a poor
prognostic biomarker in lung adenocarcinoma [61].
GNMT is a methyltransferase that catalyses conversion of
S-adenosine methionine to s-adenosyl cysteine. In the ab-
sence of GNMT, S-adenosine methionine causes hyper-
methylation of DNA, which represses GNMT levels and is
found in HCC samples [24]. This is an epigenetic mechan-
ism for loss of function of tumor suppressors and our
study here confirmed the downregulation of GNMT ex-
pression. PRR11 is found to be over-expressed in lungs,
and its silencing using siRNA resulted in cell cycle arrest
and apoptotic cell death, followed by decreased cell
growth and viability [64]. A similar knock out experiment
of PRR11 in hilar cholangiocarcinoma cell lines resulted in
decreased cellular proliferation, migration, and tumor
growth [9]. WDHD1 is a key post-transcriptional regu-
lator of centromeric, and consequently genomic, in-
tegrity [23] and its overexpression has been identified
as biomarker of acute myeloid leukemia [53], and
lung and esophageal carcinomas [44]. Cl50rf42 has
been implicated in nasopharyngeal carcinoma [3].
ORCS6L overexpression has been identified as a prog-
nostic biomarker of colorectal cancer possibly by

enhancing chromosomal instability [54]. XRCC2 was
found to increase locally advanced rectal cancer
radioresistance by repairing DNA double-strand
breaks and preventing cancer cell apoptosis [40].
XRCC2 was also highlighted in the gene signature for
HCC prognosis advanced by Gillet et al. [16].

Stage-IV specific DEGs (Fig. 15)

GABRD, which was the top gene in the linear models as
well, encodes for the delta subunit of the gamma-amino
butyric acid receptor. The GABA receptor family was
found to be frequently downregulated in cancers, except
for GABRD, which was found to be up-regulated. Gross
et al. [17] proposed that the GABA receptor gene family
might play a role in the proliferation independent differ-
entiation of cancer cells. GBX2 is part of the GBX gene
family, which are homeobox containing DNA binding
transcription factors. GBX2 is overexpressed in prostate
cancer and studies show that expression of GBX2 is re-
quired for malignant growth of human prostate cancer
[15]. PECAMI1 overexpression has been linked to peri-
toneal recurrence of stage II/III gastric cancer patients
[47]. CEND1 has been identified as a cell-cycle protein
[50]. PGAM2 is a glycolytic enzyme whose upregulation
is essential for tumor cell proliferation [57]. NR1I2
downregulation has been used in constructing a prog-
nostic 9-genes expression signature of gastric cancer
[51]. GDF5 has been shown to be a downstream target
of the TGF-beta signaling pathway [33], stimulating
angiogenesis required for the growth and spread of the
cancer. GPR1 has been reported to be involved in pro-
moting cutaneous squamous cell carcinoma migration
[12]. Two other stage-IV specific genes, namely the
downregulated CXCR2P1, which is a C-X-C motif
chemokine receptor 2 pseudogene 1, and LOC25845,
are minimally documented in the literature in the
context of HCC, other cancers or any other
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condition. It is worth mentioning however that
CXCR2, a member of the GPCR protein family bind-
ing the interleukin IL8, has been reported as an ef-
fective non-invasive blood based biomarker for HCC
[45]. It is notable that ARHGAP42, a Rho GTPase
activating protein, was another key result of Xu et
al. [56], finding a place both in their set of 50 hub
genes correlated with the BCLC staging of HCC patients,
and in the set of 13 hub genes correlated with overall sur-
vival of HCC patients.Most of the stage-IV specific genes
show contra-regulation (i.e, no clear trend) across cancer
stages, and only 15 of the 35 genes revealed a monotonic

pattern of expression (highlighted in Table 8). The other 20
genes could be unique to the hallmarks of stage-IV cancer,
e.g, processes related to lymph node involvement and/or
metastasis.

Conclusion

We have developed an original protocol for the stage-
wise dissection of the HCC transcriptome. We were able
to successfully fit a linear model across cancer stages
and detected genes with a strong linear expression trend
in the cancer phenotype. These genes were found to ef-
fectively separate the control and cancer samples. We
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were able to assign 2455 differentially expressed genes
into one of four stages and visualized their stage specific
expression using boxplots. Using a multi-layered ap-
proach, we were able to assess the significance of
each stage-specific DEG and narrowed down to a
handful of candidate significant stage-specific DEG’s.
Our analysis yielded two stage-I specific genes (CA9,
WNT7B), two stage-II specific genes (APOBEC3B,
FAM186A), ten stage-III specific genes (including DLG5,
NCAPG2, GNMT and XRCC2) and 35 stage-IV specific
genes (including GABRD and CXCR2P1). Though most
of these genes constituted novel findings in the context of

HCC, a comprehensive literature search indicated connec-
tions with other cancer conditions. The analysis of mono-
tonicity of expression has uncovered two genes with
documented HCC connection, namely NDUFA4L2 and
CRHBP. Correlation of our analysis with gene signatures
based on the BCLC staging system revealed two common
genes, namely HSP90AB1 and ARHGAP42. Our study
might deepen our understanding of the mechanistic basis
of HCC progression, and lay the foundation for the devel-
opment of HCC diagnosis and treatment strategies.
Translational research could transform our results into a
panel of biomarkers for early clinical decision-making and
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rational drug development. It is straightforward to extend
our computational methodology to the stage-based ana-
lysis of other cancers to obtain a fuller view of disease ini-
tiation, progression, and metastasis.
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