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Abstract

Background: Sentinel lymph node biopsy (SLNB) is standard staging procedure for nodal status in breast cancer,
but lacks therapeutic benefit for patients with benign sentinel nodes. For patients with positive sentinel nodes,
individualized surgical strategies are applied depending on the extent of nodal involvement. Preoperative
prediction of nodal status is thus important for individualizing axillary surgery avoiding unnecessary surgery. We
aimed to predict nodal status in clinically node-negative breast cancer and identify candidates for SLNB omission
by including patient-related and pathological characteristics into artificial neural network (ANN) models.

Methods: Patients with primary breast cancer were consecutively included between January 1, 2009 and December
31,2012 in a prospectively maintained pathology database. Clinical- and radiological data were extracted from
patient’s files and only clinically node-negative patients constituted the final study cohort. ANN-based models for
nodal prediction were constructed including 15 risk variables for nodal status. Area under the receiver operating
characteristic curve (AUC) and Hosmer-Lemeshow goodness-of-fit test (HL) were used to assess performance and
calibration of three predictive ANN-based models for no lymph node metastasis (NO), metastases in 1-3 lymph
nodes (N1) and metastases in =4 lymph nodes (N2). Linear regression models for nodal prediction were calculated
for comparison.

Results: Eight hundred patients (NO, n =514; N1, n = 232; N2, n = 54) were included. Internally validated AUCs for
NO versus N+ was 0.740 (95% Cl=0.723-0.758); median HL was 9.869 (P =0.274), for N1 versus NO, 0.705 (95% Cl =
0.686-0.724; median HL: 7.421; P =0.492) and for N2 versus NO and N1, 0.747 (95% Cl = 0.728-0.765; median HL:
9.220; P =0.324). Tumor size and vascular invasion were top-ranked predictors of all three end-points, followed by
estrogen receptor status and lobular cancer for prediction of N2. For each end-point, ANN models showed better
discriminatory performance than multivariable logistic regression models. Accepting a false negative rate (FNR) of
10% for predicting NO by the ANN model, SLNB could have been abstained in 27.25% of patients with clinically
node-negative axilla.

Conclusions: In this retrospective study, ANN showed promising result as decision-supporting tools for estimating
nodal disease. If prospectively validated, patients least likely to have nodal metastasis could be spared SLNB using
predictive models.

Trial registration: Registered in the ISRCTN registry with study ID ISRCTN14341750.
Date of registration 23/11/2018. Retrospectively registered.
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Background

Sentinel lymph node biopsy (SLNB) is the standard axil-
lary staging procedure for patients with clinically node-
negative primary breast cancer. In the majority of pa-
tients, SLNB will prove negative and no nodal metastasis
is diagnosed [1]. Moreover, in approximately half of the
SLNB-positive cases, no further metastatic lymph nodes
will be harvested during routine completion axillary
lymph node dissection (ALND) [2]. While a prospective
randomized trial [3] questioned the value of axillary sur-
gical staging in selected low-risk patients, the American
College of Surgeons Oncology Group (ACOSOG) Z0011
trial suggested that patients with 1-2 sentinel node me-
tastasis were eligible for minimalistic axillary surgical in-
terventions without completion ALND, and reported no
negative consequences for survival or locoregional recur-
rence after 10 years of follow-up [4, 5]. However, patients
with heavy-burden axillary disease (stage N2) could
benefit from preoperative selection for neoadjuvant ther-
apy or direct ALND. An improvement in breast cancer
management has been to seek an individualized surgical
approach to the axilla, and an accurate prediction of the
axillary status preoperatively would facilitate individual-
ized surgical decisions.

However, validation of prediction models for nodal
status have shown diverse accuracies in estimating nodal
involvement [6, 7] and mirror the complexity of factors
related to axillary metastasis, and the paucity of models
to analyze nonlinear dynamics between relevant vari-
ables. Artificial neural networks (ANNSs) are nonlinear
machine learning methods proposed as supplements to
standard statistical models for predicting multifaceted
biological events [8, 9], and help in the exploration of
underlying nonlinear interactions of interconnected pre-
dictors [10]. ANNs have gained utility in various clinical
settings, and are being used as diagnostic and prognostic
tools in cancer [11, 12], and for prediction of surgical
outcomes in various disease conditions [13, 14].

The primary aim of this study was to utilize commonly
available patient-related and clinicopathological charac-
teristics in ANN modeling to predict nodal axillary sta-
tus. The end-points were chosen to reflect the extent of
nodal metastatic burden, with an aim to designate no
lymph node metastasis (NO), metastases in 1-3 lymph
nodes (N1) and metastases in >4 lymph nodes (N2), re-
spectively. A secondary aim was to assess possible clin-
ical benefit in detecting disease-free axilla (NO). Patient
stratification preoperatively using the ANN model apply-
ing nodal predictive variables would help identify pa-
tients least likely to benefit from SLNB, consequently
reducing the rate of unbeneficial surgery. In the clinical
setting, the models may be useful tools for risk-benefit
analysis of axillary treatment and contribute to improved
patient stratification for surgical axillary interventions.
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Methods

Patient selection

Patients (1 = 995) were included in a prospectively main-
tained pathological database and the following eligibility
criteria were applied: consecutive patients diagnosed
with primary breast cancer between January 2009 and
December 2012 at the Skane University Hospital (Lund,
Sweden). Exclusion criteria were: male sex, previous ipsi-
lateral breast or axillary surgery, previous neoadjuvant
therapy, palpable axillary lymphadenopathy (palpable
adenopathy or matted lymph nodes at the time of diag-
noses) and omission of standard axillary staging proced-
ure by SLNB or ALND (Fig. 1). Presence of micro (> 0.2
mm and/or more than 200 cells, but none > 2.0 mm)- or
macrometastases (>2.0 mm) on SLNB indicated axillary
node-positivity. Patients gave verbal informed consent to
participate at time of diagnosis and the ethics committee
at Lund University approved this procedure (LU 2013/
340). Patients were informed that they had the oppor-
tunity to opt-out if they were not willing to participate
in the study.

Data collection

Data regarding previous breast or axillary surgery and
mode of detection (mammography screening or symp-
tomatic presentation) were obtained from The Swedish
National Quality Registry for Breast Cancer and from
the public mammography screening program records.
Medical records were reviewed for age, menopausal sta-
tus, clinical axillary status, and body mass index (BMI)
data. A breast pathologist extracted the following histo-
pathological variables: synchronous bilateral malignancy
status, tumor localization in the breast (centrally or in
quadrants, overlapping lesions were allocated equally
into adjacent quadrants for analysis), multifocality (two
or more tumor foci separated by benign breast tissue;
multicentricity was not a separate entity), tumor size,
histological type (ductal carcinoma of no special type, in-
vasive lobular carcinoma, or other invasive carcinoma),
histological grade, biomarker status (estrogen receptor
(ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2)), Ki-67 positivity, and
lymphovascular invasion (LVI) status.

Acquisition of the ANN classifiers

Three ANN models were defined, each containing
multi-layer perceptrons (MLPs) with three layers: an in-
put layer corresponding to the number of risk variables
(patient-related and clincopathological), one hidden
layer, and a single node output layer. The chosen output
reflected the extent of metastatic involvement: disease-
free axilla (NO), N1 (1-3 metastatic nodes versus NO),
and N2 (N >4 metastatic nodes versus NO and N1).
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Fig. 1 Study population. The flow chart shows the original patient population, excluded patients, and details of the surgical axillary nodal staging
procedures. Abbreviations: SLNB, Sentinel lymph node biopsy; ALND, Axillary lymph node dissection. * Palpable adenopathy or matted lymph
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An ensemble technique was applied; several ANNs
were averaged into a single prediction model for each
classification output. Each individual ANN in the en-
semble was trained by standard back-propagation
techniques using a cross-entropy error function [8]
to learn the association to a given nodal status out-
put. To avoid overfitting, the dropout technique [15,
16] was employed on the input layer. Internal model
validation strategy was performed by 4-fold cross-
validation, which was repeated five times. Missing
data were handled by multiple random imputations
for each of the five repetitions. This model validation
strategy generated (5x4) 20 derivation sets and 20
test sets. For each of the derivation sets, a model se-
lection procedure was carried out independently of
the corresponding test set. The model selection strat-
egy was based on a 5-fold cross-validation, which
was repeated seven times. Model selection identified
the best set of variables (dropout probability and
number of hidden nodes) using a grid search. The
model validation and selection procedures (Fig. 2)
minimized information leakage as each test set did
not influence the model selection in any way.

In total, 20 ANN ensemble models were trained and
evaluated for each of the nodal status outputs. An ANN
ensemble consisted of 15 individually trained MLPs, and
the average of these networks was used as the ensemble
output. Each of the MLPs was allowed to vary in size
during model selection.

Predictive performance and statistical analysis

The performance of the ANN-based models to classify
nodal status outputs was assessed by area under the re-
ceiver operating characteristic curve (AUC). Discrimin-
atory performances were compared with multivariable
logistic regression, using identical model test sets and
risk variables, where differences were evaluated by com-
paring mean validation AUC values (Wilcoxon signed-
rank test). Logistic regression analysis was performed
and odds ratios (mean odds ratios calculated as per
Lippman et al) [17], were used to quantify the associ-
ation of a risk variable with the outcome. The overall
importance of selected risk variables in each classifica-
tion model was assessed by means of a permutation
technique [18]. In short, a predictor variable was ran-
domized across the evaluation cohort and the effect of
this randomization on the estimated performance was
measured. The predictor associated with the largest de-
crease in performance was assigned an importance value
of 1. All other variables were assigned a position in this
list based on the associated decrease in performance
upon randomization.

Negative predictive value (NPV) and false negative rate
(FNR) are two separate but related principles to assess
the usefulness of a predictive tool. While the NPV indi-
cates the probability that a patient with predicted
disease-free axilla will be truly free of axillary disease,
the FNR depicts the deficiency of the model in predict-
ing nodal spread as a ratio relative to all pathology-
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Fig. 2 Model selection and internal validation strategies. Internal validation was performed by 4-fold cross-validation, which was repeated five
times. Each round of cross-validation involved partitioning the data into a test set and a derivation set. The model selection was carried out for
each of the derivation sets, independent of the corresponding test set, and was aimed to minimize information leakage. Model selection strategy
was based on a 5-fold cross-validation, which was repeated seven times. Abbreviations: D, Different parts of the derivation set in each round of
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defined nodal metastases [19]. A cut-off for classification
of nodal-negativity was set based on maximized NPV in
the ANN model for NO. As previously described [18],
this threshold was aimed at identifying individuals with
a very low probability of axillary disease. True positive
(TP), true negative (TN), false positive (FP), and false
negative (FN) results were assessed to evaluate the fol-
lowing: SLNB reduction rate=(TN + FN)/(TN + FN +
TP + FP), and FNR = FN/EN + TP. Alternative cut-offs at
ENR 5 and 10% were also applied and corresponding
possible SLNB reduction rates were calculated.

The distribution of clinicopathological characteristics
across the nodal classification outputs were evaluated by
the Jonckheere-Terpstra test, Chi Square test for trend,
Pearson Chi Square test, or the Fisher’s exact test, as ap-
propriate. Hosmer-Lemeshow goodness-of-fit (HL) statis-
tic was used to assess calibration. All analyses were
performed with IBM SPSS Statistics for Windows (version
24.0) and with custom-made software written in C (gcc
version 4.8.5), and Perl (version 5.18.2).

The developing of the predictive models and the
reporting of the findings were in accordance with an
EQUATOR Guideline for reporting machine learning
predictive models [20], which supported the STROBE
statement for the reporting of observational studies [21].

Results

Study population

Figure 1 displays the axillary surgical procedures per-
formed for the overall study cohort (n = 800). The nodal

status distribution was as follows: NO: 514 (64%); NI1:
232 (29%); and N2: 54 (7%). Clinical and histopatho-
logical characteristics are summarized in Table 1.

Predictive Clinicopathological variables

Table 1 displays the 15 potential clinicopathological risk
variables for designation of nodal status (as NO, N1, or
N2). Although the discriminatory effect of each variable
cannot be expressed in terms of straightforward coeffi-
cients, mean odds ratios and sensitivity analysis can fa-
cilitate the interpretation of the relationship between an
independent variable and the output. Table 2 displays se-
lected variables, ranks, and mean odds ratios used for
classification of each nodal status output. The ANN
structure for predicting disease-free axilla status was
characterized by a complex integration of predictors as
input variables. The top ten variables were tumor size,
LVI, multifocality, ER status, histological type, PR status,
mode of detection, age, tumor localization in the breast,
and Ki-67 positivity. To discriminate low-burden disease
(N1), the same top variables were selected, with two ex-
ceptions: omission of mode of detection, and inclusion
of menopausal status. While tumor size and LVI
remained the top two variables most strongly associated
with any nodal status output, other variables varied in
rank of association with NO, N1, and N2 disease. Only
six input variables were found to be predictive in the
ANN structure for heavy-burden disease (N2): tumor
size, LVI, ER status, histological type, and multifocality.
A simplified illustration of the importance and relations
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Table 1 Patient and tumor characteristics

All (n =800) NO (n =514) N1 (n =232) N2 (n =54) p value
Age?, years 64 (24-92) 64 (33-92) 63 (24-92) 62 (26-85) 0.039°
Missing 0 0 0 0
BMI®, kg/m? 25 (16-49) 26 (16-44) 26 (16-46) 26 (20-49) 0.569°
Missing 41 24 13 4
Menopausal status 0011¢
Premenopausal 130 (17) 70 (14) 48 (22) 12 (24)
Postmenopausal 628 (83) 414 (86) 175 (78) 39 (76)
Missing 42 30 9 3
Mode of detection <0.001°
Mammographic screening 457 (57) 321 (63) 113 (49) 23 (43)
Symptomatic presentation 343 (43) 193 (38) 119 (51) 31 (57)
Missing 0 0 0 0
Bilateral cancer 0.255¢
Absent 770 (96) 499 (97) 222 (96) 49 (91)
Present 30 (4) 15 (3) 10 (4) 509
Missing 0 0 0 0
Multifocality <0.001¢
Absent 610 (77) 418 (82) 161 (71) 31.(61)
Present 179 (23) 92 (18) 67 (29) 20 (39)
Missing 11 4 4 3
Tumor site, quadrants of breast 0.170¢
Central C501 22 (3) 14 (3) 6(3) 24
Upper inner C502 108 (14) 78 (15) 25(11) 50)
Lower inner C503 46 (6) 32 (6) 12 (5) 2 (4)
Upper outer C504 266 (33) 165 (32) 86 (37) 15 (28)
Lower outer C505 84 (11) 43 (8) 31 (13) 10 (19)
Overlapping lesions: 3, 6, 9, 12 o'clock 274 (34) 182 (35) 72 (31) 20 (37)
Missing 0 0 0 0
Tumor size®, mm 15 (0.5-90) 13 (0.5-70) 17 (0.9-90) 23 (6-70) <0001°
Missing 1 0 1 0
Histological type 800 514 232 54 0010 ¢
Ductal 640 (80) 408 (79) 195 (84) 37 (69)
Lobular 101 (13) 60 (12) 27 (12) 14 (26)
Other 59 (7) 46 (9) 10 (4) 300
Missing 0 0 0 0
Histological grade 0.003¢
I 197 (25) 142 (28) 48 (21) 7 (13)
Il 366 (46) 231 (46) 106 (46) 29 (54)
M1l 229 (29) 134 (26) 77 (33) 18 (33)
Missing 8 7 1 0
Vascular invasion <0.001¢
Absent 545 (85) 401 (94) 124 (72) 20 (37)
Present 94 (15) 28 (7) 48 (28) 18 (33)

Missing 161 85 60 16
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All (n =800) NO (n =514) N1 (n =232) N2 (n =54) p value
ER status 0.020 ¢
Positive 729 (91) 459 (90) 218 (94) 52 (96)
Negative 69 (9) 53 (10) 14 (6) 2 (4)
Missing 2 2 0 0
PR status 0.075¢
Positive 673 (84) 421 (82) 206 (89) 46 (85)
Negative 125 (16) 91 (18) 26 (11) 8 (15)
Missing 2 2 0 0
HER2 status 0.208°
Positive 86 (12) 51 (1) 27 (13) 15 (16)
Negative 647 (88) 422 (89) 184 (87) 41 (84)
Missing 67 4 21 5
Ki-67 2, % 15 (0-94) 14 (0-94) 17 (1-81) 20 (3-76) 0.001°
Missing 48 29 16 3

p values refer to the comparisons between NO, N1 and N2
Column percentages are given for categorical variables unless indicated otherwise

Percentage have been rounded and may therefore not total 100

Abbreviations: NO Lymph node-negative, N7 Lymph node metastasis involving 1-3 nodes, N2 Lymph node metastasis involving at least 4 nodes, BMI Body mass
index, ER Estrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth factor receptor

®median (range)
®Jonckheere-Terpstra Test
X2 test for trend
dpearson 2 test

SFisher’s exact test

of the different input variables as regression trees was
constructed, for each of the models, and depicted in
Fig. 3. Each tree was trained to predict the output (prob-
abilities) of the corresponding ANN model. Sensitivity
analysis of the assigned importance of the top rank pre-
dictive variables linearly scaled into a summation of 1
for the three models are given in Additional file 1.

Discriminatory ability and calibration

Mean training AUC from the derivation sets was 0.735
for disease-free axilla. The corresponding internally vali-
dated AUC for NO was 0.740 (95% confidence interval
(CI) =0.723-0.758) with an observed median HL statis-
tic of 9.869 (P =0.274). The ANN model to distinguish
low-burden disease (N1 versus NO) showed an AUC of
0.706 in the training set, and an internally validated
AUC of 0.705 (95% CI =0.686—0.724). For high-burden
disease (N2 versus NO and N1), the training AUC was
0.735, while the internally validated AUC was 0.747
(95% CI =0.728-0.765), with the corresponding median
HL statistic values of 7.421 (P =0.492) and 9.220 (P =
0.324), respectively. This indicated that the number of
NO, N1, and N2 cases observed were not significantly
different from those predicted by the models, and that
the overall model calibration was good.

Performances in comparison to linear multivariable
logistic regression

The discriminative abilities of internally validated
ANN models and cross-validated multivariable logistic
regression models (MLR) were compared. To distin-
guish NO, MLR models achieved a mean AUC of
0.727 (95% CI=0.708-0.746). In 17 out of 20 test
sets for NO, the AUC values from ANN models were
greater than those obtained from the corresponding
MLR models (P <0.001). For N2 classification, MLR
models obtained a mean AUC of 0.723 (95% CI=
0.694—0.750). Here, AUC values from the ANN
models were greater than those obtained from the
matching MLR models in 16 out of 20 test sets (P =
0.003). Likewise, the ANN models for N1 classifica-
tion achieved greater discriminatory ability than did
the corresponding MLR models in the majority (14
out of 20) of test sets (P =0.040). However, an
equivalent mean AUC of 0.700 (95% CI=0.678-
0.720) was obtained from the MLR models. Compar-
ing ANN and MLR models based on the HL
statistics, the ANN models were significantly more
calibrated for N1 and N2 models (P =0.003 and P =
0.006, respectively). However, for the NO model the
difference, in favor of the ANN model, was not sig-
nificant (P =0.09).
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Table 2 Top rank predictive clinicopathological variables in the ANN models for each of the axillary nodal status outcome

Predictors Rank® OR®
NO vs. N+ (n =800)
Tumor size, per mm 100.00 0.950 (0.917-0.984)
Vascular invasion, present vs. absent 40.94 0409 (0.201-0.681)
Multifocality, present vs. absent 1461 0.670 (0.452-0.910)
ER status, positive vs. negative 1049 0618 (0.312-1.110)
Histological type 998
Ductal 1 [reference]
Lobular 1.092 (0.692-1.688)
Other 2033 (1.112-3.751)
PR status, positive vs. negative 9.60 0.678 (0.443-0.962)
Mode of detection, mammographic screening vs. symptomatic presentation 797 1.310 (0.987-1.705)
Age, per year 6.76 1.010 (0.997-1.024)
Tumor localization in the breast 647
Upper outer quadrant 1 [reference]

Central
Upper inner quadrant
Lower inner quadrant
Lower outer quadrant
Ki67, percentage
N1 vs. NO (n =746)
Tumor size, per mm
Vascular invasion, present vs. absent
Multifocality, present vs. absent
PR status, positive vs. negative
Histological type
Ductal
Lobular
Other
ER status, positive vs. negative
Age, per year
Tumor localization in the breast
Upper outer quadrant
Central
Upper inner quadrant
Lower inner quadrant
Lower outer quadrant
Ki67, percentage
Menopausal status, postmenopause vs. premenopause
N2 vs. NO and N1 (n =800)
Tumor size, per mm
Vascular invasion, present vs. absent
ER status, positive vs. negative
Histological type
Ductal

1.137 (0.592-2.099)
1.323 (0.922-1.889)
1.112 (0.500-2.034)
0.680 (0.383-1.039)
507 0.996 (0.981-1.009)

100.0 1.050 (1.016-1.087)
46.15 2492 (1.440-4.376)
1647 1.527 (1.101-2.180)
14.36 1.613 (1.058-2.409)
10.55

1 [reference]

0.785 (0.466-1.131)

0491 (0.242-0.872)
( )
( )

9.04 1.657 (0.813-2.895
6.95 0.992 (0.978-1.003
6.03
1 [reference]
0.805 (0.324-1415)
0.741 (0.510-1.080)
0.974 (0476-1.759)
1462 (0.915-2.369)
507 1.002 (0.992-1.014)
488 0.783 (0.504-1.065)
100.0 1.039 (1.020-1.054)
36.71 1.805 (1.345-2451)
13.25 1.777 (1.357-2.873)
4.55

1 [reference]
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Table 2 Top rank predictive clinicopathological variables in the ANN models for each of the axillary nodal status outcome

(Continued)

Predictors Rank® ORP
Lobular 1.658 (1.252-2.083)
Other 0.910 (0.401-1.194)

Tumor localization in the breast
Upper outer quadrant
Central
Upper inner quadrant
Lower inner quadrant
Lower outer quadrant

Multifocality, present vs. absent

348
1 [reference]

1.208 (0.739-2.033)

1.012 (0.778-1.270)

1.077 (0.684-1410)

1.544 (1.134-2.021)

9( )

232 1.219 (1.033-1.338

Abbreviations: NO Lymph node negative, N+ Any lymph node metastasis, N7 Lymph node metastasis involving 1-3 nodes, N2 Lymph node metastasis involving at

least 4 nodes, ER Estrogen receptor, PR Progesterone receptor
Sensitivity analysis, linearly scaled into percentage

PMean odds ratio, values enclosed by parentheses represent 90% central range defined by the 5th and 95th percentiles
“Tumor localization in the breast was classified in quadrants or defined as centrally located; overlapping lesions were equally allocated into adjacent quadrants

Clinical utility for SLNB reduction

To assess the clinical utility of ANN models in reducing
unnecessary SLNB procedures, prediction of NO status
using a NPV-oriented cut-off was assessed. The maxi-
mized NPV was 95%. If the NO model with this thresh-
old were to be used in a preoperative setting to identify
NO patients, the ANN model would reduce SLNB proce-
dures by 7.50%, with a corresponding FNR of 1.05%. If
an alternative FNR of 5-10% was to be accepted, in ac-
cordance with the FNR for sentinel node biopsy tech-
nique, the corresponding SLNB reduction rate would be
17.75-27.25% (Table 3).

Discussion

The current study presents ANN-based models for the
prediction of nodal status based on routinely available
clinicopathological characteristics, in a cohort of primary
breast cancer patients consecutively and prospectively
included in a pathology database. Internally validated
performances displayed AUCs ranging from 0.705-
0.747, with good calibration. These models highlighted
the utility of nonlinear assessments of clinical character-
istics and histological variables for prediction of axillary
nodal status, especially in distinguishing disease-free ax-
illa (NO) from high-burden disease (N2).

ANN models have been useful in detecting nodal me-
tastasis on histopathological slides [22], and in evaluat-
ing risk of non-sentinel node involvement in breast
malignancies [23]. Previous studies have proposed ANN-
based algorithms for predicting nodal metastasis [24—
26], though these studies were either based on small
sample sizes or were conducted in selected patient co-
horts. To the best of our knowledge, this is the largest
study to present ANN-based algorithms predicting the
extent of nodal metastatic burden in a population-based,
contemporary, breast cancer cohort.

To predict nodal metastasis, our model integrates a
complex set of input variables which reflect the multifac-
torial nature of the axillary metastatic process [27]. Vari-
ables in ANN-based models should not be taken for
independent since the cause and effect reflect a dynamic
process. Nevertheless, an attempt was made to better
comprehend the importance of each variable by sensitiv-
ity analysis. While mean odds ratios were used for sim-
plicity, the corresponding percentiles emphasized the
dynamic nature of the input variables.

The present results reinforced tumor size [28] and LVI
[29] as the most significant predictors of axillary metas-
tasis. Age was significant in predicting disease-free axilla
and low-burden disease. A nonlinear association be-
tween age and nodal status has previously been shown,
with a low probability of nodal metastasis in those
aged< 70 years, and increased probability in those aged
> 70 years [30, 31]. In this study, positive ER and PR sta-
tus was predictive of nodal metastasis, in agreement with
literature; the TNBC subtype, although more aggressive,
infrequently metastasizes to the axilla [32]. While a
negative PR status has been shown to independently
lower the risk of nodal metastasis [33], Ki-67 positivity
has been associated with nodal metastasis [34, 35], and
the present results are in agreement. Interestingly, alter-
ations in the distribution of the breast cancer intrinsic
subtypes has been reported to occur from the premeno-
pausal state to the postmenopausal state [36, 37]. It is
also noteworthy that menopausal status, in addition to
hormone receptor status and age, was predictive of dis-
ease burden. Some publications have suggested a higher
proportion of nodal metastasis in lobular cancer than
that in the breast carcinoma of no special (ductal) type
[38]; however, others have either found no significant
differences [39], or have implied a lower incidence of
nodal metastasis in the lobular than that in the ductal
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Fig. 3 Simplified illustration of the decision made by the ANN model. The regression trees were trained to predict the output probabilities made
by the ANN model, given the identified top-ranked variables. Each tree was only allowed to grow to depth 4 and the full dataset was used to
construct the trees. The numbers in the green boxes indicate average ANN output and the size of the data at the given node. A Decision tree NO

vs. N+; B Decision tree N1 vs. NO; C Decision tree N2 vs. NO and N1

type [40]. The present results revealed a nonlinear asso-
ciation between histological type and nodal status. As
supported by previous reports, the upper-outer quadrant
localization of the tumor was the most common [41],
and multiple lesions were predictive of axillary metasta-
sis [33]. In accordance with published data [42], a tumor
location in the inner quadrants, in comparison with that
in the upper-outer quadrants, was predictive of disease-
free axilla. However, medial tumor localization has also
been related to increased risk of relapse [43]. Differences
in lymphatic drainage patterns from the breast have been
reported between palpable and nonpalpable lesions [44].
Of note, about 63% of the cases in the current cohort were
diagnosed by mammography screening, and mode of de-
tection was a significant factor in the prediction of axillary
metastasis. Although the value of mammography screen-
ing is extensively debated [45], the current findings sup-
ported the notion that mode of detection complements
information on tumor features and biology [46].

The ACOSOG Z0011 trial results [4, 5], were support-
ive of less extensive axillary surgery in patients with 1-2
metastatic sentinel nodes [47], and underlined the im-
portance of distinguishing between low- and high-
burden metastatic involvement; accordingly, ALND was

Table 3 SLNB reduction rates using the ANN model to predict
disease-free axilla. Possible SLNB reduction rate corresponding
to cut-offs at maximum negative predictive value, false negative
rate 5 and 10%, respectively

NO vs. N+ n =800
Cut-off Max NPV 095 TP N FP FN
No. 283 57 457 3
SLNB Reduction Rate (TN+FN) / (TP +TN + FP + FN) = 7.50%
FN / (TP + FN) = 1.05%

False Negative Rate

Cut-off TP N FP FN
NPV 0.90
No. 272 128 386 14

SLNB Reduction Rate (TN+FN) / (TP + TN+ FP + FN) = 17.75%

False Negative Rate FN / (TP +FN) =5%

Cut-off TP N FP FN
NPV 0.87
No. 258 190 324 28

SLNB Reduction Rate (TN+FN) / (TP +TN + FP + FN) = 27.25%

FN/ (TP +FN) = 10%

Abbreviations: NO Lymph node negative, N+ Any lymph node metastasis, SLNB
Sentinel lymph node biopsy, Max NPV Maximum negative predictive value, TP
True positive, TN True negative, FP False positive, FN False negative

False Negative Rate

omitted in women with c¢T1-2NO disease, and those
with <3 positive sentinel nodes underwent breast-
conserving therapy with adjuvant treatments. As with
the ACOSOG Z0011 trial, a negative clinical axillary sta-
tus was a criterion in the present study. However, eligi-
bility criteria for the current study were independent of
the surgical intervention to the breast (mastectomy or
breast-conserving surgery).

Predicting low-burden disease (<3 metastatic nodes)
was more challenging than was predicting disease-free
axilla or high-burden disease. Nevertheless, identifying
presence of metastatic burden is valuable. On an aver-
age, 2—3 lymph nodes are removed if SLNB alone is per-
formed for nodal staging [48] and most metastatic nodes
are identified with the excision of the first three sentinel
nodes [49]. To improve the accuracy of predicting 1-3
metastatic lymph nodes, inclusion of imaging features
from magnetic resonance imaging into the model might
be beneficial. However, MRI is not always available in
the preoperative setting whereas the chosen predictors
in our model are. An accurate preoperative prediction of
<3 metastatic nodes could provide clinicians with im-
portant information supporting SLNB staging procedure
but spare a majority patients from completion ALND.
For patients predicted to have N2 disease, the option of
neoadjuvant therapy or upfront ALND can be discussed
with the patient. The proportion of patients with node-
positive disease is declining, and alternative non-invasive
methods to surgical staging are increasingly being ex-
plored and our prediction model of NO aims to add
knowledge in this field. With a cut-off at maximized
NPV to identify those with disease-free axilla, 7.50% of
patients would be spared unnecessary SLNB. In com-
parison, the reported FNR for the SLNB procedure has
been 5-10% [1, 48] and applying these FNR cut-offs for
current NO prediction would bring the SLNB reduction
rate to 17.75-27.25%. While adopting the clinically ac-
cepted false negative rate of 10% for the SLNB proced-
ure, nearly one third of all node negative patients with a
predicted NO by the model could have been spared a
surgical staging procedure.

The present study has several limitations. Besides its
retrospective nature, the models were developed from a
single-center cohort. Furthermore, high-burden axillary
metastasis was uncommon, which impacts the
generalizability of the outcome. However, the cohort
originated from a prospectively maintained database,
which represents a contemporary population with access
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to a well-established public mammography-screening
program. On the other hand, the possibility to obtain in-
formation on the risk variables from a monitored source
strengthened the study. Unlike results relying on diverse
registries, all histopathological characteristics analyzed in
the study were managed by a single breast pathologist,
which helped to minimize inaccuracies. However, the
optimal preoperative utility of the models requires key
variables such as LVI, which may not always be achiev-
able on core-needle biopsy [50]. Although meticulous in-
ternal validation was performed with results supporting
model robustness, further external validation in an inde-
pendent cohort is necessary to confirm the utility of the
models as guidance tools.

Conclusions

The current study showed that nodal status is related to
several independent patient and tumor characteristics,
and that a nonlinear association exists between pre-
operatively obtainable clinicopathological variables and
degree of axillary metastatic involvement. ANN models
proved especially favorable in distinguishing high-
burden disease and disease-free axilla and could thus be
useful as a clinical decision tool in the preoperative set-
ting imputing selected risk variables. If a threshold for
classification of node-negativity were applied for high
NPV and low FNR, individuals with a very low probabil-
ity of axillary disease would not have been selected for
SLNB by the model, and would be spared from unbene-
ficial axillary surgery.
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