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Abstract

Background: Using a pathway-focused approach, we aimed to provide a subgroup-specific basis for finding novel
therapeutic strategies and further refinement of the risk stratification in pediatric medulloblastoma.

Method: Based on genome-wide Cox regression and Gene Set Enrichment Analysis, we investigated prognosis-
related signaling pathways and core genes in pediatric medulloblastoma subgroups using 530 patient data from
Medulloblastoma Advanced Genomic International Consortium (MAGIC) project. We further examined the
relationship between expression of the prognostic core genes and frequent chromosome aberrations using broad
range copy number change data.

Results: In SHH subgroup, relatively high expression of the core genes involved in p53, PLK1, FOXM1, and Aurora B
signaling pathways are associated with poor prognosis, and their average expression synergistically increases with co-
occurrence of losses of 17p, 14q, or 10q, or gain of 17q. In Group 3, in addition to high MYC expression, relatively
elevated expression of PDGFRA, IGF1R, and FGF2 and their downstream genes in PI3K/AKT and MAPK/ERK pathways
are related to poor survival outcome, and their average expression is increased with the presence of isochromosome
17q [i(179)] and synergistically down-regulated with simultaneous losses of 16p, 8q, or 4q. In Group 4, up-regulation of
the genes encoding various immune receptors and those involved in NOTCH, NF-kB, PI3K/AKT, or RHOA signaling
pathways are associated with worse prognosis. Additionally, the expressions of Notch genes correlate with those of the
prognostic immune receptors. Besides the Group 4 patients with previously known prognostic aberration, loss of
chromosome 11, those with loss of 8q but without i(17q) show excellent survival outcomes and low average
expression of the prognostic core genes whereas those harboring 10q loss, 1q gain, or 12q gain accompanied by
i(179) show bad outcomes. Finally, several metabolic pathways known to be reprogrammed in cancer cells are
detected as prognostic pathways including glutamate metabolism in SHH subgroup, pentose phosphate pathway and
TCA cycle in Group 3, and folate-mediated one carbon-metabolism in Group 4.

Conclusions: The results underscore several subgroup-specific pathways for potential therapeutic interventions: SHH-
GLI-FOXM1 pathway in SHH subgroup, receptor tyrosine kinases and their downstream pathways in Group 3, and
immune and inflammatory pathways in Group 4.
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Background

With advancements in molecular genomics, many
aspects of the genetic basis of tumorigenesis in various
cancers have been clarified. Brain tumors have also been
a topic of genomic evaluation, and medulloblastoma is
one of the most actively studied entities. Consensus has
been reached that there are at least 4 subgroups of
medulloblastoma: WNT, SHH, Group 3, and Group 4.
[1-4]. In the recent update of the 2016 World Health
Organization Classification of Tumors of the Central
Nervous System (2016 CNS WHO), the subclassification
has been incorporated into the diagnosis of medulloblas-
toma. Furthermore, preliminary studies have focused on
the development of new prognostic biomarkers, novel
stratification strategies, or targeted therapies for each
subgroup and the elucidation of the subgroup-specific
dysregulation of signaling pathways, cytogenetic aberra-
tions, and epigenetic deregulation [2, 5-8]. However,
considerable heterogeneity has remained within the
subgroups, among which differences in prognosis are
the most clinically important. Combinations of clinical
features and several genetic, chromosomal markers have
been suggested to classify risk groups within the four
subgroups. Recent studies based on integrated multi-
omics data including DNA methylation profiles have led
to identify refined subtypes within each subgroup of
medulloblastoma [9, 10]. The newly defined subtypes
were enriched with distinctive clinical and genomic
features and several new subtypes were associated with
relatively favorable or worse prognosis. Hence, we aimed
to discover the biological mechanisms underlying
differential clinical outcomes within medulloblastoma
subgroups by employing subgroup-specific Gene Set
Enrichment Analysis (GSEA) combined with disease
progression data analysis [11]. Through the identification
of signaling pathways that reflect poor clinical outcome
subgroup specifically, we hope to develop new
candidates for biomarkers or therapeutic targets for
application in precision medicine.

Methods

Total 763 expression data of primary medulloblastomas
collected via Medulloblastoma Advanced Genomic
International Consortium (MAGIC) in a previous study
was downloaded from Gene Expression Omnibus
(GSE85217) [9]. The raw cel files were preprocessed
using the Robust Multi-array Average algorithm [12]
and log, transformed. To remove multiple probe sets for
a given gene in the microarray data, the probe set with
the largest inter-quartile range across the samples was
selected as a representative one. Sample information
including clinical data, subgroup and subtype informa-
tion, and broad range copy number change data was ob-
tained from the previous study [9]. We further selected
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only the samples from the patients with age < 18 and with
available overall survival information. The final dataset
comprised of 530 samples including WNT (n =49), SHH
(n=121), Group 3 (n=107), and Group 4 (n=253).
Subsequently, the expression values of each gene were
rescaled to relative expression values across the 530
samples ranging from O to 1. The 530 samples were
divided into exploratory (70% of samples) and validation
(30% of samples) datasets, based on randomized sampling
stratified by subgroup and 2-year survival status (dead,
alive, or censored). Using the exploratory dataset, survival
analysis was performed to assess the prognostic impact of
individual genes on overall survival in WNT subgroup
(n=34), SHH subgroup (n=85), Group 3 (n="74), and
Group 4 (m=177). More specifically, genome-wide
univariable Cox regression analysis was employed to
calculate proportional hazard ratios (HRs) that indicate
the effects of one unit increases in relative expressions of
individual genes on risk of death. In this survival analysis
step, only the genes with high expression (log, maximum
expression >7) and large variation (log, expression range >
1.5) were analyzed in each subgroup: the final numbers of
the genes analyzed were 7832 for WNT, 13,059 for SHH,
12,779 for Group 3, and 13,076 for Group 4. However, in
subsequent analyses, WNT subgroup was omitted due to
the very low frequency of death event (3 out of 49) which
was not suitable for application of survival analysis. To
test the fundamental assumption of proportional hazards
of the Cox model, we assessed goodness-of-fit for propor-
tional hazards model [13] and found that the assumption
is reasonable for most of the genes investigated (94.9% in
SHH subgroup, 96.2% in Group 3, 98.8% in Group 4)
(Additional file 1: Table S1). Then, GSEA was performed
to detect overrepresented canonical pathways associated
with poor prognosis based on curated gene sets of
MSigDB (C2) with 1000 non-parametric permutations
using pre-ranked genes sorted by the natural log-
transformed HRs obtained from the Cox regression
analysis [14]. The analysis was confined to total 988 gene
sets of size <50 to avoid too broad pathways. Initial
enriched pathways were detected at a nominal p-value <
0.05 in positive and negative directions respectively, and
the genes in the leading-edge subset were considered as
core genes in each pathway [14]. Many gene sets were
identified redundantly since the gene sets of canonical
pathways (C2) in GSEA were collected from multiple
databases [14]. Accordingly, we focused on the results
from three representative databases, Pathway Interaction
Database (PID), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and BioCarta (BIOCARTA). Then,
collective prognostic power of each pathway was evaluated
in both exploratory and validation datasets using Cox
regression analysis with average relative expression values
of the core genes. To further test the robustness of
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prognostic significance of each pathway, 1000 boot-
strap datasets were generated from entire samples by
simple random sampling with replacement. Cox re-
gression model was run on each of the bootstrap
samples and bootstrap value for each pathway was
calculated by the percentage of bootstrap p-values
less than 0.05. We also investigated frequently ob-
served chromosome aberrations that were signifi-
cantly associated with prognosis in each subgroup.
Using broad range copy number change data, we ap-
plied univariable Cox regression analysis to detect
subgroup-specific prognosis-related gain or loss of
each chromosome arm that occurred in each sub-
group with a high frequency (> 10%). According to
the estimated HR, the direction of chromosome ab-
erration is designated “risk” (HR>1) or “protective”
(HR<1). All data analyses were performed using R
statistical software (http://www.R-project.org/).

Results

Ten year Kaplan-Meier plots based on 530 overall
survival data of pediatric medulloblastoma patients
revealed that survival prognoses of the four sub-
groups were largely congruent with previous studies
in both exploratory and validation datasets [2, 5, 8].
The WNT subgroup was associated with the best
survival, SHH subgroup and Group 4 with inter-
mediate survival, and Group 3 with the poorest sur-
vival (Additional file 2: Figure S1).
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SHH subgroup

In GSEA analysis, nine canonical pathways in SHH
subgroup are detected to be prognostic toward positive
direction including four PID canonical pathways, “p53
pathway”, “PLK1 signaling events”, “Aurora B signaling”,
and “ FOXMI1 transcription factor network”, three
KEGG pathways, “Alanine, aspartate, and glutamate
metabolism”, “RNA polymerase”, and “Basal transcrip-
tion factors”, and two BIOCARTA pathways, “Cyclins
and Cell Cycle Regulation” and “Proteasome complex”
(Table 1, Additional file 1: Table S2). In bootstrap ana-
lysis with 1000 replications, eight out of nine canonical
pathways show statistically significant results in more
than 90% of resampled datasets. According to the aver-
age expression values of 31 core genes from the top two
PID canonical pathways (“p53 pathway” and “PLK1
signaling events”), the patients are separated into three
different survival groups similarly in both exploratory
and validation datasets (Fig. la). Furthermore, we also
obtain statically significant results with a whole dataset
(m=121) in log-rank tests with average expression of
core genes in nine canonical pathways respectively
(Additional file 1: Table S2).

In association analyses between survival outcomes and
copy number changes, gain of 9p is detected as a significant
protective aberration (Additional file 1: Table S3). The
patients with 9p gain show excellent prognosis (Fig. 1b),
however, the expression of 31 prognostic core genes is not
significantly low in the tumors with 9p gain (Fig. 1b box-
plot). On the other hand, losses of 17p, 14q, 10q, and

Table 1 Top five prognosis-related canonical pathways in SHH subgroup

Database  Name of gene set (GSEA)  Exploratory Validation 1000 bootstrap Representative core genes**
dataset (n = dataset (n = datasets (n=121)
85) 36)
HR* p-value HR* p-value % of p-value <
0.05
PID p53 pathway 459 < 00001 3.19 0127 100.0 TRIM28,CCNA2,ABL1,SETD7,CSETLHIPK2,RPL11
PLK1 signaling events 202 00035 172 0093 956 NUDC,PLK1,AURKA,TPX2,BUB1,CDC20,TPTT,
BORA,CENPE KIF20A,PRC1,CCNB1,CDC25C,WEE1T ECT2
Aurora B signaling 1.73 00155 184 008 919 CDCA8,SMC2,AURKAKIF2C,BUB1TRACGAPT,
BIRC5,NCAPD2,KIF23 KIF20ANCAPH
FOXM1 transcription factor 1.89 0.0119 1.75 0109 908 PLK1,CCNA2,FOXM1 BIRC5NEK2,ETVS,
network CCNBT1,CENPF,BRCA2,CDK4,CHEK2,CKS1B
KEGG Alanine aspartate and 485 0.0001 176 0432 943 PPAT,GLUD1,GPT2
glutamate metabolism
RNA polymerase 196 0.0032 236 0022 933 POLR2E,POLR3H,POLR2B,POLR2J,POLR2D,
POLR3K,POLR1B,POLRTA
Basal transcription factors 248 0.0002 149 0.580 916 GTF2F1,TAF4,GTF2ATLTAF11
BIOCARTA Cyclins and Cell Cycle 192 0.0127 317 0029 917 CCNAT,CDKN2C,CCNB1,CDC25A,TFDP1,CDK4
Regulation
Proteasome Complex 1.71 0.0053 157 0274  79.1 PSMB7,PSMA7,PSMD14,PSMB2

* Hazard ratio per 0.1 increment in average relative expression of core genes

** Representative core genes are significantly associated with overall survival (p-value < 0.05) in Cox regression analysis with all samples
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Fig. 1 Prognostic power of core genes identified in SHH subgroup. a, Kaplan-Meier curves and log-rank tests of the three groups stratified by Q1
(25% quantile) and Q3 (75% quantile) of the average expression of 31 core genes from top two PID pathways. b, Kaplan-Meier curve with log-
rank test and boxplot of the average expression of 31 core genes of the two groups divided by the status of 9p gain. ¢, Kaplan-Meier curve with
log-rank test and boxplot of the average expression of 31 core genes of the three groups of 26 patients who harbor i(17q) or losses of 10qg, 14q,
or 17p but not 9p gain, stratified by the status of i(17q) and losses of 10q, 14q, and 17p. d, Kaplan-Meier curve with log-rank test and boxplot of
the average expression of 31 core genes of the two groups of 69 patients who do not harbor 9p gain, i(17q), and losses of 10q, 14q, or 17p,
stratified by the average expression of 31 core genes. e, Heatmap of expression of core genes from the nine prognostic canonical pathways with
clinical information, prognostic chromosome aberrations, and subtype [9]. ***, Mann-Whitney U test p-value < 0.001

isochromosome 17q [i(17q)] are observed to be risk aberra-
tions (Additional file 1: Table S3). After excluding the pa-
tients with 9p gain, we further find that 16 patients
harboring i(17q) or more than two losses out of 10q, 14q,

and 17p show the worst survival outcome (Fig. 1c). Seven
patients with either one of 10q loss or 14q loss show inter-
mediate survival rates while three patients with 17p loss
alone show the best prognosis. Furthermore, the highest
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expression level of 31 prognostic core genes is observed in
the 16 patients with i(17q) or multiples losses of 10q, 14q,
or 17p whereas the lowest is detected in the three patients
with 17p loss alone (Fig. 1c boxplot). Finally, 69 patients
who do not possess any risk or protective aberrations can
be divided into two different survival groups according to
the average expression of the 31 core genes (Fig. 1d). The
average expressions of the core genes from the nine prog-
nostic canonical pathways is presented in a heatmap includ-
ing clinical information, subtype information recently
reported by Cavalli et al. [9], and the stratification of pa-
tients according to the status of prognostic chromosome
aberrations and gene expressions shown in Fig. 1b-d
(Fig. 1le). The heatmap shows that the average expres-
sions of the core genes of the nine pathways consid-
erably correlate with one another. On the other hand,
the average expression of the 31 core genes from the
top two PID canonical pathways is also significantly
associated with subtype, age group, and histology; the
highest expression is observed in subtype of SHH «
and histological group of large cell/anaplastic (LCA)
(Additional file 2: Figure S2A).
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Group 3

Total 35 canonical pathways in PID, KEGG, and BIO-
CARTA are associated with poor prognosis in Group 3
(Additional file 1: Table S2). Of the 35 canonical path-
ways, 16 pathways show >90% of statistical significance
in 1000 bootstrap samples, including many cancer-
related signaling pathways such as “Notch-mediated
HES/HEY network” (Notch network), “Class I PI3K sig-
naling events mediated by Akt” (PI3K/Akt), “p53 path-
way”, “Melanoma”, “Bladder cancer”, “Proteasome”, and
“Influence of Ras and Rho proteins on G1 to S Transi-
tion” (Ras/Rho on G1 to S). In addition, the prognostic
canonical pathways include several metabolic pathways
such as “Tyrosine and galactose metabolism”, “Pentose
phosphate pathway”, and “TCA cycle”. Top 5 prognostic
canonical pathways in each database ranked by boot-
strap percentage are presented with representative prog-
nostic core genes in Table 2. According to the average
expression of 20 core genes from the top two PID ca-
nonical pathways (“Notch network” and “PI3K/Akt”),
low and high expression groups of the Group 3 patients
are clearly separated into different survival groups even

Table 2 Top five prognosis-related canonical pathways in Group 3

Database  Name of gene set (GSEA) Exploratory  Validation 1000 bootstrap Representative core genes**
dataset (n = dataset (n = datasets (n =107)
74) 33)
HR* p-value HR* p-value % of p-value < 0.05
PID Notch-mediated HES/HEY 271 00001 221 0087 988 MYOD1,KDM1A,GAAMYB,CTBP1
network
Class | PI3K signaling events 208 0.0044 240 0.021 97.1 YWHAZ,PRKDC,CDKN1B
mediated by Akt
p53 pathway 215 00052 1.79 0.071 928 DYRK2,RPL23,PPM1D,RPLT1
C-MYC pathway 169 00087 226 0040 894 RUVBL1,ACTL6ARUVBL2
Regulation of retinoblastoma 201 0.0094 223 0.146  89.0 MYOD1,E2F3,CDKN1B,CDK4,CTBP1
protein
KEGG Tyrosine metabolism 340 0.0002 522 0.000 100.0 COMT,MIF,GOT2
Melanoma 486 00001 464 0048 995 FGF2,E2F3,CDK4
Bladder cancer 257 00040 573 0020 972 MYC,E2F3,CDK4
Proteasome 194 00014 194 0.031 96.9 PSMB3,PSMC3,PSMB1,PSMC5,PSMD3,
PSMAS5,PSMB7,PSMA4,PSMD12,PSMA6,PSMD 14
Galactose metabolism 213 00037 250 0009 952 GLA,GAAPGM2
BIOCARTA IL-2 Receptor Beta Chainin T 360 0.0002 649 0009 999 PPIA,STAT5BMYC
cell Activation
Proteasome Complex 1.82 00041 167 0038 955 PSMB3,PSMC3,PSMB1,RPN1,PSMA5,PSMB?7,
PSMA4,PSMD12,PSMA6,PSMD14
Influence of Ras and Rho 187 00216 420 0012 921 CDKN1B,CDK4
proteins on G1to S
How Progesterone Initiates 199 00183 366 0041 864 ARPC3
Oocyte Membrane
CDK Regulation of DNA 131 00418 142 0173 74.6 MCM2,MCM5,0RC6,MCM4,CDT1,CDKN1B

Replication

*Hazard ratio per 0.1 increment in average relative expression of core genes

** Representative core genes are significantly associated with overall survival (p-value < 0.05) in Cox regression analysis with all samples
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though medium groups are inconsistently segregated
into the low or high group in exploratory and validation
datasets respectively (Fig. 2a).

Several chromosome aberrations including losses of
16p, 8q, 16q, 4q, 22q, and 11q are detected as protective
aberrations (Additional file 1: Table S4). However, the
protective aberrations are significantly associated with
one another and many patients possess multiple protect-
ive aberrations simultaneously. Thus, we applied multi-
variable Cox regression analysis and selected the losses
of 16p, 8q and 4q as the final protective aberrations be-
cause the losses of 16q, 22q, and 11q contributed little
to increase in R-squared value. When 51 patients posses-
sing one of the protective aberrations, losses of 16p, 8q
and 4q, are divided into three groups according to the
number of the losses, seven patients harboring all the
losses show the most favorable prognosis and the sur-
vival rates are reduced as the number of losses decrease
(Fig. 2b). Besides, the number of losses inversely corre-
lates with the average expression levels of the 20 prog-
nostic core genes from the top two PID pathways (Fig.
2b, boxplot). On the other hand, 17p loss and i(17q) are
detected as risk aberrations (Additional file 1: Table S4).
In multivariable Cox regression analysis, 17p loss is no
longer significant when the status of i(17q) is added to
the model. Moreover, the patients with 17p loss without
17q gain do not show difference in prognosis compared
to those without 17p loss (p-value =0.49). In contrast,
loss of 17p accompanied by loss of 10q reduces survival
rates considerably (Fig. 2c). Hence, we conclude that
i(17q) and simultaneous loss of 17p and 10q are the risk
aberrations in Group 3. After excluding 77 patients with
the protective or risk aberrations, the prognosis of the
remained 30 patients is separated according to the
expression level of 20 core genes (Fig. 2d). The heatmap
of core gene expressions of 15 prognostic gene sets
shows that protective and risk chromosome aberrations
are associated with low and high average expressions of
the core genes respectively (Fig. 2e). The expression of
the core genes is also significantly associated with
subtype in Group 3; the highest expression is observed
in subtype of Group 3 y and histological group of LCA
(Additional file 2: Figure S2B).

Group 4

In Group 4, total 41 canonical pathways out of 58 ca-
nonical pathways significantly detected in GSEA show
statistical significance in more than 90% of 1000 boot-
strap samples, including “Notch network”, “p53 path-
way”, “RhoA signaling pathway”, “NF-kB Signaling
Pathway”, “One carbon pool by folate”, “Cell Cycle: G1/S
Check Point”, “Integrin-linked kinase signaling”, and
several immune response-related canonical pathways

such as “TNF receptor signaling pathway”, “Fc-epsilon
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receptor I signaling in mast cells”, and “Antigen process-
ing and presentation” (Additional file 1: Table S2,
Table 3). Stratification of the Group 4 patients using
average expression of 31 core genes from the top two
PID canonical pathways (“Notch network” and “TNF
receptor signaling pathway”) produces clear separation
of survival curves in both exploratory and validation
datasets (Fig. 3a).

Investigation of prognostic chromosome aberration
reveals that losses of 11p and 8q are protective aberra-
tions (Additional file 1: Table S5). In previous studies,
loss of chrll has been recognized as an important cytogen-
etic marker of favorable prognosis in Group 4 [2, 5, 15].
Congruently, we find that 11p loss not accompanied by 11q
loss is not a significant prognostic factor (data not shown),
and simultaneous loss of 11p and 11q is the most
significant prognostic chromosome aberration in Group 4
(Additional file 1: Table S5). The patients with loss of chr1l
show excellent survival outcomes and low average expres-
sion of 31 prognostic core genes from the top two PID
pathways (Fig. 3b). In multivariable Cox regression analysis,
the other protective aberration, 8q loss, is no longer signifi-
cant (p-value = 0.23) when the status of chrll is added to
the model. Therefore, we conclude that chrll loss is the
strongest protective chromosome aberration in Group
4. We further investigate prognostic chromosome ab-
errations after excluding the patients with loss of
chrll in Group 4, and find that i(17q) is a risk
chromosome aberration (Additional file 1: Table S6,
Fig. 3c). In a similar successive manner, we find that 8q
loss is a significant protective aberration in 90 patients
after excluding 163 Group 4 patients with chrll loss or
i(17q) (Additional file 1: Table S7, Fig. 3d). Likewise, 10q
loss, 1q gain, and 12q gain, are identified as risk aberra-
tions within 120 patients with i(17q) but without loss of
chrll (Additional file 1: Table S8, Fig. 3e). Finally, two
groups of remained patients, 91 patients with i(17q) and
58 patients without i(17q), can be further separated into
different survival groups respectively according to the
average expression of 31 prognostic core genes (Fig. 3f
and g), which can be also shown by the heatmap with
detailed information (Fig. 3h). On the other hand, high
expression level of the 31 core genes is observed in the
patients with leptomeningeal metastases (M+) (Additional
file 2: Figure S2C).

Discussion

Current consensus of risk stratification of childhood
medulloblastoma has refined the risk stratification
according to subgroup and an integration of the clinical
markers as well as the molecular, genomic profiles of the
tumor [15]. In the SHH subgroup, the risk group was
divided by the combination of TP53 mutation, MYCN
amplification, and metastasis. For Group 3, the major
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Fig. 2 Prognostic power of the core genes identified in Group 3. a, Kaplan-Meier curves and log-rank tests of the three groups stratified by Q1
(25% quantile) and Q3 (75% quantile) of the average expression of 20 core genes from top two PID pathways. b, Kaplan-Meier curve with log-
rank test and boxplot of the average expression of 20 core genes of the three groups of 51 patients who harbor losses of 16p, 8q, or 4q, stratified
by the number of simultaneous losses of 16p, 8qg, and 4q. ¢, Kaplan-Meier curve with log-rank test and boxplot of the average expression of 20
core genes of the two groups of 56 patients who do not harbor losses of 16p, 8q, and 4q, stratified by status of i(17q) and simultaneous loss of
17p and 10q. d, Kaplan-Meier curve with log-rank test and boxplot of the average expression of 20 core genes of the two groups of 33 patients
who do not harbor i(17q), simultaneous loss of 17p and 10q, and losses of 16p, 8q, and 4q, stratified by the average expression of 20 core genes.
E, Heatmap of expression of core genes from the fifteen prognostic canonical pathways with clinical information, prognostic chromosome
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Table 3 Top five prognosis-related canonical pathways in Group 3
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1000 bootstrapped
datasets (n = 253)

Representative core genes**

100.0

HDACT NOTCH1,GATA4,HEY1,TCF3,PARP1,RBBP8,E2F1

Database  Name of gene set (GSEA) Exploratory Validation
dataset(n = dataset (n =
177) 76)
HR* p-value HR* p-value % of p-value < 0.05
PID Notch-mediated HES/HEY 649 < 0.0001 3.35 0.009
network
TNF receptor signaling 531 < 00001 554 0.000

pathway

Validated nuclear estrogen  8.13
receptor a network

EPO signaling pathway 350 < 00001 312 0012 999

Fc-epsilon receptor | 409 <00001 284 0018 999
signaling in mast cells

KEGG Acute myeloid leukemia 485 < 00001 3.84 0.005
Dorso ventral axis 268 00004 282 0026 995
formation
Antigen processing and 1.71 00068 210 0004 955

presentation

Nucleotide excision repair ~ 2.22 00007 140 0377 932
One carbon pool by folate  2.09 < 0.0001 1.13 0635 927
100.0

BIOCARTA Keratinocyte Differentiation  3.29 0.0001 332 0.002
NF-kB Signaling Pathway 255 00001 233 0004

HIV-I Nef: negative effector  4.71
of Fas and TNF

NF-kB activation by 583 < 00001 361 0016 9938
Nontypeable H. influenzae

Cell Cycle: G1/S Check 264 00001 354 0009 9938
Point

100.0

< 00001 594 0006 999

100.0

100.0
< 00001 315 0011 999

FADD,TNFRSF1A TNFRSF1B,CAV1,IKBKB,GNB2L1,NFKB1

MYCHDACT XBP1,TRIM59,CCND1,LCOR UBE2M

CBL,CRKL,INPP5D,NFKBT1
CBL,GAB2INPP5D,FCGR2B,IKBKB,NFKB1,FOS

MYC,AKT3,EIF4EBP1,IKBKB,NFKB1,CCND1
NOTCH1,ETS2NOTCH2

B2M,HSPATA HLA-F, TAP2 RFXANK.CD74,PDIA3 HLA-
DMA

DDB1,POLD4,POLE2,POLE4
GARTMTHFD2LMTHFD2,TYMS,DHFR

PRKCD,ETS2, TNFRSF1A, TNFRSF1B,IKBKB,NFKB1,FOS
MYD88,FADD,TNFRSF1A TNFRSF1B,IKBKB,ILTRT,NFKB1

PRKCD,FADD,TNFRSF 1A, TNFRSF1B,PRKDC,PSEN2,
PARP1T,NFKB1

MYD88,IKBKB,SMAD3,NFKB1

CDC25AHDACT, TGFB1,CDKN1TA DHFR,CDK1,SMADS3,
CDK2,CCND1,E2F1

* Hazard ratio per 0.1 increment in average relative expression of core genes

** Representative core genes are significantly associated with overall survival (p-value < 0.05) in Cox regression analysis with all samples

factors deciding risk were metastasis and MYC ampli-
fication. In Group 4, the important segregation points
were metastasis and chrll loss. Despite this huge
improvement and modification, ‘unknown’ types of
patients have remained, such as Group 3 patients
who are non-metastatic but have MYC amplification.
Furthermore, metastasis is even more prominent as
the major factor in all subgroups, and molecular and
genomic mechanisms that are masked by the clinical
phenotype of metastasis have remained to be
elucidated. More recent studies have examined the
presence of subtypes in each medulloblastoma
subgroup, characterized by different clinical, genomic,
and epigenomic features [9, 10, 16], indicating consid-
erable within-subgroup heterogeneity. Thus, we inves-
tigate prognostic signaling pathways in each subgroup
of medulloblastoma, to provide molecular basis for
characterization of within-subgroup heterogeneity and
subgroup-specific therapeutic strategies. Finally, the
results are comprehensively summarized in schematic
illustrations of prognosis-related signaling pathways
(Fig. 4) and metabolic pathways (Fig. 5).

SHH subgroup

In SHH subgroup, majority of the prognostic gene sets
are related to cell cycle and mitosis such as the canon-
ical pathways of “p53 pathway”, “PLK1 signaling events”,
“FOXM1 transcription factor network”, “Aurora B sig-
naling”, and “Cyclins/CDKs”. In SHH signaling pathway,
FOXM1 has been known to be a downstream target
gene of GLI transcription factor that is activated by
SMO relieved by hedgehog ligands (Fig. 4a) [17-19].
Consistently, we observe a considerable correlation be-
tween the expressions of GLI2 and FOXM1 (Pearson’s
correlation coefficient = 0.48, p-value = 2.9 x 10~ %). Add-
itionally, as expected, the expressions of GLI1 and GLI2
are profoundly high in SHH subgroup (Additional file 2:
Figure S3A) and high expression level of GLI2 is signifi-
cantly associated with prognosis (HR =1.45 per 0.1 in-
crement of relative expression, p-value =0.0074). As a
transcription factor, FOXM1 subsequently activates es-
sential genes for mitotic progression including PLK1
[20-22]. FOXM1 and PLK1 are cooperatively overex-
pressed in various cancers [23-25] and identified as po-
tential therapeutic targets [22, 26—-28]. They play crucial
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Fig. 3 Prognostic power of core genes identified in Group 4. a, Kaplan-Meier curves and log-rank tests of the three groups stratified by Q1 (25%
quantile) and Q3 (75% quantile) of the average expression of 31 core genes from top two PID pathways. b, Kaplan-Meier curve with log-rank test
and boxplot of the average expression of 31 core genes of the two groups divided by the status of chr11 loss. ¢, Kaplan-Meier curve with log-
rank test and boxplot of the average expression of 31 core genes of the two groups of 210 patients who do not harbor chr11 loss, stratified by
the status of i(17q). d, Kaplan-Meier curve with log-rank test and boxplot of the average expression of 31 core genes of the two groups of 90
patients who do not harbor chr11 loss and i(17q), stratified by the status of 8q loss. e, Kaplan-Meier curve with log-rank test and boxplot of the
average expression of 31 core genes of the two groups of 120 patients who harbor i(17q) but not chri1 loss, stratified by the presence of 10q
loss, 1q gain, or 12q gain. f, Kaplan-Meier curve with log-rank test and boxplot of the average expression of 31 core genes of the three groups of
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Kaplan-Meier curve with log-rank test and boxplot of the average expression of 31 core genes of the three groups of 58 patients who do not
harbor chr11 loss, i(17q), and 8q loss, stratified by the average expression of 31 core genes. h, Heatmap of expression of core genes from the
fifteen prognostic canonical pathways with clinical information, prognostic chromosome aberrations, and subtype [9].
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roles in mitosis entry by complicated inter-activating
relationship [29]. Such a reciprocal activation is also
reported between PLK1 and MYCN ([30], one of the
well-known genes highly expressed in SHH medulloblas-
tomas. Besides the core genes detected in GSEA, two

genes encoding ErbB family proteins, EGFR and ERBB3,
are observed to be prognostic in gene-wise univariable
Cox regressions (HR =1.35 per 0.1 increment of relative
expression and p-value = 0.045 for EGFR; HR = 1.55 per
0.1 increment of relative expression and p-value <
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(See figure on previous page.)

Fig. 4 Schematic diagrams of prognosis-related signaling pathways with representative genes and targeted agents. a, Prognostic signaling pathways
identified in SHH subgroup. b, Prognostic signaling pathways identified in Group 3. ¢, Prognostic signaling pathways identified in Group 4. The genes
in colored boxes indicate prognosis-related genes detected in SHH (red), Group 3(orange), or Group 4 (green). The genes in the white boxes are linker
genes included to connect the signaling pathways. Representative targeted agents in clinical, preclinical or early-phase development are presented.
Colored arrow denotes relatively high or low expression of the gene in SHH (red), Group 3(orange), or Group 4 (green) and the detailed boxplot of the

[TGB1/2 in core gene list of Group 4

gene expression is presented in Additional file 2: Figures S3, S4, or S6. Fc receptors, FCER1G and FCGR2A/B in core gene list of Group 4, Integrins,

0.00001 for ERBB3). The expression of EGER is relatively
high in SHH subgroup. In contrast, only a small subset
of tumors shows a very high level of ERBB3 expression
(Additional file 2: Figure S3A).

Gain of 9p, frequently co-occurred with loss of 9q, was
recognized in SHH tumors [31], however, its association
with prognosis has not been reported. In our result,
favorable prognosis is observed in the SHH patients with
gain of 9p. It has been well known that 9p contains two
important tumor suppressor genes, CDKN2A and
CDKNZ2B. Indeed, median expression of CDKN2B was
slightly higher in SHH patients with 9p gain with statis-
tical significance (Additional file 2: Figure S3B). We also
detect that the SHH patients with i(17q) or simultaneous

loss of 10q, 17p, or 14q have the worst survival outcome
(median survival time = 1.59 years) (Fig. 1c). As expected,
the expressions of important tumor suppressors, TP53
and PTEN/SUFU, are significantly or marginally signifi-
cantly reduced with the corresponding chromosome
aberrations, 17p loss and 10q loss in SHH medulloblas-
tomas (Additional file 2: Figure S3B). In Fig. 4a, several
anti-cancer agents targeting deregulated signaling path-
ways in SHH subgroup are presented. Proteasome inhib-
itors (bortezomib) and thiazole antibiotics (sisomicin A
and thiostrepton) target FOXM1 and induce apoptosis
[32, 33]. The mitotic kinases PLK1 and AURKA/B are
blocked by the small-molecule selective inhibitors BI 2536/
volasertib and alisertib, respectively [34, 35]. Palbociclib and
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Fig. 5 Cancer metabolism-related pathways with prognostic genes identified in medulloblastoma subgroups. The genes in colored boxes
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abemaciclib are selective CDK4/6 inhibitors [36]. SHH
signaling is also blocked by the SMO inhibitors vismodegib
and saridegib and the GLI inhibitors GANT58, GANT61,
and arsenic trioxide. Up-regulated EGFR is blocked by vari-
ous inhibitors including gefitinib, erlotinib, and cetuximab.

Group 3

In Group 3, two receptor tyrosine kinases (PDGFRA and
IGF1R), FGF2 also known as basic fibroblast growth
factor (bFGF), and the genes in their downstream signal-
ing pathways such as PI3K/AKT and MAPK/ERK are
detected as prognostic core genes (Fig. 5a). Furthermore,
IGF1 is observed to be most highly expressed in Group
3 (Additional file 2: Figure S4A). High expression of
MYC is confirmed in Group 3 tumors, and its target
genes involved in glycolysis including SLC2A1 (GLUT1),
LDHA, and HK2 are noticed to be highly expressed as
well (Additional file 2: Figure S4A). Additionally, many
genes encoding proteasomes, cyclins, and CDKs are also
detected as prognostic genes.

The most favorable survival rate is observed in the
Group 3 patients who have simultaneous loss of 4q, 8q,
or 16p, which can be possibly explained by the loss of
the oncogenic core genes such as MYC on 8q, FGF2 and
PDGFRA on 4q, and PLK1 on 16p. Indeed, the expres-
sions of the four genes are significantly or marginally
significantly low in accordance with the corresponding
chromosomal deletions (Additional file 2: Figure S4B).
On the other hand, i(17q) and simultaneous loss of 17p
and 10q are associated with poor survival outcome in
Group 3, which is also observed in SHH subgroup.

Anti-cancer agents targeting PDGFRA include recep-
tor tyrosine kinase (RTK) inhibitors such as imatinib, su-
nitinib, and dasatinib. Downstream of RTKs is targeted
by PI3K inhibitors (buparlisib and BYL719) [37, 38] and
Ras-Raf-MEK-ERK pathway inhibitors (diazepinomicin,
sorafenib and regorafenib) [39-41]. Up-regulated prote-
asome complex is blocked by bortezomib.

Group 4

In Group 4, “Notch network” genes such as NOTCH]I,
NOTCH2, and HEY1 are included in the prognostic core
genes (Additional file 1: Table S2, Table 3). In addition,
high expressions of many genes encoding immune
receptors are also associated with poor survival out-
come, including cytokine receptors (TNFRSF1A/B,
ITGB1/2, IFNAR2, IL1R1, IL4R, IL7R, IL10RA, CXCR4,
and CD74), Toll-like receptors (TLR3/4/5), and Fc
receptors (FCER1G and FCGR2A/B). Interestingly, the
expressions of NOTCH1, NOTCH2 or NOTCH3 are
highly correlated with those of many prognostic immune
receptors (Additional file 2: Figure S5), implying that
Notch signaling might be important in the regulation of
tumor immune response or tumor microenvironment,
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which, in fact, has been reported in many studies [42,
43]. For example, activation of Notch signaling induced
recruitment of tumor-associated macrophage (TAM)
[44] and anti-Notch treatment reduced immune-
suppressive M2 TAM infiltration [45] or inhibited
tumor-induced T-cell tolerance mediated by Myeloid-
derived suppressor cells [42], thus underscoring possible
immunotherapeutic opportunities in Group 4 medullo-
blastoma patients with relative activation of Notch
signaling. Notch signaling is also known to be closely
related to stemness of medulloblastoma cell and essen-
tial for maintenance of stemness in brain tumor initiat-
ing cell [46, 47]. Enhanced expressions of the genes
involved in nucleotide synthesis (DHFR and TYMS), cell
cycle, and NF-kB, PI3K/AKT, or RHOA pathways are
also associated with poor prognosis. Several genes in
JAK-STAT pathway, the major downstream signaling of
cytokine receptors, are most highly expressed in Group
4, including JAK2, STAT2, STAT3, STAT5A, and
STAT5B (Additional file 2: Figure S6A). Besides, “Vali-
dated nuclear estrogen receptor a network” is recog-
nized as the deregulated signaling pathway in Group 4
(Table 3). Congruently, expression of estrogen-related
receptor y (ESRRG) is found to be considerably high in
Group 4 tumors (Additional file 2: Figure S6A).

The Group 4 patients with loss of chrll or loss of 8q
without i(17q) show excellent survival rates (Fig. 3b and
d), which could possibly be explained by reduced expres-
sions of prognostic core genes such as HRAS on 11p,
GAB2 and RELA on 11q, and MYC and HEY1 on 8q
(Additional file 2: Figure S6B). Likewise, the poor
survival outcome of the Group 4 patients with loss of
10q, or gains of 1q or 12q accompanied by i(17q) might
be related to reduced expression of PTEN on 10q, or
elevated expressions of AKT3 and PSEN2 on 1q and
CDK2 on 12q (Additional file 2: Figure S6B, Fig. 4c).

The Notch signaling pathway is blocked by MK-0752
and RO4929097, inhibitors of y-secretase that mediates
the cleavage of the Notch intracellular domain (NICD),
which is translocated to the nucleus and activates the
transcription of NOTCH target genes [48, 49]. Consider-
ing the prognostic significance of immune receptors, NF-
kB signaling, and JAK-STAT pathway, anti-inflammatory
agents and monoclonal antibodies against immune recep-
tors (milatuzumab and infliximab) may provide thera-
peutic interventions in Group 4 [50-52]. Anti-cancer
agents targeting nucleotide biosynthesis pathways include
a DHEFR inhibitor (methotrexate) and a TYMS inhibitor
(5-FU).

Prognostic metabolic pathways in medulloblastoma
subgroups

Finally, we also detect several metabolic pathways that
are known to be reprogrammed in cancer as prognostic
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canonical pathways such as “Alanine, aspartate, and
glutamate metabolism” in SHH subgroup, “Pentose
phosphate pathway” and “TCA cycle” in Group 3, and
“One carbon pool by folate” in Group 4. Accordingly,
focusing on the widely known metabolic pathways
modified in cancer cells [53-57], a comprehensive
schematic diagram is presented in Fig. 5 based on not
only the prognostic core genes obtained in GSEA but
also the genes significantly detected in gene-wise uni-
variable Cox regression analysis (p-value <0.05) or
highly expressed in a particular medulloblastoma sub-
group. Several genes are commonly detected as prog-
nostic genes in all three subgroups, SHH subgroup,
Group 3, and Group 4, including ENO1 encoding
enolase 1 in glycolytic pathway and FASN and SCD
encoding fatty acid synthase and stearoyl-CoA desa-
turase respectively in fatty acid synthesis pathway.
Many genes involved in glycolysis or glutaminolysis
are prognostic or highly expressed in SHH subgroup
or Group 3. The genes involved in one carbon (fol-
ate) cycle or serine synthesis are prognostic mainly in
SHH subgroup or Group 4. Two important genes in
pentose phosphate pathway, TKT and TALDOI, are
associated with poor prognosis in Group 3 and Group
4. It has long been recognized that activation of those
metabolic pathways supports tumor cell anabolism for
rapid proliferation and plays a crucial role in
maintenance of energy and redox homeostasis in
cancer cells [53-58]. Thus, targeting the key enzymes
in the altered tumor metabolic pathways is now being
actively investigated as a new potential chemothera-
peutic strategy [59, 60], which also shed light on
treatment for medulloblastoma.

Conclusions

Data from a decade of genomic analysis have com-
pletely changed the definition and diagnosis of medul-
loblastoma. Research is now progressing toward the
identification of prognostic and therapeutic applica-
tions of this accumulated genomic data. Our primary
and ultimate goal is to identify the genes or signaling
pathways that are essentially responsible for the prog-
nosis of each established medulloblastoma subgroup.
The prognostic genes detected in a particular
subgroup are not necessarily highly expressed in the
given subgroup compared to other subgroups. Rather,
we find that most of the subgroup-specific prognosis-
related genes show almost the same levels or even
lower levels of expression, indicating complicated
prognostic molecular determinants. Thus, our results
suggest that we need to consider not only the genes
that are highly expressed or amplified but also those
with average or relatively low level of expression to
expand the therapeutic targets and strategies.
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Additional files

Additional file 1: Table S1. Goodness-of-fit tests for Cox proportional
hazards model. Table S2. Subgroup-specific enriched gene sets (canon-
ical pathways) and core genes positively and negatively associated with
poor prognosis. Table S3. Cox regression analysis with chromosome
aberrations occurred in more than 10% of patients in SHH subgroup.
Table S4. Cox regression analysis with chromosome aberrations occurred
in more than 10% of patients in Group 3 Table S5. Cox regression
analysis with chromosome aberrations occurred in more than 10% of
patients in Group4. Table S6. Cox regression analysis with chromosome
aberrations in Group4 after excluding the patients with chr11 loss.
Table S7. Cox regression analysis with chromosome aberrations in
Group4 patients without chri11 loss nor i(17q). Table S8. Cox regression
analysis with chromosome aberrations in Group4 patients harboring
i(179) but not chr11 loss. (XLSX 1264 kb)

Additional file 2: Figure S1. Kaplan-Meier subgroup analysis. A, 10-year
Kaplan-Meier subgroup analysis in the exploratory dataset. B, 10-year
Kaplan-Meier subgroup analysis in the validation dataset. Figure S2.
Association between the average relative expression of prognostic core
genes and subtype and clinical characteristics. A, Boxplots of relative
expression of 31 core genes from the top two PID pathways in SHH
subgroup. B, Boxplots of relative expression of 20 core genes from the
top two PID pathways in Group 3. C, Boxplots of relative expression of 31
core genes from the top two PID pathways in Group 4. A, large cell/ana-
plastic (LCA); C, Classic; D, Desmoplastic; M, Medulloblastoma with exten-
sive nodularity (MBEN). ¥, Mann-Whitney U test p-value < 0.05; **, p-value
<0.01; ***, p-value <0.001. Figure S3. Differential expressions of the
prognostic genes identified in SHH subgroup. A, Boxplots of gene expres-
sions in four subgroups. B, Differential gene expressions with Mann-Whit-
ney U test p-values according to the status of chromosome aberrations
in SHH subgroup. Figure S4. Differential expressions of the prognostic
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subgroups. B, Differential gene expressions with Mann-Whitney U test
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Figure S5. Correlation between expressions of NOTCH and those of im-
mune receptors. Scatter plots with regression lines are presented with
Pearson’s correlation coefficients (r) calculated between the expressions
of NOTCH1 (A), NOTCH?2 (B), or NOTCH3 (C) and those of immune recep-
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(PDF 1629 kb)
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