
RESEARCH ARTICLE Open Access

Collagen organization of renal cell
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Abstract

Background: The traditional pathologic grading for human renal cell carcinoma (RCC) has low concordance between
biopsy and surgical specimen. There is a need to investigate adjunctive pathology technique that does not rely on the
nuclear morphology that defines the traditional grading. Changes in collagen organization in the extracellular matrix
have been linked to prognosis or grade in breast, ovarian, and pancreatic cancers, but collagen organization has never
been correlated with RCC grade. In this study, we used Second Harmonic Generation (SHG) based imaging to quantify
possible differences in collagen organization between high and low grades of human RCC.

Methods: A tissue microarray (TMA) was constructed from RCC tumor specimens. Each TMA core represents an
individual patient. A 5 μm section from the TMA tissue was stained with standard hematoxylin and eosin (H&E). Bright
field images of the H&E stained TMA were used to annotate representative RCC regions. In this study, 70 grade 1 cores
and 51 grade 4 cores were imaged on a custom-built forward SHG microscope, and images were analyzed using
established software tools to automatically extract and quantify collagen fibers for alignment and density assessment. A
linear mixed-effects model with random intercepts to account for the within-patient correlation was created to
compare grade 1 vs. grade 4 measurements and the statistical tests were two-sided.

Results: Both collagen density and alignment differed significantly between RCC grade 1 and RCC grade 4. Specifically,
collagen fiber density was greater in grade 4 than in grade 1 RCC (p < 0.001). Collagen fibers were also more aligned in
grade 4 compared to grade 1 (p < 0.001).

Conclusions: Collagen density and alignment were shown to be significantly higher in RCC grade 4 vs. grade 1. This
technique of biopsy sampling by SHG could complement classical tumor grading approaches. Furthermore it might
allow biopsies to be more clinically relevant by informing diagnostics. Future studies are required to investigate the
functional role of collagen organization in RCC.
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Background
The incidence of renal cell carcinoma (RCC) has been
rising, largely due to the incidental detection of asymp-
tomatic kidney tumors on cross-sectional imaging stud-
ies such as computerized tomography (CT) scans [1, 2].
Many of these tumors are small and behave in an indo-
lent fashion, regardless of a malignant histology. Add-
itionally, renal tumors are often more prevalent in
elderly populations or patients with comorbidities that
make surgical extirpation less desirable.
These clinical concerns have led to increased interest

in using renal mass biopsy (RMB) to identify lesions of
different metastatic potentials in an effort to tailor treat-
ment to the individual patient. While RMB is accurate
for distinguishing malignant from benign masses, biopsy
may frequently misestimate tumor grade [3–8]. This in-
accuracy is problematic because RCC grade is a strong
predictor of tumor behavior and whether patients will
develop metastatic disease [9]. Improving the ability to
accurately assign tumor grade from RMB samples could
greatly help counsel patients about the risks and benefits
of treatment.
The pathologic grading of many cancers, including

renal, is traditionally based on features of cytological aty-
pia of epithelial cells. Evidence in other cancers such as
breast has shown that the tumor stroma also plays a vital
role in tumor progression [10, 11]. As such, it follows
that stromal features may also be used as biomarkers for
tumor aggressiveness. In particular, collagen deposition
and rearrangement in the stroma have been linked to
non-renal cancer progression with cancer cells being
shown to migrate along collagen “scaffolds” in vivo [12].
While the collagen patterns in RCC have not been well
described to date, optical detection of collagen changes
has been demonstrated in a number of cancers including
ovarian, breast, pancreatic, and esophageal and linked to
important clinical parameters [10, 11, 13–19].
While collagen and other stromal features can be iden-

tified with a variety of stains and standard white light
microscopy, these techniques often lack quantitative
measures, require special stains, and typically limit inter-
pretation to “subjective” analysis by a pathologist. More
recently applied advanced microscopy techniques, how-
ever, harness the native physical properties of the tissues
to generate high-resolution images, suitable for quantita-
tive image analysis. One such optical technique, Second
Harmonic Generation (SHG) [14], is label free, provides
optical sectioning, high signal to noise data, and is spe-
cific to fibrillar collagen. SHG has been used to study a
wide spectrum of diseases accompanied by fibrosis, ran-
ging from different kinds of cancer to atherosclerosis, by
providing quantitative information about collagen
changes [10–13, 15, 16, 20–29]. While there has been
previous application of SHG to distinguish benign and

malignant renal tumors [30], SHG based assessment of
collagen organization in different grades of RCC has not
been previously reported. To that end, we set out to
characterize and quantify collagen changes in high and
low grade RCC tissues that have different nuclear fea-
tures but have never been compared in terms of collagen
fiber based features.
To summarize, as the traditional pathologic grading

for human RCC has low concordance between biopsy
and surgical specimen [3–8], there is a need to investi-
gate adjunctive pathology technique that does not rely
on the nuclear morphology that defines the traditional
grading. Changes in collagen organization in the extra-
cellular matrix have been linked to prognosis or grade in
breast [10], ovarian [13, 19], and pancreatic [15] cancers,
but collagen organization has never been correlated with
RCC grade. In this study, we used SHG based imaging
to quantify possible differences in collagen organization
between high and low grades of human RCC.

Methods
Human RCC microarray slide preparation
A human RCC tissue microarray (TMA) block was con-
structed by the Translational Research Initiatives in
Pathology lab at the University of Wisconsin-Madison
(UW-Madison). A section of 5um thickness was cut
from the TMA block containing ~600um diameter tissue
TMA cores. The spots (cores) were taken from surgical
resection (partial or total nephrectomy) specimens. Each
core was taken from its representative tumor grade area.
Since each core is rather small (0.6 mm in diameter), the
tumor grade of each core was homogenous. The section
was then placed on a glass slide, stained with standard
hematoxylin and eosin (H&E), and mounted under a
#1.5 glass coverslip. Different tissue cores were from dif-
ferent patients.

Histological imaging and region of interest (ROI)
annotation
A bright field image of the entire H&E slide was col-
lected with an Aperio CS2 Digital Pathology Scanner
(Leica Biosystems) at 20× magnification. Each core of
grade 1 and grade 4 was cropped to the size of 1520
pixels by 1520 pixels using Aperio ImageScope viewing
software (Leica Biosystems). An expert in genitourinary
pathology reviewed the cropped cores to re-confirm the
grade information and selected the representative re-
gions containing cancer cells and an adjacent stroma re-
gion with patterns consistent with Fuhrman grade the
whole tumor had been categorized as. For each core, 2–
3 ROIs with the size of 400 pixels by 400 pixels (202um
by 202um) were annotated containing typical cancer
cells of grade 1 or grade 4 while excluding confounding
tissue features (i.e. adipose tissue, benign tissue). In total,
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75 TMA cores were verified and annotated as grade 1
clear cell RCC and 55 TMA cores as grade 4 clear cell
RCC. Each core represents an individual patient. As de-
scribed below in the SHG imaging methods section, nine
total cores were excluded for lack of signal.

SHG imaging
All cores in this study were imaged with a custom built
forward detection SHG microscope utilized previously
[31, 32]. A MIRA 900 Ti: Sapphire laser (Coherent, Santa
Clara, CA) was used to deliver 780 nm light to the sample
using a 40×/1.25NA water immersion objective (Nikon,
Melville, NY). Forward channel light was collected using a
1.2 NA condenser (Nikon, Melville, NY) and the SHG sig-
nal was filtered with a bandpass filter specific for the colla-
gen signal at 780 nm (390/18 BP, Semrock) and collected
with a H7422–40P GaAsP photomultiplier tube (Hama-
matsu, Hamamatsu, Japan). Circular polarization was im-
plemented and verified for the SHG light source. All of
the cores were imaged with consistent power settings as a
montage of 1024 pixel by 1024 pixel image tiles using in
house developed acquisition software (http://loci.wisc.edu/
software/wiscscan). No SHG signal was observed for five
grade 1 cores and four grade 4 cores after navigating the
system to at least 3 different fields of view on each core.
Hence those 9 cores were excluded. Seventy grade 1 cores
and 51 grade 4 cores with SHG signal were imaged and
analyzed in this study.

Image and statistical analysis
The image tiles of each core were stitched according to
image metadata to create a whole core image using Fiji
[33]. To locate the annotated ROIs on the SHG images,
the corresponding H&E bright field images of each core
were first registered with the SHG images using a com-
bined method of color based segmentation via K-means
clustering and iterative intensity-based registration im-
plemented in MATLAB (R2014b, The MathWorks Inc.,
Natick, MA). The ROIs might present a minor shift
from the original ROI region during the image registra-
tion and ROI transformation. The automatic registration
failed in one core due to the weak collagen signal in that
core, and that core was manually registered using a Fiji
plugin “landmark correspondences”. The pathologist
confirmed that the registration process did not alter any
clinically relevant image features.
Cropped SHG images were then analyzed using an

open-source fiber analysis software tool named CT-FIRE
(https://loci.wisc.edu/software/ctfire) [34] as well as other
MATLAB (R2014b, The MathWorks Inc., Natick, MA)
scripts and R [35] scripts. Collagen density and collagen
alignment were calculated for each core and compared be-
tween grade 1 and grade 4 based on collagen fibers ex-
tracted by CT-FIRE. Collagen fibers that were longer than

5.3 μm (or 30 pixels) were counted as valid fibers in this
study. This 5.3u threshold was determined by a qualitative
assessment. Collagen density was calculated as the num-
ber of fibers in each ROI. Collagen alignment was a meas-
ure of the similarity of the orientations of collagen fibers
in a given image, calculated as the mean resultant vector
length in circular statistics [36]. The alignment coefficient
ranged from 0.0 to 1.0, where larger alignment coefficients
indicate fibers in a given image are more aligned. For this
fiber based collagen alignment analysis, the number of fi-
bers in an ROI was found to need at least 20 fibers to yield
statistically reasonable results. This requirement led to the
exclusion of some of the cores with very few collagen fi-
bers. Hence, in collagen alignment analysis, the sample
size was reduced and was smaller than that used in colla-
gen density analysis.
Summary statistics were calculated for measurements

across all ROIs. To compare grade 1 vs. grade 4 mea-
surements, a separate linear mixed-effects model with
random intercepts to account for the within-patient cor-
relation (due to multiple measurements from different
ROIs per patient) was created for the dependent vari-
ables of collagen density and collagen alignment. Each
collagen feature was the outcome of interest, and grade
4 vs. grade 1 was the predictor variable. Statistical tests
were two-sided, and the level of significance was set at
(p < 0.05). All statistical analysis was done in R 3.3.1 [35]
including the “nlme” package.

Results
The Curvelet transform-based image analysis software
utilized (CT-FIRE) is capable of quantifying a number of
collagen fiber characteristics. CT-FIRE accurately quan-
tified RCC collagen fiber alignment and density based
on manual review of CT-FIRE output images with the
extracted fibers overlaid on the original SHG image. For
this investigation, we focused our analysis on collagen
density and alignment, since these were the most appar-
ent differences noted between specimens on subjective
assessment. Figure 1 shows two representative bright
field and SHG images from grade 1 and grade 4, respect-
ively, that indicate RCC grade 1 and RCC grade 4 have
significantly different collagen alignment.
Collagen density was found to be significantly lower in

grade 1 RCC compared to grade 4 (p < 0.001) as shown
in Fig. 2, with a density increase of 68.98 for grade 4
RCC (95% confidence interval 30.76–107.20).
Significant differences in collagen alignment were also

found between grade 1 RCC and grade 4 RCC (p <
0.001) as shown in Fig. 3. Collagen fibers appeared more
aligned in RCC grade 4 compared to RCC grade 1, with
an increase of 0.092 (95% confidence interval0.044–
0.141). Parallel “bundles” of collagen fibers were detected
in many samples of RCC grade 4.

Best et al. BMC Cancer          (2019) 19:490 Page 3 of 8

http://loci.wisc.edu/software/wiscscan
http://loci.wisc.edu/software/wiscscan
https://loci.wisc.edu/software/ctfire


Fig. 1 Bright field image and SHG images of two representative cores of RCC grade 1 and grade 4. The fibers in the zoomed-in region of grade 1
have a mesh-like organization, while those in the grade 4 are more aligned. Image brightness and contrast were adjusted for enhanced
visualization using MATLAB. Scale bar = 50 um

Fig. 2 The number of fibers is significantly larger in grade 4 than in grade 1. All 70 grade 1 patients had measurements for 3 ROI for a total of
210 observations, while the 51 grade 4 patients had this data available for 2–3 ROI, for a total of 152 observations. On each box, the central red
line represents the median, the lower blue line and the upper blue line represent the 25th and 75th percentiles, respectively, the dashed lines
and black lines indicate the lower and upper limits of the data points that are not considered as outliers, and the red crosses represent outliers.
The boxplot was drawn using the standard boxplot function with default settings in MATLAB R2014b
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Discussion
The increased incidence of small renal masses (SRMs) has
placed a significant burden upon patients and the medical
community as a whole as clinicians struggle to predict
which patients would benefit from treatment of their le-
sions. It is already accepted that not all patients require
surgical extirpation of their renal tumors, but the path-
ways to making that decision are currently ill defined.
Tumor size and growth patterns have been advocated as
possible metrics, but low metastatic-potential lesions may
be relatively large at diagnosis and a number of studies
have demonstrated tumor growth kinetics do not reliably
differentiate benign and malignant lesions [37, 38].
Many experts have promoted utilizing RMB to assist in

risk stratification [4, 6]. Percutaneous tumor biopsy is appeal-
ing due to its low morbidity [4, 39, 40]. While core biopsy
can be very useful in separating benign from malignant renal
masses, the biopsy accuracy for tumor grade is unfortunately
limited. For example, Neuzillet and colleagues [3] found core
biopsies to be only 69.8% accurate in determining Fuhrman
grade when biopsy pathology reports were compared to sur-
gical specimens. Additionally, Halverson et al. [6] reported

that 32 out of 72 patients diagnosed with low-grade clear cell
RCC on biopsy who ultimately underwent surgical tumor re-
moval were actually found to have high-grade RCC on final
pathology, suggesting an unmet need to predict tumor ag-
gressiveness from small biopsy specimens with increased ac-
curacy. The concordance can be increased if two-tier
grading system (e.g. low grades (1,2) vs grades (3, 4))
is used as reported by Millet et al. [5]. However, the
level of improvement is case-specific and it remains
challenging in more accurate grading between individ-
ual grades in low and high grades such as differentiat-
ing grade 2 and 3 that is clinically important. This
inaccuracy in grading is likely multifactorial and re-
lated to challenges in Fuhrman grading, interobserver
variations, and most importantly, the tumor grade
heterogeneity associated with RCC itself [4].
While collagen characteristics of RCC are not well

described, collagen patterning has been linked to tumor
behavior and clinical factors in other malignancies. SHG
microscopy has already shown promise in studying other
cancers, including breast [10], ovarian [13, 19], pancreas
[15], and prostate [41–43]. For example, SHG data have

Fig. 3 Fiber alignment coefficient is significantly higher in grade 4 than in grade 1. In the alignment comparison, the sample size is smaller than
that in collagen density comparison due to the minimum fiber number requirement in the alignment calculation described in section 2.3. 53
patients out of 70 grade 1 patients had alignment measurements for 1–3 ROI for a total of 115 observations, while 43 out of 51 grade4 patients
had this data available for 1–3 ROI for a total of 110 observations. On each box, the central red line represents the median, the lower blue line
and the upper blue line represent the 25th and 75th percentiles, respectively, the dashed lines and black lines indicate the lower and upper limits
of the data points that are not considered as outliers, and the red crosses represent outliers. The boxplot was drawn using the standard boxplot
function with default settings in MATLAB R2014b
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been used to differentiate different types of benign and
malignant tissues [14, 15]. Keely and colleagues [11, 44]
have done extensive work characterizing the collagen
patterning associated with breast cancer using SHG,
showing that collagen fibers become aligned perpendicular
to the tumor boundary in the invasive phase of disease.
This “tumor-associated collagen signature” (TACS-3) can
serve as an optical biomarker to independently predict
breast cancer patient survival [10, 31].
Our current study determined that there are significant

differences in both collagen density and fiber alignment be-
tween grade 1 and grade 4 RCC. Collagen density compari-
son from fiber-based analysis shown in Fig. 2 is in
agreement with collagen intensity based analysis (quantita-
tion of white pixel percentage to total pixel number), indi-
cating number of collagen fibers and collagen percentage
carry similar density-related information in this study. It is
particularly compelling that collagen fibers appeared more
aligned in RCC grade 4 compared to RCC grade 1 (p <
0.001). The prevalence of parallel collagen fibers in high
grade RCC is interesting since in other non-renal malignan-
cies, tumor cells have been observed to invade surrounding
tissues along aligned collagen fibers [11, 12, 45]. Breast
cancer cells have even demonstrated the ability to reorgan-
ize collagen fibers in a random collagen matrix to facilitate
invasion [11]. The ability of malignancies to organize a
collagen “scaffold” may represent an important step in
tumorigenesis, and while this active process has not yet
been investigated in kidney cancer, it is fascinating to find
the greatest collagen alignment in the most aggressive of
RCCs. However, the current two collagen features cannot
be directly used as diagnostic tools as both features if used
alone lack the applicable discriminant ability. It is our hope
that future investigations of advanced imaging methods
such as SHG, which does not rely on the nuclear
morphology that defines the Fuhrman system, may show
that this adjunctive pathology technology can improve our
characterization of predicted tumor behavior. More studies
are needed to determine if/how collagen features could be
of help for clinical decision making.
It should be noted that we qualitatively observed that

the collagen organization appears to be highly heteroge-
neous across different cores of a same grade and across
different regions of the same core. This observation led us
to consult with an expert in genitourinary pathology for
specific ROI annotation. Manual ROI annotation im-
proves the accuracy of the grading assignment and makes
the comparison between different grades focus on the
prominent extracellular matrix features of the RCC tumor
at a given grade. Benign tissue was not included in this
study as benign tissue is already reliably identified with
current techniques and there has already been at least one
publication showing the SHG based collagen differences
between benign and malignant renal tumor [30].

Our investigation has several limitations that need to be
addressed in future studies. First, the sample size is rela-
tively limited and focused on determining differences in
collagen patterning between the “extremes” of kidney can-
cer, low and high grade RCC. Future studies will evaluate
the SHG signals generated by grade 2 and 3 clear cell, as
well as other renal neoplasms such as papillary RCC and
other RCC subtypes. Additionally, RCC is known for its
intratumor heterogeneity, which contributes to nuclear
grade inaccuracy on RMB specimens and we also ob-
served great heterogeneity of collagen distribution in
TMA cores of the same Fuhrman grade. Some cores
present very weak collagen signal while many others have
strong signals. Whether collagen patterns are more homo-
geneous throughout a tumor than nuclear features (and
thus less sensitive to sampling error) remains yet to be
determined. One focus of the future investigations would
be sampling larger tumor areas with different Fuhrman
grades of the same patient to access how collagen features
can possibly help overcome the heterogeneity issue.
Finally, as the samples in the microarray were randomly
oriented on the slide, we were not able to assess collagen
alignment with respect to the tumor margin with the
surrounding normal kidney. To quantify the relative align-
ment, a bigger area of a tissue section rather than just
TMAs needs to be imaged and the tumor boundaries
could then be annotated and analyzed following the work
flow described in our previous work [31].

Conclusions
While differences in collagen patterning can be visualized
subjectively, an advantage of our methodology is that the
use of SHG to identify collagen fibers in a sample permits
automatic digital image processing and quantification and
can be applied to unstained tissues including fresh tissue.
From a clinical standpoint, SHG is also a highly flexible
platform, able to image unstained tissue (fresh, frozen, or
fixed) slides already produced as part of the standard path-
ology workflow. Additionally, the ability to study tissues
with SHG in vivo including in live animal models, such
has been previously described in breast cancer, may shed
significant light on the functional role of collagen in rela-
tion to the behavior of RCC tumors. Finally, despite the
limited number of the TMA cores in our investigation, we
found significant differences in collagen alignment and
density. This is important clinically, due to the nature of
the current “problem” facing physicians counseling RCC
patients before treatment: a need for more reliable
biopsy-based biomarkers with which to advise patients
about the malignant potential of their tumors. Future
studies will seek to assess if SHG optical biomarkers of
collagen alignment and density can improve accurate de-
termination of RCC tumor grade from biopsy specimens
and aid patient counseling about cancer prognosis.
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