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Abstract

Purpose: To explore imaging biomarkers that can be used for diagnosis and prediction of pathologic stage in
non-small cell lung cancer (NSCLC) using multiple machine learning algorithms based on CT image feature
analysis.

Methods: Patients with stage IA to IV NSCLC were included, and the whole dataset was divided into training
and testing sets and an external validation set. To tackle imbalanced datasets in NSCLC, we generated a new
dataset and achieved equilibrium of class distribution by using SMOTE algorithm. The datasets were randomly
split up into a training/testing set. We calculated the importance value of CT image features by means of
mean decrease gini impurity generated by random forest algorithm and selected optimal features according
to feature importance (mean decrease gini impurity > 0.005). The performance of prediction model in training
and testing sets were evaluated from the perspectives of classification accuracy, average precision (AP) score
and precision-recall curve. The predictive accuracy of the model was externally validated using lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) samples from TCGA database.

Results: The prediction model that incorporated nine image features exhibited a high classification accuracy,
precision and recall scores in the training and testing sets. In the external validation, the predictive accuracy
of the model in LUAD outperformed that in LUSC.

Conclusions: The pathologic stage of patients with NSCLC can be accurately predicted based on CT image
features, especially for LUAD. Our findings extend the application of machine learning algorithms in CT image
feature prediction for pathologic staging and identify potential imaging biomarkers that can be used for
diagnosis of pathologic stage in NSCLC patients.
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algorithm

* Correspondence: yejiandingchest@sohu.com; chenqunhui312@163.com
Lingming Yu and Guangyu Tao contributed equally to this work.
'Department of Radiology, Shanghai Chest Hospital, The Affiliated Chest
Hospital of Shanghai Jiaotong University, No. 241 Huaihai West Road, Xuhui
District, Shanghai 200030, China

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-019-5646-9&domain=pdf
http://orcid.org/0000-0002-6812-3213
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yejiandingchest@sohu.com
mailto:chenqunhui312@163.com

Yu et al. BMC Cancer (2019) 19:464

Background

Lung cancer is one of the most frequent types of
malignancy and a leading cause of cancer-associated
mortality worldwide [1]. In clinical management,
lung cancer can be classified in two main categories,
non-small cell lung cancer (NSCLC) and small cell
lung cancer, with the former occupying approxi-
mately 85% of lung cancers [2, 3]. NSCLC represents
a heterogeneous group of cancers mainly composed
of lung squamous cell carcinoma (LUSC) and lung
adenocarcinoma (LUAD) [4, 5]. However, the 5-year
survival of NSCLC remains dismal, and 70% cases
are diagnosed after the onset of advanced local or
metastatic disease. The prognosis varies widely ac-
cording to tumor staging at diagnosis [6]. Unfortu-
nately, merely 15% of cases are not diagnosed until
late stage [7], and thus the accurate prediction of
pathologic stage for patients with lung cancer is of
utmost importance.

Staging plays a crucial role in the evaluation of a pa-
tient as it defines the actual extent of the disease. Patho-
logic tumor stage is considered a pivotal factor relating
to survival in NSCLC, and the 5-year survival rates vary
from 83% in pathological stage IA to 23% in stage IIIA
tumors [8]. Accurate staging is conducive to developing
the effective medical treatment and to predicting patient
prognosis. With the widespread application and ad-
vanced imaging technology in screening and diagnosis,
the pathologic stages of more tumors have been diag-
nosed. However, the rate of recurrence remains unsatis-
factory and ranges between 15 and 30%, even after
complete surgical resection [9]. Pathologic staging of
LUSC and LUAD remains a challenge for the physician
using individual pretreatment variables.

Recent advances in radiography, such as
high-resolution computed tomography and the wide-
spread practice of low-dose helical computed tomog-
raphy (CT) for screening of tumors, have led to an
increase in the early detection of NSCLC [10]. CT has
been widely used as a noninvasive diagnostic modality
for diagnosis, clinical staging, survival prediction, sur-
veillance of therapeutic response in patients with
NSCLC [11-13]. Tumor phenotypic differences, such as
irregular shapes and heterogeneity, can be measured
using radiomic features derived from CT images.

Radiomics is an emerging technique that utilizes
high-throughput quantitative image features for diagno-
sis and prognosis [14]. Radiomics focuses on systematic
quantification of the tumor phenotype by effectively
extracting and analyzing massive image data [15, 16]. An
increasing number of studies have suggested that CT
image features have high diagnostic and predictive
values in clinical pathologic staging of diseases and clin-
ical outcomes [17-19]. For instance, in a previous
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research of Kim et al,, CT radiomics features, including
roundness and grey-level nonuniformity, were verified as
predictive biomarkers of survival in LUAD [20].
Ravanelli et al. performed a texture analysis on
contrast-enhanced computed tomography images in ad-
vanced LUAD and uncovered an independent predictive
indicator for treatment response [21]. Nonetheless, few
image features can be used for accurate prediction of
pathologic stage in patients with NSCLC.

Herein, our study applied a series of machine learning
algorithm, and explored potential imaging biomarkers
that can be used for diagnosis and prediction of patho-
logic stage in NSCLC based on a CT image feature
analysis.

Methods

Data sets

A total of 145 patients with pathologically confirmed
stage IA to IV NSCLC were included in this study. The
patient cohort was comprised of three datasets, includ-
ing NSCLC (n =87), LUAD (n =24) and LUSC (n = 34).
NSCLC samples were averagely divided into a training
set and a testing set, while LUAD and LUSC data sets
were used for external validation. CT images of all pa-
tients were publicly available on the cancer imaging
archive (TCIA). The clinico-pathologic characteristics of
patients in NSCLC, LUAD, and LUSC cohorts were
shown in Table 1. The inclusion criteria were those who
were newly diagnosed or treatment-naive NSCLC and
pathologically confirmed stage IA to IV lung
adenocarcinoma and squamous cell carcinoma, as well
as had pre-treatment CT images. The exclusion criteria
are the patients who were treated with surgery or che-
moradiation therapy and contained incorrect staging
information. The TRIPOD checklist is appended as
Additional file 1: Table S1.

Table 1 Patient and tumor characteristics in the training and
validation sets

NSCLC TCGA-LUAD TCGA-LUSC P value
(N=287) (N=24) (N=134)
sex
male 58 9 19 0.033
female 29 15 15
Overall stage
IA 14 5 3 0.513
1B 28 5 10
IIA 5 2 5
1B 22 3 9
1A 10 7 4
1B 3 1 2
\% 5 1 1
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Fig. 1 Performance assessment of prediction model in training and testing sets. a The imbalanced class distribution of NSCLC samples. b The final class
distribution of NSCLC samples after equilibrium processing. € Confusion matrix was used to examine whether there is a consistency between the actual and
the predicted results in NSCLC cohort. d Receiver operating characteristic (ROC) curve analysis for the prediction of the pathologic stages in NSCLC cohort.
The corresponding reference groups are all the other stages patients. e Average precision score of prediction model in NSCLC cohort, micro-average over all
classes: AP =0.60. f Extension of precision-recall curve to multi-classes in NSCLC cohort
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Lesion recognition and region-of-interest segmentation
by 3D-slicer software

It is well known that manual segmentation is required be-
fore extracting radiological features. All patient images
were loaded and processed in the original DICOM format.
We used 3D-Slicer software (https://www.slicer.org/) to
load CT image files and RTSTRUCT files for mapping
sub-regions of lesions. Apply the segment editor module
to change the main representation from a flat outline to a
binary label map. The 3D image file and the binary mask
tag file are saved by the 3D-Slicer as NRRD format files
for the next feature extraction step.

Extracting features from CT images using Pyradiomics

By segmenting the region of interest of the tumor,
features can be extracted and four types of imaging
features (shape, intensity, texture, and wavelet) can be
identified. We used pyradiomics (http://readthedocs.
org/projects/pyradiomics/) which is an open source
python package to perform feature extraction tasks.
Some quantitative features are as follows: first-order
features, shape features, gray level co-occurrence
matrix (GLCM) features. In addition to the shape fea-
tures, other features can be measured on the original
or derived image, while the shape descriptor is inde-
pendent of the gray value and is extracted from the
label mask (http://pyradiomics.readthedocs.io/en/lat-
est/ Features.html).

Data preprocessing

First, we should confirm whether the original class distri-
bution of NSCLC cohort was balanced. If not, over sam-
pling would be performed by means of SMOTE algorithm,
to tackle the curse of imbalanced datasets in machine
learning and to achieve equilibrium of class distribution by
producing a new data set. The newly-generated data sets
were then split up into a training set and a testing set.

Predictive modeling and feature selection

Considering some redundant and irrelevant features
that may influence classification accuracy of the pre-
diction model, we calculated the importance value of
CT image features by means of Random Forest algo-
rithm, and then selected optimal features in accord-
ance with feature importance (mean decrease gini
impurity >0.005) for modeling. Random forest is a
tree-based ensemble learning method for regression
and classification, developed by Leo Breiman [22]. It
is widely applied in medicine, and has proven to be
an easy-to-use and highly accurate predictive method
[23]. From the methodological perspective of feature
selection, random forest is a kind of embedded fea-
ture selector which can automatically produce the
relative importance of features during the model
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training process. Here, the classification accuracy of
the random forest was evaluated using out of bag
(OOB) error, which is an unbiased estimate of ran-
dom forest generalization error. We used the python
module scikit-learn to perform all the above model-
ling process using default parameters. In view of the
limited sample size of each stage, we also performed
all the aforementioned analysis on binarized stage of
early (stage I/II) and late (stage III/IV).

Classification accuracy of prediction model

To evaluate the performance of prediction model in train-
ing and testing sets, receiver operating characteristics
(ROC) curves were plotted to display classification per-
formance in the testing set and the external validation set.
The ROC curve is a comprehensive index that reflects
false positive rate and true positive rate of continuous

Table 2 Feature importance

Feature Importance
wavelet-HHH_firstorder_RootMeanSquared 0.007136
log-sigma-2-0-mm-3D_firstorder_RootMeanSquared 0.006829
wavelet-HHL_glcm_InverseVariance 0.006782
wavelet-HHL _glcm_Idn 0.006155
wavelet-HHL_firstorder_Variance 0.005531
wavelet-HHL_glszm_SmallAreaHighGrayLevelEmphasis 0.00533
wavelet-HHL_glcm_InverseVariance 0.005291
wavelet-HHL_glcm_Imc1 0.005072
wavelet-HHL_glrim_LongRunLowGraylLevelEmphasis 0.005063
wavelet-HHL_glcm_Idmn 0.004948
wavelet-HHL_glrim_GrayLevelVariance 0.004713
wavelet-HHL_glszm_LargeAreaLowGrayLevelEmphasis 0.004235
wavelet-HHL_glcm_Idm 0.004189
wavelet-HHL_glrim_ShortRunHighGrayLevelEmphasis 0.004122
wavelet-LLL_glrim_LongRunHighGrayLevelEmphasis 0.003965
wavelet-HLH_glcm_JointEnergy 0.003955
wavelet-HHL_gldm_LargeDependenceEmphasis 0.003925
original_glszm_ZoneVariance 0.003886
log-sigma-2-0-mm-3D_glcm_ClusterProminence 0.003725
wavelet-HHL_firstorder_Median 0.003717
wavelet- 0.003683
HHL_gldm_SmallDependenceHighGraylLevelEmphasis
wavelet-HHL_glrim_LongRunHighGraylLevelEmphasis 0.003615
wavelet-HHL_glcm_DifferenceVariance 0.003579
log-sigma-4-0-mm-3D_glszm_GrayLevelNonUniformity 0.003525
wavelet-LLH_firstorder_RootMeanSquared 0.003449
wavelet-LLL_glszm_SizeZoneNonUniformityNormalized 0.003391
wavelet-HLL_glszm_GrayLevelVariance 0.003327
log-sigma-4-0-mm-3D_glrim_ShortRunEmphasis 0.003289



https://www.slicer.org/
http://readthedocs.org/projects/pyradiomics/
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Fig. 2 Performance assessment of prediction model in training/testing sets in binarized predictive scenario. a The imbalanced class distribution of
NSCLC samples. b The final class distribution of NSCLC samples after equilibrium processing. ¢ Receiver operating characteristic (ROC) curve
analysis for the prediction of the pathologic stages in NSCLC cohort. d. Confusion matrix was used to examine whether there is a consistency
between the actual and the predicted results in NSCLC cohort. e Precision-recall curve in NSCLC cohort. f Average precision score of prediction

model in NSCLC cohort

variables. The area under the curve (AUC) was an evalu-
ation measure for model performance.

In addition, confusion matrix was applied to exam-
ine whether there is a consistency between the pre-
dicted and actual results. Confusion matrix is a
useful tool to evaluate the performance of classifiers
in their ability to classify multi-classed objects in
addition to ROC curves. In this study, we focused
on the generalization properties of learning algo-
rithm for multiclass classification problems and used
the confusion matrix of a classifier as a measure of
its quality. We also used accuracy score, the ration
of number of correctly classified samples to the
number of all the samples, to evaluate the model
predictive performance. Finally, we computed a new
model by using original features, the accuracy score
of which could be calculated according to the
chosen optimal features.

Assessment of prediction model using precision-recall
curves

In addition to evaluating accuracy of prediction
model using ROC curves, Precision-Recall metric
was also employed to estimate the output quality of
the classifier. Precision-Recall curves is more inform-
ative when evaluating binary classifier on imbalanced
datasets with performance measures such as preci-
sion and recall metrics. A high area under the curve
of a precision-recall curve can be detected with ei-
ther high precision or high recall, which also sug-
gests a low false positive rate or a low false negative
rate. High scores for both show that the classifier is
returning accurate results (high precision), as well as
returning a majority of all positive results (high re-
call). Moreover, the higher fl-score, the more stable
the classification model.

Considering the limitation of single metrics-precision,
recall and f1-score, we decided to adopt average precision
score and precision-recall to each class to assess the over-
all capacity. Here, average precision (AP) is used to meas-
ure the accuracy of the classifier using weighted mean of
precisions achieved at each threshold. Furthermore, the
output would be binarized if the precision-recall curve
and average precision were extended to multi-class or
multi-label classification. The precision-recall curve can
be plotted through considering each element of the label

indicator matrix, which is considered a binary prediction
(micro-averaging).

Results

Clinico-pathologic characteristics

A total of 145 were pathologically diagnosed with
NSCLC, including LUSC, LUAD, or other subtypes of
NSCLC. In the training/testing sets with 87 NSCLC
patients, there were 58 male patients and 29 female
ones. Furthermore, the LUAD cohort comprised of 24
patients and the LUSC cohort consisting of 34 ones
were separately used for the external validation of the
model. As shown in Table 1, no discrepancy was de-
tected between the training/testing sets and the valid-
ation set in gender (P=0.14), while there was a
significant difference found between three cohorts in
terms of clinico-pathologic stages (P =0.02). Clinical
information for NSCLC patients from TICA database
was provided in Additional file 2: Table S2.

Identification of imaging biomarkers

Through observation on data of each group, we con-
firmed the imbalanced class distribution of original
NSCLC samples in the training set (Fig. 1la), and then
conducted over sampling by using random oversam-
pling. Another machine learning algorithm, SMOTE,
was subsequently employed to generate a new balanced
data set for the following analyses (Fig. 1b).

Given that some redundant or irrelevant features in
the new data set may exert an influence on the classify-
ing effects of the model, the importance value of CT
image features was first calculated by means of Random
Forest algorithm (Table 2), followed by selection of the
optimal features based on each feature importance
(mean decrease gini impurity >0.005). In total, nine
image features were chosen for modeling. These features
are wavelet-HHH_firstorder_RootMeanSquared, log-sig
ma-2-0-mm-3D_firstorder_RootMeanSquared, wavelet-
HHL_glcm_InverseVariance, wavelet-HHL_glcm_Idn,
wavelet-HHL_firstorder_Variance, wavelet-HHL_glszm_
SmallAreaHighGrayLevelEmphasis, wavelet-HHL_glem_
InverseVariance, wavelet-HHL_glcm_Imcl, wavelet-
HHL_glrlm_LongRunLowGrayLevelEmphasis, respect-
ively. All the features are numerical features. There nine
features can be utilized as the stage-predictive image
biomarkers. Several features are easy to interpret. Root
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(See figure on previous page.)

Fig. 4 Performance assessment of prediction model in validation sets. in binarized predictive scenario. a & ¢ Confusion matrix was used to determine
whether there is a consistency between the actual and the predicted results in LUAD (up) and LUSC (down). b & d Receiver operating characteristic
(ROQ) curve analysis for the prediction of the pathologic stages in LUAD (up) and LUSC (down). e Average precision score of prediction model in

LUAD. f Average precision score of prediction model in LUSC

mean squared (RMS) is the square-root of the mean of
all the squared intensity values. It is a measure of the
magnitude of the image values. As for inverse difference
normalized (IDN), it is a measure of the local homogen-
eity of an image. Small Area High Gray Level Emphasis
(SAHGLE) measures the proportion in the image of the
joint distribution of smaller size zones with higher
gray-level values. Long Run Low Gray Level Emphasis
(LRLGLE) measures the joint distribution of long run
lengths with lower gray-level values. Ultimately, the clas-
sification accuracy of the models was evaluated using
OOB error, with 0.81 of original random forest model
and 0.86 of limited feature model.

Performance evaluation of prediction model in training
sets

The prediction model’s performance was first assessed in
the testing sets with equilibrium of class distribution and
balanced data. In terms of classification accuracy, confu-
sion matrix results confirmed that there was a consistency
between the predicted and actual results, which suggested
a better performance of the model in the classification of
multi-class objects (Fig. 1c). Furthermore, ROC curve ana-
lysis also verified that the model could predict and distin-
guish pathologic stages of NSCLC with high accuracy of
0.69 ~ 1.00 (Fig. 1d). Here, the accuracy scores of the ori-
ginal random forest model and limited feature model were
0.53 and 0.57, respectively.

In addition to accuracy score, the prediction model
was also evaluated from the perspectives of average pre-
cision score and precision-recall to each class. As exhib-
ited in precision-recall curves (Fig. 1e, f), our prediction
model not only yielded a higher average precision score
(AP) of 0.60 (Fig. 1le), but achieved a better diagnostic
performance for pathologic stages of NSCLC in terms of
the extension of precision-recall curve to multi-classes
(Fig. 1f). Corresponding results of binarized stage sce-
nario is depicted in Fig. 2.

Performance evaluation of prediction model in external
validation sets

In addition to the internal testing above, we also per-
formed an external validation for the performance of the
prediction model by using LUAD and LUSC data sets
without preprocessing or equilibrium of class distribu-
tion. The original class distribution of samples in the
LUAD cohort (Fig. 3a) and LUSC cohort (Fig. 3b) was
displayed in Fig. 4. The machine learning algorithms in

the external validation were same as those used in test-
ing sets. In terms of the classifier performance in the
LUAD data set, confusion matrix and ROC curves both
indicated a high classification accuracy of the model,
with AUC value of 0.69 ~ 1.00 (Fig. 3c, d). Likewise, we
also re-confirmed the consistency between the predicted
and actual results in the LUSC data set (Fig. 3e). ROC
curves also revealed that the model could distinguish the
pathologic stages of LUSC with high accuracy of at least
65% (Fig. 3f).

For average precision score and precision-recall to
each class of the model, our precision-recall curves in
the external validation set presented that the prediction
model not only achieved higher average precision scores in
both LUAD (AP =0.84) and LUSC (AP =0.62) (Fig. 5a, ¢)
but yielded a better differentiation performance for patho-
logic stages of LUAD and LUSC in terms of the extension
of precision-recall curve to multi-classes (Fig. 5b, d). Taken
together, our prediction model that incorporated nine
image features could predict and differentiate the patho-
logic stages of NSCLC accurately, and the predictive accur-
acy of the model in LUAD outperformed that in LUSC.
Corresponding results of binarized stage scenario is
depicted in Fig. 4. In addition, the association between
Radiomic Score and TNM factors was separately evaluated
as shown in Additional file 3: Table S3, and similar results
were found in the NSCLC dataset.

Discussion

The present study revealed that image features extracted
from CT scans was correlated with pathologic stage of
patients with NSCLC. Our study further explored the
function and application of machine learning in CT
image feature analysis for pathologic staging, meanwhile,
unveiled potential imaging biomarkers that can be used
for diagnosis and prediction of pathologic stage in
NSCLC. Ultimately, our prediction model that incorpo-
rated nine optimal characteristics was validated to be
significantly effective in the prediction of lung cancer
subtypes and pathologic tumor stages of LUAD and
LUSC.

In recent years, radiomics plays an emerging role in
cancer research, imaging biomarkers and clinical man-
agement. An increasing number of image characteristics
have been reported to have high predictive and diagnos-
tic values in NSCLC [12, 24]. For instance, Coroller et
al. corroborated that CT-based radiomic signature could
predict distant metastasis in lung adenocarcinoma [25].
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Ko et al. unraveled the predictive value of 18F-FDG PET
and CT morphologic features for recurrence in patho-
logical stage IA non-small cell lung cancer [26]. Chen et
al. demonstrated that a radiomics signature is a poten-
tially useful imaging biomarker for differentiating low
from high DTD in patients with NSCLC based on
contrast-enhanced computed tomography imaging [27].
With continuous advances in imaging technology and
researches, some radiomics features are also applied to
the prediction of pathologic stage in lung cancer. Tsutani

et al. identified predictors of pathologic lymph node in-
volvement in clinical stage IA lung adenocarcinoma [28].
In a clinico-pathologic study performed by Kaira et al.,
fluorine-18-alpha-methyltyrosine positron emission tom-
ography was validated to be instrumental in diagnosis
and staging of lung cancer [29]. Herein, we first con-
ducted an equalization processing for imbalanced data
sets, and then determined nine optimal image character-
istics that may be related to the pathologic stages of
LUAD and LUSC by means of Random Forest. Our
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prediction mode was validated internally and externally
by means of multiple machine learning algorithms.

Radiomics applies machine learning algorithms to
quantitative imaging data to characterize the tumour
phenotype and predict clinical outcome. Recent break-
throughs in deep learning with applications in radiology,
such as lung nodule malignancy classification, pathologic
stage prediction and lymph node detection, have been
instrumental in identifying disease-specific imaging
biomarkers and improving the diagnostic performance
[30-32]. For instance, Zhang et al. also unveiled optimal
machine-learning algorithms for the radiomics-based
prediction of local failure and distant failure in advanced
nasopharyngeal carcinoma, which could enhance the ap-
plications of radiomics in precision oncology and clinical
practice [33]. Furthermore, Ferreira et al developed and
validated a radiomics signature that can be used for
histopathological subtype diagnosis and metastatic pre-
diction of lung cancer based on machine learning [34].
In this study, ROC curves and confusion matrix were
employed for assessment on the classification accuracy
of the prediction model, meanwhile, we also estimated
the output quality of the classifier was also measured
comprehensively using Precision-Recall metric. The pre-
diction model that incorporated nine image features ex-
hibited a high classification accuracy (all AUC > 0.70),
precision and recall scores (AP =0.60) in the training
sets, while the predictive accuracy of the model in
LUAD (AP =0.84) was much higher than that in LUSC
(AP =0.62) in the external validation. The results above
also imply that there exists a large difference between
LUAD and LUSC in terms of CT image features, and
hence the two subtypes of NSCLC may be differentiated
and predicted based on the difference of image features.

Nevertheless, it is noteworthy that there are some lim-
itations in our radiomics analysis. Although our predic-
tion model could be used for the precise tumor staging
of lung cancer, some deviations may exist due to limited
sample size. Moreover, the imbalanced data sets were
subjected to equalization processing, while there are still
some deficiencies, and thus a larger cohort would be
needed for the further validation of the model. Further-
more, despite our focus is the staging of NSCLC, we still
lack the CT images of healthy volunteers to be negative
controls.

Conclusions

In conclusion, it is the first time that the significance of
radiomics features in prediction of pathologic stages of
NSCLC has been studied. Nine optimal image features
were identified as predictive and diagnostic biomarkers
for pathologic stages of NSCLC. Using multiple machine
learning algorithms, our prediction model has been veri-
fied to effectively predict the tumor stages of NSCLC,
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especially for LUAD. Our findings not only extend the
application of machine learning algorithms in CT image
feature prediction for pathologic staging, but identify po-
tential imaging biomarkers that can be used for diagno-
sis and prediction of pathologic stage in NSCLC.

Additional files

Additional file 1: TRIPOD Checklist: Prediction Model Development.
(DOCX 88 kb)

Additional file 2: Table S2. Clinical information of NSCLC patients from
TCIA database. (XLSX 15 kb)

Additional file 3: Table S3. Association between Radiomic Score and
TNM factors. (XLSX 11 kb)
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