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Abstract

Background: Cancer cells evolve and constitute heterogeneous populations that fluctuate in space and time and
are subjected to selection generating intratumor heterogeneity. This phenomenon is determined by the acquisition
of genetic/epigenetic alterations and their selection over time which has clinical implications on drug resistance.

Methods: DNA extracted from different tumor cell populations (breast carcinomas, cancer cell lines and cellular
clones) were analyzed by MS-MLPA. Methylation profiles were used to generate a heterogeneity index to quantify
the magnitude of epigenetic heterogeneity in these populations. Cellular clones were obtained from single cells
derived of MDA-MB 231 cancer cell lines applying serial limiting dilution method and morphology was analyzed by
optical microscopy and flow cytometry. Clones characteristics were examined through cellular proliferation,
migration capacity and apoptosis. Heterogeneity index was also calculated from beta values derived from
methylation profiles of TCGA tumors.

Results: The study of methylation profiles of 23 fresh breast carcinomas revealed heterogeneous allele populations
in these tumor pieces. With the purpose to measure the magnitude of epigenetic heterogeneity, we developed an
heterogeneity index based on methylation information and observed that all tumors present their own heterogeneity
level. Applying the index calculation in pure cancer cell populations such as cancer cell lines (MDA-MB 231, MCF-7, T47D,
HeLa and K-562), we also observed epigenetic heterogeneity. In addition, we detected that clones obtained from the
MDA-MB 231 cancer cell line generated their own new heterogeneity over time. Using TCGA tumors, we determined that
the heterogeneity index correlated with prognostic and predictive factors like tumor size (p = 0.0088), number of affected
axillary nodes (p = 0.007), estrogen receptor expression (p < 0.0001) and HER2 positivity (p = 0.0007). When we analyzed
molecular subtypes we found that they presented different heterogeneity levels. Interestingly, we also observed that all
mentioned tumor cell populations shared a similar Heterogeneity index (HI) mean.

Conclusions: Our results show that each tumor presents a unique epigenetic heterogeneity level, which is associated
with prognostic and predictive factors. We also observe that breast tumor subtypes differ in terms of epigenetic
heterogeneity, which could serve as a new contribution to understand the different prognosis of these groups.

Keywords: Intratumor heterogeneity - promoter methylation, TCGA - heterogeneity index - breast Cancer - cellular
clones, Prognosis and predictive factors
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Background
It has been estimated that 14.1 million new cancer cases
and 8.2 million cancer deaths occurred in 2012 worldwide
[1]. Breast cancer ranks as the most frequent cancer in
women in less developed regions, contributing with 25%
of the new cases diagnosed in 2012 [1]. Normally, breast
cancers of advanced stages have poorer prognosis [2].
Cancer is a disease defined by alterations at the genomic,

epigenomic, transcriptomic and proteomic level. The inter-
play between these events triggers the acquisition of cancer
hallmarks which, by occurring in different cells, evolve and
can constitute a heterogeneous tumor cell population. The
populations fluctuate in space and time and are subjected
to selection [3]. It is reasonable therefore to sustain that
intratumor heterogeneity (ITH) is determined by two
events: first, by the acquisition of genetic/epigenetic alter-
ations; and secondly, through their selection over time [4].
Although the ITH is frequently related to the spatial
organization of cells in a tumor, it is also necessary to con-
sider the temporal dimension for the evolution of cancer
cell populations. One of the models that synthetizes spatial
and temporal heterogeneity of tumors is “the clonal evolu-
tion model of cancer” proposed by Peter Nowell in 1976
[5]. This model proposed that endogenous and exogenous
factors induce mutational processes providing the fuel for
genetic variation between cancer cells, which determine se-
lection of cancer cell populations [3]. This evolutionary
model was useful to understand tumor growth and treat-
ment failure and also contributed to reveal the increased
tumor aggressiveness that occurs during the natural history
of advanced solid tumors [6].
Most of the current therapies treat cancer as a

homogenous disease, which has clinical implications on
drug resistance. It has been described that anti-neoplasic
drugs act specifically on cellular clones with, for example,
mutated oncogenes, leaving other populations lacking these
mutations unaltered. In this way the untargeted clones, can
proliferate and maintain tumor progression after the drug
treatment [7] [8]. It has also been determined that contin-
ued drug exposure produces selection of the surviving cells,
which increases the evolution rate and allows induction of
more aggressive clones with new properties [9]. So far there
is enough evidence to consider the study of ITH a key
feature to enhance treatment strategies.
During cancer progression, aberrant promoter methyla-

tion of tumor suppressor genes (TSG) is one of the most
common alterations in solid tumors [10] and has been de-
scribed as an early event in many tumor types, including
breast tumors [11] [12] [13]. The CpG sites located in
these TSG are normally unmethylated in healthy cells, but
frequently methylated in cancer cells. In fact, several
tumor types (or tumor subtypes) present an specific
methylation profile [14] [15]. Methylation has a direct im-
pact on different pathways of cancer hallmarks, including

DNA repair, cell cycle regulation and evading apoptosis
[16] [17]. Although epigenetic modifications are dynamic,
some marks remain through cancer progression [18] [19].
Considering this, the epigenetic information configurates
the epigenomic landscape of each tumor.
Distinct methods have been developed to study genetic

ITH: deep-sequencing, multi-region sequencing and single
cell DNA sequencing [20] [21] [22] [23]. Several studies
also consider the genomic information to infer ITH which
is afterward associated with prognostic or predictive fac-
tors [24]. For example, breast cancer patients with low
genomic ITH were more likely to have complete patho-
logical response to neoadjuvant chemotherapy [25]. In this
work we propose to quantify ITH using a mathematical
approach to calculate a heterogeneity index (HI) from
methylation profiles of breast tumors, cancer cells lines
and public datasets.

Methods
Patients and tumor samples
Twenty three patients treated in the Gineco-Mamario Insti-
tute of Mendoza with breast cancer were enrolled after
obtaining their informed consent based on the scientific
and ethical principles of the World Medical Association’s
Declaration of Helsinki. Ethical approval was obtained from
the Ethics Committee of the Faculty of Medical Sciences,
from the National University of Cuyo, Mendoza, Argentina.
All tumors presented clinical-pathological data, i.e. tumor
type, tumor stage (T, N, M), side, tumor grade, mitotic
index, patient age, ER expression, PR expression, HER2 ex-
pression). A database containing the clinical-pathological
information and DNA methylation profiles was generated.

Materials
Dulbecco’s Modified Eagle Medium (D-MEM), RPMI
Medium and Penicillin-Streptomycin were obtained
from Gibco Laboratories (Thermo Fisher Scientific,
Argentina) and fetal bovine serum was obtained from
Internegocios S.A. Mercedes, Buenos Aires. DNA extrac-
tion kits (PureLink® Genomic DNA, Thermo Fisher Sci-
entific). MS-MLPA kits manufactured by MRC-Holland.

Cell culture
MDA-MB 231, MCF7, T47D and HeLa human cells
lines were grown in D-MEM while K562 cell line was
grown in RPMI. All cell lines were supplemented with
10% fetal bovine serum, penicillin/streptomicin at 37 °C
in an atmosphere of 95% air and 5% CO2, in T-25 flasks
and 12, 24 and 96 plates to 80% confluence.

Cell cloning by serial dilution
MDA-MB 231 cells were used, the initial population was
trypsinized and counted using a Neubauer chamber to
prepare a cell suspension of 1000 cells/ml. Serial dilutions
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were generated to obtain 1 cell in 200 μl of complete
D-MEM media and this volume was added per well in a
96 plate in order to obtain a unique cell for each well. In-
dividual cells grew up to 80% of confluence.

DNA extraction
Fresh tissues from breast invasive ductal carcinomas
(IDC) and surgical margins were frozen at − 80 °C and
fragmented with a frozen mortar. The homogenate was
collected and suspended in PBS buffer. All samples were
stored for at least 24 h at − 20 °C and DNA was collected
as previously described (tumor pieces and surgical mar-
gins) [26]. Cancer Cell lines and cellular clones were
trypsinized and centrifuged (except K-562 that grow in
suspension). After homogenization and centrifugation
(cellular pellets), DNA extraction was carried out with
specific kit (PureLink® Genomic DNA, Thermo Fisher
Scientific).

Methylation assays by methyl specific- multiplex ligation
probe amplification (MS-MLPA)
The methylation status of 98 CpG sites located in 54
genes related to cancer was tested in DNA obtained from:
IDCs, surgical margins, cancer cell lines (MDA-MB 231,
MCF-7, T47D, K-562 and HeLa) and clones derived from
MDA-MB 231 by MS-MLPA. Commercial kits ME001,
ME002, ME003 and ME011 were used (MRC Holland,
Amsterdam, The Netherlands). Reactions were carried out
following manufacturer’s instructions, including subtle
modifications to avoid background signals [15]. Fluores-
cent PCR products were separated by capillary electro-
phoresis in a Beckman CEQ8000 sequencer (Beckman
Coulter Inc. Fullerton, CA, USA) and analyzed with Gene-
Marker v1.75 software (Softgenetics LLC, PA, USA).

Heterogeneity index calculation
To calculate the HI for the methylation observed in five
CpG sites, we combined theoretical populations having
pure methylated [1] and non-methylated (0) values in dif-
ferent proportions to reproduce the experimental values.
The questions were, how many alleles, which alleles, and
in what proportions are necessary to explain the epigen-
etic heterogeneity observed in a cellular population? The
criterion to select the most suitable populations and the
best proportions of these populations was to minimize the
sum of the squared difference between the adjusted and
the observed values for the five sites (for an example, see
Fig. 1B and the corresponding explanation in the Results
section). This value was calculated using from 1 to 4
populations. The final HI was the sum of these 4 values.
The rationale for this criterion was that the HI was very
small when the observed values could be adjusted with
just a single population. In contrast, the HI was high when
the adjusted and the observed values were very different,

and more and more populations were needed to find a
combination that reproduced the observed values. To se-
lect the best populations and the best proportions of each
population to fit the observed value, all the possible popu-
lations (2^5 = 32) and all the possible proportions were
tested. Proportion is a continuous variable; hence, to make
the calculations reasonably fast, the proportion of each
population to be tested were limited to 1/16 steps (6.25%).
For example, for a single population it is just 100% of one
of the 32 possible populations that best fitted the data. For
two population, all the possible combinations of 2 of the
32 populations were tested in proportions going from 0 to
1 in 1/16 steps (combinations tested: 0–100%, 6.25–
93.75%, 12.5–87.5%, …, 87.5–12.5%, 93.75–6.25%, 100–
0%). The use of a limited set of proportions introduces
some limitation to the adjustment to the observed values.
The heterogeneity index calculation is available at: https://
heterogeneidad.herokuapp.com/

Migration assays
MDA-MB 231 clones were cultured in 12 well plates.
Cells were incubated overnight in serum-reduced medium
containing 0.5% FBS. Cell surface was then scratched
using a sterile 200 μL pipet tip and washed with PBS to re-
move detached cells and debris. Cells were photographed
every 12 h using a TE300 Eclipse microscope equipment
(Nikon, Tokyo, Japan). Images were then processed using
Image J software. Reduction of the scratched area was
measured and expressed as migration percentage accord-
ing to the formula: ((Areat0-Areat1)/Areat0) × 100.

Cellular proliferation assay
MDA-MB 231 clones were plated in 96 well plate and
MTT assay was performed. After 24 h or 48 h of prolifera-
tion, medium containing 1mg/mL MTT was added to the
cells (MDA-MB231 clones) up to a final concentration of
0.5 mg/mL and incubated at 37 °C for 4 h. The medium
was then aspired, and the formazan product was solubi-
lized with DMSO. The absorbance at 630 nm (background
absorbance) was subtracted from measures at 570 nm for
each well (3 replicates for each dilution were performed).

Flow cytometry
MDA-MB231 clones were seeded in 6 well plates, 37 °C
and 5% CO2. After 24 h cells were harvested by trypsini-
zation and washed with PBS. After centrifugation, the
cells were suspended in 200 μl of PBS and analyzed by
flow cytometry (Model BD FACSAria III). Forward and
side scatter measurement was registered in order to de-
tect information about the internal cellular complexity
(i.e. granularity) and cell size.
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Apoptosis assay
MDA-MB231 clones were seeded in 6 well plates, 37 °C and
5% CO2. After 24 h cells were exposed to UV radiation for
30min and were harvested by trypsinization and washed
with PBS. After centrifugation, the cells were suspended in
100 μl of binding buffer and then stained with FITC-annexin
V and propidium iodide. After they reacted under dark for
10min, the cells were resuspended in 100 μl binding buffer
and analyzed by flow cytometry (Model BD FACSAria III).

Database analyses to study the association between HI
and clinical-pathological features
DNA methylation status of IDCs was retrieved from the
public dataset TCGA Breast Cancer (BRCA) using the

UCSC Xena browser (https://xenabrowser.net). HI cal-
culation was performed applying the developed mathem-
atical model considering 15 CpG sites. Association
between HI and clinic-pathologic traits was analyzed in
250 TCGA tumors.

Statistical analysis
ANOVA analysis was applied to detect significant differ-
ences in migration, proliferation, apoptosis and HI calcula-
tion assays between distinct tumor, cellular and MDA-MB
231 clone populations. Tukey post-hoc test was applied to
find out differences in the mean of population groups.
GraphPad Prims v5.3 was used for ANOVA calcula-
tion of HI calculation. For association studies between

Fig. 1 Heterogeneity index of breast carcinomas inferred from methylation profile obtained by MS-MLPA. a. Heat map showing the methylation
status of 25 CpG sites (19 TSG) in rows on 23 breast tumors, represented in columns. A color gradient from blue-white-red is used to represent
low to high values of methylation (from 0 to 1). b. Scheme showing the heterogeneity Index calculation using 1, 2, 3 and 4 cells inferred from
methylation status of 5 CpG sites of tumor 7 (OM) showed in A. All the possible populations and all the possible cell proportions were tested in
order to fit the observed values. The match between experimental and estimated methylation values (EM) was only seldom perfect. Considering
the experimental error, we defined the sub-HI as the sum of the squared deviation between the experimental and estimated values (OM-EM)^2.
The tumor final HI was set to the average of sub-HI after five randomized selections. c. HI calculated for the 23 breast tumors represented in box
plot graph. The HIs are statistically different as assed by ANOVA with Tukey post hoc test p < 0.0001
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clinical-pathological variables and fresh tumors or
TCGA tumors, correlation analyses were performed
using the software SPSS v17 (SPSS Inc., Chicago, IL,
USA) and the software GraphPad Prims V5.3.

Results
Methylation heterogeneity for 25 CpG sites in invasive
ductal carcinomas
We established a cohort of 23 fresh tumor fractions de-
rived from patients with invasive ductal breast cancer
(Table 1). The tumor piece for analysis was selected by
optical microscopy by a specialized anatomopathologist,
excluding non-tumoral tissue as much as the technique
allowed. After DNA isolation the methylation profile of
98 CpG sites located within 54 cancer related genes was
determined by Methyl Specific Multiplex Ligation Probe
Amplification assay (MS-MLPA). This is a semi-quanti-
tative method, which calculates for each CpG site the
proportion of methylated copies normalized to the total
amount of copies of each site in the sample. The 54 ana-
lyzed genes are distributed across all the autosomal
chromosomes and none are methylated in leukocytes, as
assessed in our previous studies [26]. With the purpose

of define the HI from the most frequently methylated
sites, we chose 25 which were methylated in more than
10% of the samples.
For these 25 CpG sites (included in Table 2), all the 23

tumors presented a unique methylation signature (Fig.
1A). Interestingly, the proportion of methylated alleles
presented intermediate values between 0 and 1 which in-
dicated that the cellular population was not epigeneti-
cally homogeneous. The values could result from a
mixture of alleles derived from different cell populations
from the tumor, and/or from other cells like immune
cells, cancer associated fibroblasts, etc. (tumor micro-
environment). For example, the methylation for CpG site
CCND2 in Tumor 7 was 0.43, which means that 43% of
the CCND2 alleles in the tumor fraction were methyl-
ated and 57% were not (see Fig. 1B). Notice that this
value cannot be obtained from a pure clonal population,
where the only possible values would be 0.5 (for hetero-
zygous genomes), 0 or 1 (for homozygous genomes). So,
we can therefore say that a methylation proportion of
0.43 means that CCND2 alleles are heterogeneously
methylated in the sample of Tumor 7, which implies that
the cellular population is a mixture composed by differ-
ent tumor cells or tumor cells and stromal cells in which
some CCND2 alleles are methylated and others are not.
Conversely, the methylation proportion of CCND2 in
the sample of Tumor 8 was 0 and this value is compat-
ible with a homogeneous allele population.
Summarizing, methylation proportions different from

0 and 1 (except 0.5 value that may be due to a heterozy-
gous genomes), indicate heterogeneous allele popula-
tions in the tumor piece. Hence, the methylation profile
of the 25 analyzed CpG sites had some information
about the epigenetic ITH.

Generation of ITH index based on methylation profiles
With the purpose to measure the magnitude of epigen-
etic heterogeneity in a sample, we aimed to develop a
heterogeneity index (HI) based on the methylation pro-
files obtained by MS-MLPA. We decided to use 5 CpG
sites, a number that proved to be suitable to measure
heterogeneity keeping the calculation relatively simple.
The basis for the development of the index was to find
the smallest number of populations having pure methyl-
ated [1] and non-methylated (0) combinations that could
explain the observed methylation profile in the sample.
For example, if the MS-MLPA of five CpG sites renders
the following methylation numbers: 0, 0, 0, 0, 0.32, these
values can be explained by the combination of two pop-
ulations: 68% of 0, 0, 0, 0, 0 plus 32% of 0, 0, 0, 0, 1. If,
however, the methylation numbers are: 1, 0.8, 0.4, 0.2, 0,
two population are not enough, and three populations
are required: 20% of 1, 0, 0, 1, 0 plus 40% of 1, 1, 0, 0, 0
plus 40% of 1, 1, 1, 0, 0. When this criterion was used

Table 1 Patient and Tumor characteristics

Number

Total Patients 23

Total tumors for methylation analyses 23

Age (years)* ≤40 5

> 40 14

Unknown 4

Tumors with complete anatomo-pathological data 22

Axillar Lymph Node Status Positive 9

Negative 14

Tumor Grade I 1

II 5

III 17

Disease Stage 1 10

2A 4

2B 4

3A 3

3B 0

3C 1

Unknown 1

Molecular Subtypes Luminal A 3

Luminal B 16

HER2 2

TN 2

*Mean age: 51.31 years (SEM = 1.70)
HER2: Human Epidermal Growth Factor Receptor 2; TN: Triple Negative
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with real methylation values obtained by MS-MLPA, we
found that the match between experimental and estimated
values was only seldom perfect. Taking into consideration
the experimental error and some limitation in the esti-
mated values (see, M&M), we decided to define HI as the
sum of the squared deviation between the experimental
and estimated values when using 1 to 4 populations (Fig.
1B). For simplicity’s sake, we are considering cell popula-
tions having the two allelic CpG sites methylated or not
methylated. Hence, the HI is pooling together intra and
inter cellular methylation heterogeneity.

Invasive ductal breast carcinomas present different
heterogeneity index
We aimed to apply the developed HI to compare hetero-
geneity among tumors basing the analysis on the same

CpG sites. For this, we used five clusters of five
randomly selected CpG sites (25 CpGs). The average of
these cluster values was considered as sub-HI. Since the
conformation of the five clusters was randomly selected,
we wondered if that could influence the index. Hence,
we repeated the analysis several times changing the ran-
domized selections. We observed that the dispersion
among different sub-HI of a tumor was relatively small
(coefficient of variation in the 0–9.72% range); therefore,
the sub-HI average converged when the number of itera-
tions was about 5. Consequently, the tumor’s final HI
was set to the average of five sub-HI. When this index
was calculated, striking differences were observed among
the tumors (ANOVA p < 0.0001). The average and SD
HI value of the tumor cohort was 0.15 ± 0.12 (Fig. 1C).
It is clear that tumors with more methylated sites had

Table 2 60 CpG sites analyzed by MS-MLPA

CpG sites respect to ATG Gene Name (HGDB) Chromosome Location CpG sites respect to ATG Gene Name (HGDB) Chromosome Location

72 bp to exon 2 APC 5q22 346 bp before MGMT 10q26.3

4658 bp before ATM 11q23 93 bp before MGMT 10q26.3

157 bp after CACNA1A 19p13.2 151 bp after MGMT 10q26.3

32 bp before CACNA1G 17q21.33 382 bp before MGMT 10q26.3

8560 bp before CASP8 2q33.2 74 bp after ex 1 MGMT 10q26.3

1168 bp before CCND2 12p13.3 464 bp after MGMT 10q26.3

1358 bp before CCND2 12p13.3 661 bp before PAX5 9p13

17 bp before CD44 11p12 49 bp before PAX6 11p13

411 bp before CD44 11p12 43 bp before PRDM2 1p36.21

42 bp before CDH13 16q23.3 190 nt after PYCARD 16p11.2

20 bp before CDH13 16q23.3 651 bp before RARB 3p24.2

31 bp after CDKN2A 9p21.3 824 bp before RARB 3p24.2

407 nt before CHFR 12q24 888 bp before RARB 3p24.2

400 nt before CHFR 12q24 141 bp before RASSF1 3p21.3

714 bp before DAPK1 9q22 79 bp before RASSF1 3p21.3

366,437 bp after DLC1 8p22 18 bp before RUNX3 1p36.11

366,993 bp after DLC1 8p22 232 bp before SCGB3A1 5q35

163 bp after ESR1 6q25.1 17 bp before SCGB3A1 5q35

112 bp after ESR1 6q25.1 42 bp before SFRP4 7p14.1

658 bp before GATA5 20q13.3 82 bp after SRFP4 10q24.1

103 bp after GSTP1 11q13 275 bp before SFRP5 7p14.1

245 bp before GSTP1 11q13 316 bp before SFRP5 10q24.1

11 bp before ex 1 HIC1 17p13 172 bp before TIMP3 22q12.3

163 bp after HTLF 3q25.1 300 bp before TIMP3 22q12.13

953 bp before ID4 6p22.3 10,905 bp before TP53 17p13.1

319 bp before ID4 6p22.3 29,790 bp before TP73 1p36.32

305 bp before IGSF4 11q23 29,551 bp before TP73 1p36.3

72 bp before IGSF4 11q23 220 bp after TWIST1 7p21.2

464 nt after KCNQ1 11p15.5 80 nt before VHL 3P25

432 bp before MGMT 10q26.3 412 bp before WT1 11p13
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higher HI. However, notice that there were differences
that were not easy to observe, for example the methyla-
tion patterns of tumor 4 and 6 looked similar, but their
HI were significantly different. The broad range of HI
observed in this cohort of IDC analyzed suggests that it
can be considered a tumor feature.

Cancer cell lines show methylation heterogeneity
We were aware that the methylation profile obtained
from fresh tumor pieces could contain epigenetic infor-
mation derived from microenvironment cells. We
ignored, however, the precise stromal proportion in the
fresh tumor fractions and therefore its potential impact
on the methylation estimations. In order to evaluate
methylation heterogeneity in pure cancer cell popula-
tions, we added an in-vitro model and analyzed the
methylation profile of different breast cancer cell lines
(i.e. MDA-MB 231, MCF-7 and T47D), cervical (HeLa)
and leukemia (K-542).
Interestingly, most of the analyzed CpG sites showed

intermediate methylation values, which was indicating
again the presence of certain heterogeneity within the
cell lines (Fig. 2A). Given that these samples lack of stro-
mal derived alleles, these results revealed that the cancer
cell lines are composed by different sub-clonal popula-
tions which are heterogeneous in epigenetic terms. It is
important to note that, just like the 23 analyzed tumors,

each cancer cell line presented a different and specific
methylation profile.
Next, we calculated the HI values. In this opportunity, the

number of methylated CpG sites in more than 10% of the
samples ascended to 60 sites. We defined 12 random clus-
ters of 5 CpG sites (60 CpG sites) and calculated the HI of
each cell line. Using ANOVA with post-hoc Tukey analysis
we observed significant differences (p < 0.0001) in the HI
among the cell lines (Fig. 2B). K-562 cells (leukemia) pre-
sented the highest heterogeneity with an HI = 0.24. The HI
calculated for the other cell lines was, HeLa = 0.16, MCF7 =
0.20, T47D= 0.15 and MDA-MB231 = 0.16. The average
and SD HI value of the tumor cohort was 0.18 ± 0.03.
These results show that stable cancer cell lines present

epigenetic heterogeneity, suggesting that the cell popula-
tions are composed by diverse cellular clones. It is worth
mentioning that part of the heterogeneity observed may be
due to aneuploidy, which is frequent in cancer cell lines.

Cellular clones derived from MDA-MB 231 present diverse
morphology and behavior traits
Considering the epigenetic heterogeneity observed in
different populations derived from cancer cell lines, we
decided to focus on MDA-MB 231 since this cell line
showed an intermediate heterogeneity index (HI = 0.16).
We asked whether this cell population could be sepa-
rated in cellular clones that could explain the observed

Fig. 2 Heterogeneity index of cancer cell lines inferred from methylation profile obtained by MS-MLPA. a. Heat map showing the methylation
status of 60 CpG sites (in columns) on 5 cancer cell lines (K-562, HeLa, MCF7, T47D and MDA-MB 231), represented in rows. A color gradient from
blue-white-red is used to represent low to high values of methylation (from 0 to 1). b. HI calculated for the 5 cancer cell lines represented in box
plot graph. The HIs are statistically different as assed by ANOVA with Tukey post hoc test p < 0.0001
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heterogeneity. For this, using a simple protocol of cell
cloning by serial limiting dilution, an initial population of
MDA-MB 231 (IP) was diluted to plate individual cells.
Five clones were selected with detectable differences in

their proliferation rate (C7, H9, E5, G8 and E9 clones).
After clone expansion, we observed that some of them pre-
sented different growth patterns. In addition, some clones
displayed fibroblast-like phenotype (C7, E5 and E9) and
others epithelial-like phenotype (H9 and G8) (Fig. 3A).
Interestingly, each clone preserved phenotype and growth
pattern along time (2months, data not shown). We also
studied morphological characteristics by flow cytometry.
Significant differences were detected in internal cellular
complexity (Side scatter) and no significant differences in
cellular size (Forward scatter) by ANOVA test (P = 0.0016)
and (P = 0.645) (Fig. 3B). These observations led us to ask
whether the clones could present different behavior. When
we studied the proliferation rate after 24 h and 48 h by
MTT assay, we found significant differences among all the
clones as compared to the initial population at 48 h
(ANOVA p < 0.001) (Fig. 3C). We also evaluated the apop-
tosis response to 30min of UV irradiation using Annexin
V/PI assessed by flow cytometry. As in the proliferation
assay, we observed significant differences among the cellu-
lar clones (p = 0.01) (Fig. 3D). Finally, migration capacity of
different clones was tested by wound-healing assay at 12,
24, 36 and 48 h. Again, some clones presented significant
differences at 24 and 48 h of migration (ANOVA pos-hoc
Tukey test P < 0.0021) (Fig. 3E).
These results suggest that the initial population of

MDA-MB 231 cells is epigenetically heterogeneous and
is composed by different clones that show diverse
morphology and behavior.

MDA-MB 231 derived clones are heterogeneous in
epigenetic terms
The next question was if the clones were homogeneous in
epigenetic terms. To address this question, we studied the
methylation profile of the cellular clones by MS-MLPA.
We observed different methylation patterns among clones
which differed also as compared to initial population of
MDA-MB 231 cells. Several CpG sites presented inter-
mediate and different methylation values (between 0 and
1); which meant that these sub-populations derived from
MDA-MB 231 were heterogeneous (Fig. 4A). We won-
dered which were the CpG sites that changed in the clones
with respect to the IP. The rationality behind this was the
idea that probably not all methylation sites would be able
to modify the epigenetic landscape or generate equal
advantages. We detected that each CpG site presented dif-
ferent dispersion between the distinct populations. Indeed,
we observed that some sites (e.g. SCGB3A1, CCND2, ID4,
GATA5, TP53, KCNQ1, CDH13, CACNA1G, SFRP5, PA

X6, WT1, CACNA1A, SCGB3A1, PAX5, TWIST1, IGSF4,
SFRP5, RUNX3, RASSF1 and CDH13) were methylated in
all the clones (in different proportions) and other sites were
methylated in some clones (TIMP3, GSTP1, RASSF1,
IGSF4, MGMT, CCND2, SFRP4, ESR1 and TP73) and
unmethylated in others. Moreover, we detected methylation

Fig. 3 Morphology and behavior features of cellular clones derived
from MDA-MB 231 cancer cell line. a. Optical microscopy images
showing the growth pattern of different MDA-MB 231 derived
clones. While C7, E5 and E9 clones presented fibroblast-like phenotype
(isolated cell grown pattern), H9 and G8 clones presented epithelial like
phenotype (grouped cell pattern) (figure insets). b. As can be observed
in flow cytometry analysis, the clones present significant differences in
cellular complexity and not in cellular size (SSC and FSC respectively)
(ANOVA with Tukey post hoc test p < 0.0016). c. Bar graph showing
significant differences in the proliferation rate of the different clones after
24 h by MTT assay (left graph). The differences are increased at 48 h
(right graph) (ANOVA with Tukey post hoc test p < 0.0001). d. Bar graph
describes significant differences of apoptosis response after 30min of UV
exposure (Anexin V/PI test) (ANOVA with Tukey post hoc test p < 0.0173).
e. Migration of different clones was tested by wound-healing assay at 12,
24, 36 and 48 h. As can be observed, clones presented significant
differences at 24 and 48 h of migration (ANOVA pos-hoc Tukey test P <
0.0021). Asterisks in all panels indicate significant differences (*, p < 0.05;
**, p< 0.01; ***, p< 0.0001)
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of some CpG sites that were not methylated in IP (TIMP3,
MGMT, SFRP4, ESR1, and TP73). This observation sug-
gests that the clones presented a different epigenetic profile
respect to the IP; it is important to remark that not all the

methylation sites underwent modifications to recreate het-
erogeneity in the one-cell derived clones.
We applied the HI calculation to measure the magni-

tude of the heterogeneity of the clones derived from

Fig. 4 Heterogeneity index of MDA-MB 231 clones inferred from methylation profile obtained by MS-MLPA. a. Heat map showing the
methylation status of 60 CpG sites (in columns) on MDA-MB 231 initial population and 5 clones (in rows). A color gradient from blue-white-red is
used to represent low to high values of methylation (from 0 to 1). b. HI calculated for the MDA-MB 231 initial population (IP) and 5 clones
represented in box plot graph. c. Scatter graph showing the methylation divergence from IP of 60 CpG sites for all the clones. Divergence was
defined as the difference of methylation value of the CpG sites between the clones and the initial population (Δ = Clone - IP). Green bars show
the CpGs methylated in the IP. d. Scatter graph showing the individual divergence of two clones. G8 clone (blue dots) diverged mostly
increasing the methylation while C7 clone (red dots) diverged mostly decreasing the methylation of CpG sites
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MDA-MB 231 (Fig. 4B). Initially, we thought that clones
would exhibit low heterogeneity. Unexpectedly, and des-
pite the fact that clones had been originated from a sin-
gle cell, the HI of these populations did not differ from
the HI of the IP. Interestingly, they concentrated in a
narrow range (0.16–0.19) around the HI of the IP.
From this analysis we could infer that, after 30–60

days (depending on the proliferation rate of each clones),
sub-clonal cell populations generated from a single cell
of a well-established breast cancer cell line would de-
velop different methylation patterns. Interestingly, ac-
cording to the HI, the clones presented an epigenetic
heterogeneity with a similar magnitude of the IP.

Clones derived from MDA-MB 231 cells show epigenetic
divergence without new selective pressure
As we mentioned above, the clones were obtained from
a single cell and were grown under controlled and
non-competitive conditions for two months. As men-
tioned previously, we observed that the clones presented
epigenetic heterogeneity despite no apparent new select-
ive pressure was applied. So, we aimed to unravel if the
heterogeneity observed in vitro is generated by epigen-
etic divergence of the clones.
To address this question, we defined epigenetic diver-

gence as the difference between the clones and the IP of
the 25 CpG sites methylation values (Δ =Clone - IP) (Fig.
4C). Interestingly we observed a slight tendency to a posi-
tive divergence (hypermethylation) since 21 CpGs in-
creased the methylation proportion versus 18 CpGs which
diverged to unmethylation. However, if we analyze the di-
vergence at individual level, we observed that each clone
had its own divergence tendency. For example, the G8
clone (blue dots) diverged preferably by increasing the
methylation while C7 clone (red blots) diverged rather by
decreasing the methylation of CpG sites (Fig. 4D).
Another interesting observation was that most DNA

methylation changes occurred in CpGs already methyl-
ated in the IP (Fig. 4C, green bars), suggesting that
clones are the expansion of cell types that are represen-
tative of the prevalent population of the IP. An attractive
exception was the methylation of ESR1, all clones pre-
sented methylation of this gene while it was unmethy-
lated in the IP. All together, these evidences suggest that
the methylation is not a random event.
Based on these observations, we conclude that the

clone populations generated their own new heterogen-
eity mostly by altering the methylation state of CpG sites
already methylated in the IP.

HI correlates with clinic-pathological features of breast
tumors
We measured intratumor epigenetic heterogeneity in
IDC from patients as well as in cellular clones. Since the

clones HI were associated with different behavior, we aimed
to see whether the HI of tumors could be associated to
clinical-pathological features. We decided to test this hy-
pothesis using a public resource such as TCGA which col-
lects the data from several studies, with 250 tumors
(Fig. 5A) and complete clinical-pathological information.
We selected 15 CpG sites for the HI calculation in

TCGA tumors (included in Table 2). Again, the selection
was based on the most frequently methylated CpGs. As
in the fresh tumor cohort, we observed a great disper-
sion in the HI obtained for the TCGA tumors (Fig. 5B).
A significant positive correlation was found between HI
and “Estrogen Receptor expression” (r = 0.369 p <
0.0001) and “HER2 status” (r = 0.2264 p = 0.0007).
Another remarkable observation was the positive correl-

ation with “tumor stage” (r = 0.1678 p = 0.0121), “number
of lymph nodes affected” (r = 0.2048 p = 0.007) and “tumor
size” (r = 0.1713 p = 0.0088).
These interesting results revealed an association

between the epigenetic intratumor heterogeneity and
relevant prognostic and predictive factors (like tumor
size, number of affected axillary nodes and Estrogen
receptor and HER2 positivity).

Different cellular tumor populations share epigenetic
heterogeneity index
Until here, by using a mathematical model we inferred
intratumor epigenetic heterogeneity from methylation
data derived from fresh IDCs, cancer cell lines, cellular
clones and TCGA tumors.
When comparing the information obtained from these

diverse sources, we observed that the average HI was
similar (ANOVA p = 0.53), i.e.: fresh tumors = 0.1504,
cancer cell lines = 0.1888, cellular clones = 0.1811 and
TCGA tumors = 0.1979. Notice that we employed differ-
ent number and different locations of CpG sites for the
HI calculation on the distinct populations, making this
convergence more surprising. In addition, surgical tumor
margins presented a significantly lower HI (0.0049) (p <
0.001). So, it is reasonable to propose that tumor cell
populations share a similar HI which differs from
healthy cellular populations.
Interestingly, we observed that the distinct molecular

tumor subtypes (Basal like, Her2, Luminal A and Luminal
B) presented different heterogeneity levels (ANOVA analysis
P < 0.0021) (Fig. 6B). By deepening in these observations, it
is worth to notice that fresh tumors and TCGA tumors
present a broad deviation from the mean. In line with this,
when we ranked the HI values in “low” (from 0 to 0.17),
“medium” (from 0.18–0.22) and “high” (above 0.22) we
found that tumors were not distributed at random among
these ranges. Most of the tumors (90%) were distributed in
the “low” or “high” rank, whereas only 10% was included in
the “medium” rank. In addition, a significant association was
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detected between the HI ranks and the tumor subtype
PAM50 classification, i.e.: 38/ 42 (90%) of basal like tumors
presented “low” HI, while Luminal A and HER2 tumors
were mostly equally distributed among “low” and “high”
ranks; beside, more than the half (58%) of Luminal B tumors
were included in the “high” range of HI (Table 3).
We consider these observations very attractive since it

suggests that, depending on the tumor type, the HI is
deviated from the mean, increasing it in Luminal A, B,
Her2 or decreasing it for basal like sub types.

Discussion
A tumor piece examined by a pathologist in a stained
tissue or on a slide glass, is the final picture of an

evolution process that started with a normal cell which
acquired consecutive genetic and epigenetic alterations
over time and as in all evolution processes, the outcome
constitutes a heterogeneous population [27] [28] [3].
The resulting intratumor heterogeneity is one of the
principal factors involved in resistance to standard onco-
logical treatments and in tumor progression [4]. Several
studies in solid tumors have addressed the intratumor
heterogeneity as inferred from genetic mutations [29]
[30], gene expression [31] [20] or protein modifications
[32] [33]. Epigenomic alterations, which contrast with
genomic alterations because of their dynamism and re-
versibility, evolve during a tumorigenic process in paral-
lel to the acquisition of driving and passenger mutations

Fig. 5 Heterogeneity index of 250 breast cancer tumors inferred from methylation profile obtained from TCGA dataset. a. Heat map showing the
methylation status of 15 CpG sites (in rows) on 250 breast tumors (in columns). A color gradient from blue-white-red is used to represent low to
high values of methylation (from 0 to 1). b. HI calculated for the 250 breast tumors represented in box plot graph

Fig. 6 Heterogeneity index average of cancer cell populations and normal cells obtained by MS-MLPA. a. Average HI for the different
populations: breast tumor surgical margins (SM), breast tumors (BT), cancer cell lines (CCL), MDA-MB 231 clones (SC) and breast tumor TCGA
dataset (TCGA). The HIs are statistically different as assed by ANOVA with Tukey post hoc test p < 0.0001. b. Grouped column scatter graph
showing the mean and SEM of different subtypes of the TCGA tumors (ANOVA with Tukey post hoc test p < 0.0001)
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[34]. Therefore, they are relevant information for the
study of spatial and temporal intratumor heterogeneity.
Different research works have described that cancer cells

with specific mutations, present prominent sub-clonal
diversification and that most of the genetic alterations are
found in a fraction of the tumor [35] [36]. On the other
hand, some authors have shown epigenetic heterogeneity
by analyses of CpG methylation in different fractions of the
same tumor in prostate and breast cancer [34] [37]. In this
work we aimed to establish the intratumor heterogeneity
magnitude as inferred from DNA methylation data.
We developed a heterogeneity index employing mul-

tiple markers (CpG sites) distributed in different regions
of the human genome to quantify for the first time the
epigenetic intratumor heterogeneity in breast cancer.
For this, we established a mathematical model which
conjugates the methylation information of multiple CpG
sites located in promoter regions of TSG to generate a
numerical index of heterogeneity of distinct cellular pop-
ulations derived from different clinical and experimental
models of breast cancer. It is important to stress that
the CpG sites included in the index calculation are nor-
mally unmethylated in healthy cells, but frequently
methylated in cancer cells. Therefore, alleles derived
from the non-tumor cells only have a dilution effect in
the index calculation. The HI can be also influenced by
the copy number of the tumor cells because it pools to-
gether intra and inter cellular methylation heterogeneity.
Considering this, tumors with multiple copy number al-
terations were excluded from this analysis. We also
tested that CpG sites involved in the heterogeneity index
calculation did not have significant copy number ampli-
fication in cancer cell lines nor in tumors. This is con-
sistent with the fact that it is unlikely that TSG regions
would be amplified in tumor cells [38] [39].
The starting point of this study was the observation of

intermediate methylation values for multiple CpG sites in
fresh IDC fractions derived from patients with breast can-
cer analyzed by MS-MLPA [16]. The same phenomenon
can be observed in beta values of TCGA datasets, where
DNA methylation profiles were measured experimentally
using the Illumina Infinium HumanMethylation450 plat-
form. Although the intermediate values of TSG methyla-
tion indicate ITH by themselves, the quantification of the
heterogeneity allowed us to determine that not all tumors

present the same level of heterogeneity. According to our
hypothesis, using different sources of epigenetic informa-
tion and different number of CpG sites, the HI obtained
for each tumor was different. In fact, HI values presented
high dispersion in both fresh and TCGA tumor cohorts.
Therefore, if each tumor presents a specific heterogeneity
value, this means that HI could be considerate as an
individual tumor feature.
When we analyzed the HI in two different tumor

cohorts (fresh tumors and TCGA tumors), we were sur-
prised by the observation that they presented a similar
HI mean (as well as in other tumor cell populations, dis-
cussed below), in contrast with the non-tumor popula-
tion derived from de surgical margin which presented a
lower HI mean. We previously mentioned that only 10%
of the TCGA tumors presented HI values around the
mean (40% of tumors exhibit lower and 50% higher HI
than the mean value). According to Nowell’s model,
these observations invite to propose an evolution mech-
anism involved in the generation of the ITH. Although
more evidence is necessary to clearly explain this
phenomenon, we propose to analyze the tumor cells as
an ecological population where the local microenviron-
ment shapes the epigenetic landscape leading the cell
population to establish heterogeneity levels above or
below a mean value. The same external conditions
would create a selective pressure responsible for the es-
tablishment of different levels of HI. Higher HI values
describe tumors with greater diversity among their cells,
indicating probably the existence of a divergent selection
pressure on the population. Divergent selection pressure
is known to depress the adaptability of the individuals
(or cells in this case) which represent the mean values,
by favoring sub-groups with values distant from the
mean. This kind of selective pressure disrupts the
population maintaining high levels of divergence. On
the contrary, lower HI values can be considered as indi-
cative of populations tending to a homogenous value
among the cells, where variability is not favored. This
could be the case of a directional selective pressure, by
which the population is shifted to a specific value and
cells which carry this feature are positively selected. In
this case, the tumor population is adapted through the
acquisition of a specific feature, and therefore the HI is
decreased among the cells.

Table 3 Molecular subtypes of breast TCGA tumors

Tumor subtype (PAM50)

Basal like HER2 Luminal A Luminal B Total

Grouped HI Low (0–0.17) 38 13 45 18 114

Medium (0.18–0.22) 0 7 11 7 25

High (0.23–0.7) 4 15 35 34 88

42 35 91 59 227
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It has been described that although cancer cell line cul-
tures do not reproduce cellular tumor architecture and
intratumor heterogeneity, this experimental model could
provide information on the clones functional features [40].
We detected ITH in different cancer cell lines and observed
that the mean value of HI between these cell lines was simi-
lar to the mean HIs observed in both tumor cohorts. How-
ever, the dispersion of the HIs in cancer cell line
populations was lower than the dispersion observed in tu-
mors. This evidence is consistent with the fact that no ap-
parent selective pressure is applied over cell culture
populations, or that directional and divergence selective
pressures are equated; in contrast to the tumors, where
tumor cells are exposed to a strong environment constraint.
Contrary to our speculations, clone populations derived
from one of these cell lines, showed similar levels of hetero-
geneity than the initial population. This means that the gen-
eration of epigenetic heterogeneity in populations derived
from a unique cell is possible after 1–2month of prolifera-
tion. We determined divergence in epigenetic terms and dif-
ferent behavior of clones in the absence of specific selective
pressure. Similar evidences were described in phenotypic
and functional heterogeneity for different clones derived
from single cell of MDA-MB 231 and MCF-7 cell lines at
early stages of clonal development [41]. The HI mean value
of the clone populations was similar to the other cancer
populations (cell lines and tumors), however the HIs pre-
sented a lower dispersion even than cancer cell lines.
Taking into consideration the observation in cell lines

and in breast tumors, we think that there is a mixed
phenomenon, where the external factors affect the methy-
lation landscape available to the cells and contribute to
select and establish an epigenetic heterogeneity. Since in
vitro experiments with cancer cell lines (5 cell lines and 5
clones), where no specific selective pressure was applied,
and similar HIs were observed, we propose that in breast
tumors the microenvironment acts over a basal hetero-
geneity characteristic of each tumor cell population.
It has been reported that tumors harboring high levels of

genetic ITH were associated with more aggressive disease
progression [42]. In this work we determined that
early-stage tumors presented lower ITH levels in TCGA
breast cancer tumors. However, the group of breast carcin-
omas with higher HI were enriched with luminal A, lu-
minal B and HER2 phenotypes which have a better
prognosis than those with basal like phenotype [43]. In con-
trast, around 90% of basal like breast tumors was in the
group with lower HI. Our hypothesis is that basal like tu-
mors presented a lower variability, probably as a conse-
quence of a directional selection process. It is important to
mention that similar tendencies of association were ob-
served between HI levels and tumor stage or ER and HER2
expression when we analyzed the fresh tumor cohort (data
not shown).

Different measurement methods have been recently
developed to express the observed intratumor hetero-
geneity as a numerical value [44] [45] [46]. The chal-
lenge is to obtain a useful clinical biomarker which
could predict the risk of progression or response to
treatment. The HI developed in this work contributes
with this purpose and can be calculated using methyla-
tion profiles obtained with different methodological
approaches. We consider that a deep exploration of this
tumor feature using for example mathematical tools, is
crucial both to unravel the mechanisms implicated in
the spatial and temporal intratumor heterogeneity
development and to improve the study of clinical tumor
progression and treatment.

Conclusions
We developed an index to quantify for first time epigen-
etic heterogeneity in solid tumors inferred from tumor
suppressor genes methylation patterns in different tumor
cell populations (i.e fresh breast carcinomas, cancer cell
lines and breast TCGA tumors). By applying the develop
HI calculation, our analyses allow to conclude that all
studied tumors or cultivated cells present heterogeneity,
suggesting that epigenetic homogeneity is avoided dur-
ing tumorigenesis. And even though we could establish
that each tumor presents unique HI, our work shows
also that some tumors share similar levels of HI in asso-
ciation with their subtype classification. We therefore
conclude that tumor subtype’s behavior could be de-
scribed in terms of epigenetic heterogeneity, which could
serve as a new contribution to understand the different
prognosis of these groups.
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