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Abstract

Background: Breast cancer is a highly heterogeneous disease resulting in diverse clinical behaviours and
therapeutic responses. DNA methylation is a major epigenetic alteration that is commonly perturbed in cancers.
The aim of this study is to characterize the relationship between DNA methylation and aberrant gene expression in
breast cancer.

Methods: We analysed DNA methylation and gene expression profiles from breast cancer tissue and matched
normal tissue in The Cancer Genome Atlas (TCGA). Genome-wide differential methylation analysis and methylation-
gene expression correlation was performed. Gene expression changes were subsequently validated in the
METABRIC dataset. The Oncoscore tool was used to identify genes that had previously been associated with cancer
in the literature. A subset of genes that had not previously been studied in cancer was chosen for further analysis.

Results: We identified 368 CpGs that were differentially methylated between tumor and normal breast tissue
(AB > 04). Hypermethylated CpGs were overrepresented in tumor tissue and were found predominantly (56%)
in upstream promoter regions. Conversely, hypomethylated CpG sites were found primarily in the gene body
(66%). Expression analysis revealed that 209 of the differentially-methylated CpGs were located in 169 genes
that were differently expressed between normal and breast tumor tissue. Methylation-expression correlations
were predominantly negative (70%) for promoter CpG sites and positive (74%) for gene body CpG sites.
Among these differentially-methylated and differentially-expressed genes, we identified 7 that had not
previously been studied in any form of cancer. Three of these, TDRD10, PRAC2 and TMEM132C, contained CpG
sites that showed diagnostic and prognostic value in breast cancer, particularly in estrogen-receptor (ER)-
positive samples. A pan-cancer analysis confirmed differential expression of these genes together with
diagnostic and prognostic value of their respective CpG sites in multiple cancer types.

Conclusion: We have identified 368 DNA methylation changes that characterize breast cancer tumor tissue, of which
209 are associated with genes that are differentially-expressed in the same samples. Novel DNA methylation markers
were identified, of which cg12374721 (PRAC2), cg18081940 (TDRD10) and cg04475027 (TMEM132C) show promise as
diagnostic and prognostic markers in breast cancer as well as other cancer types.
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Background

Breast cancer (BC) is a highly heterogeneous disease,
comprising multiple histological and molecular subtypes
that are associated with distinct clinical behaviours and
therapeutic responses [1, 2]. Early detection and improved
treatment have lead to better outcomes, however BC still
ranks among the leading causes of cancer-related deaths
[3]. BC has traditionally been classified based on tumor
size, regional lymph node infiltration, histology, grade, and
immunohistochemical evaluation of estrogen receptor
(ER), progesterone receptor (PR), human epidermal
growth factor receptor 2 (HER2) and proliferation marker
Ki-67 [4, 5]. These factors are the most significant prog-
nostic and therapeutic predictors in current BC clinical
practice.

Recently, with the advent of high-throughput technolo-
gies, gene expression profiling has enabled a more com-
prehensive view of the molecular identity of breast cancer.
Five major molecular and outcome related BC subtypes,
known as PAMS50 subtypes, were identified based on
genome-wide expression analyses: Luminal-A, Luminal-B,
HER-2, Normal-like and Basal-like [2, 6—8]. Breast cancer
classification based on PAMS50 subtypes and risk of recur-
rence (ROR) score have shown to significantly contribute
to prognostic assessment and to facilitate more precise
therapeutic decisions [9]. Other genomic tests, such as
Mammaprint (Agendia, Huntington Beach, CA) and
Oncotype DX (Genomic Health, Redwood City, CA) may
also be used to provide prognostic and/or predictive infor-
mation in early-stage breast cancer beyond the standard
clinicopathological assessment and to determine the likeli-
hood of benefit from adjuvant chemotherapy [5, 10]. Tai-
loring treatment to individual tumor subtypes has the
potential to greatly improve breast cancer management
and survival [11, 12].

Epigenetic marks, including DNA methylation, his-
tone modifications and miRNAs, are important regula-
tors of gene expression in normal development and
disease [13, 14]. They also serve as prognostic bio-
markers [15, 16] in cancer and are increasingly being
investigated as therapeutic targets [17, 18]. DNA
methylation involves addition of a methyl group to the
cytosine pyrimidine ring in CpG dinucleotides by DNA
methyltransferases (DNMTs) [19]. Canonically, pro-
moter methylation is thought to decrease gene expres-
sion by recruitment of methyl-binding domain proteins
(MBDs), that change chromatin conformation thereby
preventing binding of transcription factors [15, 20, 21].
In BC, several studies have reported promoter hyper-
methylation leading to silencing of tumor suppressor
genes, including BRCAI [22], E-cadherin [23] and
TMSI [24]. However, the Wilms’ tumor suppressor 1
(WT1) gene is overexpressed in breast tumor tissue
despite hypermethylation of its promoter [25]. Thus
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methylation changes in the gene promoter may correl-
ate with either upregulation or downregulation of the
associated gene [15, 20, 26, 27].

Differences in DNA methylation profiles between nor-
mal and malignant breast tissue have the potential to serve
as a diagnostic and/or prognostic tool in breast cancer
[21, 24, 28]. To date, most studies have examined a small
number of genes [21, 22, 24], and only a few studies have
performed genome-wide analyses across multiple BC
subtypes [8, 29, 30]. As a result, further studies regarding
genome-wide DNA methylation profiles are needed to
better understand the contribution of DNA methylation
patterns to breast cancer heterogeneity. Here we
investigate whole genome DNA methylation patterns in
BC, highlighting the potential importance of epigenetic
changes in breast carcinogenesis, and identifying novel
DNA methylation markers that could be useful for breast
cancer classification and prognosis.

Methods

Datasets

Bioinformatic analyses were performed on publicly avail-
able databases including DNA methylation and gene ex-
pression data from breast tumor samples derived from
The Cancer Genome Atlas Consortium (TCGA) [8] and
the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) [31].

DNA methylation and gene expression analysis

All TCGA data was retrieved from TCGA data portal
(https://portal.gdc.cancer.gov/). The DNA methylation
data was derived from the Illumina Infinium Human
Methylation 450 k array. The methylation score for each
CpG site is represented as beta values and range from 0
to 1, corresponding to unmethylated and completely
methylated DNA, respectively. Gene expression data was
derived from Illumina HiSeq 2000 RNA Sequencing.
This dataset includes gene-level transcription estimates,
expressed in RSEM normalized count.

METABRIC gene expression data was retrieved from
the METABRIC dataset [31] for 1992 primary breast can-
cer and 144 normal tissue samples. Gene transcriptional
profiling derived from the Illumina HT-12 v3 platform
and data were normalized as previously described [31].

We used DAVID (http://david-d.ncifcrf.gov/) for Gene
Ontology enrichment analysis.

Gene set enrichment analyses

Genes ranked according to the coefficient of Spearman
correlation were analysed for pathway enrichment using
the Gene Set Enrichment Analysis software [32]. Gene
sets were retrieved from the KEGG database [33, 34]
and pathways with a False Discovery Rate (FDR) lower
than 5% were considered significantly enriched.
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Principal component and hierarchical clustering analyses
Principal component and hierarchical clustering analyses
were performed using FactoMineR [35] and gplots [36]
R packages, respectively.

OncoScore

OncoScore is a bioinformatics tool that ranks genes ac-
cording to their association with cancer, based on the
available scientific literature. OncoScore data was accessed
on 22/06/2017 through the R package OncoScore [37], ver-
sion 1.4.2. https://github.com/danro9685/OncoScore.

Diagnostic and prognostic value analyses
Differentially-methylated CpG sites located in the
OncoScore-selected genes were analysed in terms of
their diagnostic potential. The specificity and sensitivity
of methylation levels for breast cancer diagnosis were
evaluated by receiver-operator curve (ROC) analysis [38]
with diagnostic validity suggested by an area under the
ROC curve (AUC) > 0.8.

To evaluate the prognostic ability of CpG sites,
Kaplan-Meier survival curves were generated and log-
rank p-value and Hazard Ratios with 95% confidence in-
tervals were calculated [39]. Based on the AUC, a cut-off
value was established for each probe in order to
distinguish hypomethylated patients (blue) from hyper-
methylated patients (red). Optimal cut-off values were
identified according to maximal sensitivity and specifi-
city generated previously by the AUC. In addition, we
performed multivariate Cox proportional-hazards model
survival analyses with ER status as covariate. Only breast
cancer patients with DNA methylation data and overall
survival data were included in the analysis.

Roadmap Epigenomics database analysis

Epigenomic data from normal breast myoepithelial cells
was analysed using the Roadmap Epigenomics database
[40] and release 9 of the Human Epigenome Atlas from
the NIH Roadmap Epigenomics Mapping Consortium
(http://www.roadmapepigenomics.org/data/). Data in-
cluding DNA methylation levels (MeDIP), histone modi-
fication marks (ChIP), and chromatin accessibility
(chromHMM) datasets. DNA methylation patterns, ac-
tive histone marks H3K4me3 and H3K4me, repressive
histone marks H3K27me3 and H3K9me3, and chroma-
tin status (chromHMM) were mapped for each CpG lo-
cation based on the GRCh37/hgl9 genome assembly.

Pan-cancer analysis of gene expression and CpG
methylation and prognostic potential

We examined 13 cohorts from the TCGA containing
both tumor and normal samples (> 20 samples in each
group). All cohorts contained gene expression data and
12 also contained patient survival data. For each gene/
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CpG, we calculated the proportion of cohorts with ex-
pression results concordant with results in the breast
cancer cohort, as well as methylation levels and prog-
nostic ability in these cohorts.

Statistical analysis

Preprocessing and normalization of data as well as all
statistical analyses were performed using the R comput-
ing framework, with the exception of Kaplan-Meier sur-
vival curves, which were generated using GraphPad
Prism5.0. Differential methylation and expression ana-
lyses were performed using the Mann-Whitney test,
while correlation analyses were assessed using Spearman
correlations. Kaplan-Meier survival curves and compari-
sons were performed using the log-rank test.

Results

Genome-wide DNA methylation analysis reveals 368
differentially methylated CpG sites in breast cancer tissue
We set out to investigate the genome-wide DNA methy-
lation profiles in a panel of 780 breast tumor samples
and 83 matched normal samples from The Cancer Gen-
ome Atlas (TCGA). Although methylation of distal re-
gions, such as enhancers, is relevant for gene regulation
in breast cancer [41], we intentionally focused on prox-
imal gene regions by limiting our analysis to CpG probes
mapping to a known gene (1 =251,574) to facilitate the
link with the respective target gene. To identify CpG sites
showing the most significant and relevant tumor-specific
changes in methylation, CpG’s with a AB (between tumors
and normal tissues) equal to or greater than 0.4 were se-
lected. We identified 368 differentially-methylated CpG
sites that distinguished tumor and normal breast tissues
(AP =04 and FDR <5%), mapping to 286 unique genes
(Fig. la; Additional file 1: Table S1). Hypermethylated
CpG sites (80.7%) predominated in tumor tissue relative
to hypomethylated sites (19.3%) (P<2.2 x 10~ 16, Fig. 1b).
Hypermethylated and hypomethylated probes also
localized to different areas within their associated genes
(P =0.001). More than 50% of hypermethylated CpG sites
were localized in upstream regulatory regions including
the promoter, 5 untranslated region, and 1st exon
(TSS1500, TSS200, 5UTR and 1st exon), while only 30%
of hypomethylated CpG sites localized to these regions
(Fig. 1b). Conversely, hypomethylated CpG sites were
localized predominantly in the gene body (66.2%), a
phenomenon that has been postulated in other cancers to
contribute to activation of aberrant intragenic promoters
that are normally silenced [42, 43].

Functional enrichment analysis revealed that genes as-
sociated with hypermethylated CpG sites are enriched
for homeobox genes and transcription factors, while
those associated with hypomethylated CpG sites are
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Fig. 1 Genome-wide DNA methylation changes in breast cancer. a Stacked bar plot showing localization of the 368 differentially-methylated CpG
sites in breast tumor tissue relative to their cognate genes. b Stacked bar plot showing localization of hyper- and hypomethylated CpG sites in breast
tumor tissue relative to their cognate genes. The distributions are significantly different (P < 2.2e™'®, Pearson’s chi-squared test). ¢ and d Enriched Gene
Ontology categories using DAVID clustering enrichment scores for genes ¢ hypermethylated or d hypomethylated in tumors. TSS1500, within 1500 bp
of the transcriptional start site; TSS200, within 200 bp of the transcriptional start site; 5'UTR, 5" untranslated region; 3'UTR, 3" untranslated region
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enriched for transmembrane proteins and immunoglob-
ulins (Fig. 1c-d, Additional file 2: Table S2).

Correlation of DNA methylation with gene expression
change in BC

To explore the relationship between DNA methylation
and gene expression in BC, we compared the direction of
CpG methylation change (hyper- vs hypomethylated) with
the direction of expression change in the corresponding
genes. Among the 368 differentially-methylated CpG sites,
we identified 209 that were associated with differen
tially-expressed genes (FDR < 5%), representing a total of
164 genes. We then correlated the direction of methyla-
tion change with the direction of expression change of the
cognate gene. Negative correlations (59%) predominated
relative to positive correlations (41%) (p<2.2x 10" ',
Additional file 3: Figure S1), driven by a large number of
hypermethylated CpG sites that were associated with
downregulated genes (Additional file 4: Table S3). When
negative and positive correlations were subdivided accord-
ing to CpG location within the associated gene, >70% of

negative correlations involved CpG sites located in the up-
stream regulatory regions (promoter, 5UTR, 1st exon),
while 74% of positive correlations involved CpG sites found
in the gene body (Fig. 2a). Thus promoter hypermethyla-
tion correlated with gene downregulation, while gene body
hypermethylation correlated with gene upregulation, as
previously observed in a separate genome-wide study [29].
We next analyzed the same 209 CpG sites (associated
with differentially-expressed genes) to ascertain the
sources of variability at these methylation sites. Principal
Component Analysis confirmed that sample type (nor-
mal breast vs breast tumor) is the primary source of
variability underlying the methylation signature, ac-
counting for 53.9% of variability (Fig. 2b). The second
component (6.25%) was putatively explained by the
PAMS50 subtypes within the breast tumors as identified
in TCGA (Fig. 2c), with higher Principal Component 2
values associated with basal breast tumors and poorer
outcomes (P=0.01, Log-rank test, Additional file 3:
Figure S2). Unsupervised hierarchical clustering, using
the same 209 CpG probes, revealed the existence of two
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Fig. 2 209 CpG probes are correlated with cognate gene expression. a Stacked bar plot showing localization of differentially-methylated CpG
sites within their cognate genes subdivided by the correlation between methylation change and expression change. Negatively-correlated CpG
sites are shown in the first bar, and positively-correlated CpG sites in the second bar. The distributions are significantly different (P < 2.2x 1076,
Pearson’s chi-squared test). b and ¢ Principal Component Analyses using the 209 differentially-methylated probes located in differentially-
expressed genes, colored by (B) sample type or (C) PAM50 subtype. d Enriched Gene Ontology categories using DAVID clustering enrichment
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major groups, however, these did not show obvious clus-
tering of clinical traits (Additional file 3: Figure S3).

Functional enrichment analysis of the 164 differen
tially-methylated and differentially-expressed genes re-
vealed enrichment for homeobox genes (positively corre-
lated with methylation change, upregulated expression)
as well as transcription factors (negatively correlated with
methylation change, downregulated expression) and cell
differentiation genes (negatively correlated with methyla-
tion change) (Fig. 2d, Additional file 2: Table S2).

METABRIC validation and OncoScore analysis reveal 7
new genes related to BC

To validate our gene expression results we used tran-
scriptomic data from the METABRIC dataset [31], which
comprises 1992 breast tumor samples and 144 normal

adjacent tissues. We were able to validate 88 of the 164
genes (53.7%) as differently expressed in breast tumor
tissue relative to normal tissue, with the direction of ex-
pression change being concordant between the datasets
(Additional file 5: Table S4). Of the remaining 76 genes,
68 genes did not show differential expression in the
METABRIC dataset while no data was available for the
final 8 genes.

We next determined which of the 96 differentially-
methylated genes with validated (88) or unconfirmed (8)
gene expression changes had previously been associated
with cancer in the medical literature. We used the
OncoScore tool [37], a text-mining algorithm that ranks
genes according to their appearance in the cancer litera-
ture, to analyse the 96 genes. The top ranked gene,
WT1, had an Oncoscore of 77.5 while 81 genes had
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Oncoscores >1, indicating at least one citation in a
cancer-related article (Additional file 6: Table S5). A
total of 7 genes had Oncoscores of 0, indicating no prior
association with cancer in the medical literature. No
Oncoscore data was available for 8 genes.

After Oncoscore analysis we selected the top 7 genes
(strongly associated with cancer: WTI, BCL9, SMYD3,
ZNF154, ZNF177, HOXD9, and ITIH5) and the bottom 7
genes (no published association with cancer: TMEM132C,
TDRD10, RNF220, RIMBP2, PRAC2 (C170rf93), EFCABI,
and ANKRDS53) for further analysis of diagnostic and
prognostic potential (Fig. 3).

Identification of candidate diagnostic and prognostic
biomarkers in breast cancer

Within the 14 genes selected for closer analysis, 18
differentially-methylated CpGs were identified (Table 1).
These CpG sites were analysed for diagnostic and prog-
nostic potential using the area under the ROC curve
(AUC) method [38] and Kaplan-Meir survival curves,
respectively.

Within the “top 7” genes, there were 9 differentially-
methylated CpG sites, of which 7 were hypermethylated
and 2 hypomethylated (Table 1). All 9 CpG sites were
able to distinguish breast tumor tissue from normal tis-
sue (AUC>0.8 and p<0.0001; Table 1). Only 2 CpG
sites showed an association with poor prognosis. These
were both hypermethylated CpG sites located in the pro-
moters of the ZNF154 and HOXD9 genes respectively
that were negatively correlated with gene expression
(ZNF154: p =0.0097 and HOXD?9: p = 0.0266, Additional
file 3: Figure S4). When the different ER status were
taken into account as covariates in a multivariate ana-
lysis, only the HOXD9 CpG methylation remained

Page 6 of 12

significantly associated with poor prognosis (p =0.02,
Additional file 3: Figure S4E,F). These findings suggest
that silencing of these genes by DNA methylation may
have negative implications for prognosis, which is in ac-
cordance with previous data from triple negative breast
cancer [44] and metastatic melanoma [45].

Within the “bottom 7” genes not previously associated
with cancer there were a further nine differentially-
methylated CpG sites (5 hypermethylated, 4 hypomethy-
lated) (Table 1). All 9 CpG sites were able to distinguish
breast tumor tissue from normal tissue (AUC > 0.8 and
p<0.0001, Table 1). Site ¢gl0216717, located in gene
TMEM132C, showed the highest discriminative accuracy
with an AUC of 0.9920 (Table 1). Only 3 CpG sites
showed an association with poor prognosis (Fig. 4). Site
cgl2374721 (PRAC2 gene) was hypermethylated in
breast tumor tissue and positively correlated with gene
expression (p=0.0134, Fig. 4d). Sites cgl8081940
(TDRDI0O gene) and cg04475027 (TMEMI132C gene)
were also hypermethylated but were negatively corre-
lated with gene expression (p = 0.0037 and p = 0.0291 re-
spectively, Fig. 4e, f). All 3 CpG sites were associated
with poor prognosis in ER-positive breast cancer sam-
ples, but none in ER-negative (Fig. 4g-1). The overall as-
sociation of TDRD10 and TMEM132C’s CpG sites
remained significant when ER status was taken into ac-
count as covariate in a multivariate analysis (p = 0.06
and 0.03, respectively, Additional file 3: Figure S5).
When a combined signature of these 3 CpG sites was
analysed, patients with a higher hypermethylation index
showed poorer overall prognosis (p=0.02; HR: 1.853;
Additional file 3: Figure S6). These data suggest a pos-
sible role for PRAC2 (increased expression in tumor tis-
sue) as an oncogene and TDRDIO and TMEMI132C

P
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SMYD3
ZNF154
ZNF177
HOXD9
ITIH5
TMEM132C
TDRD10
RNF220
RIMBP2
PRAC2
EFCABH1
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Fig. 3 OncoScore of the “top 7" (green) and "bottom 7" (red) genes
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Table 1 List of the Top and Bottom 7-ranking methylation markers selected as potential biomarkers
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CpG ID Gene AB methylation Correlation AUC Overall Survival
(tumor - normal) (methylation-expression)

Top 7 cg10244666  WTI1 044; p=2.57e-40 r0.17; p=1.09e-6 09430 (C:0.9279-0.9582); p < 00001 ns
cg03441279  BCL9 -041; p=58e-25 r-0.32; p=1.58e-19 0,8434 (C1:0.8184-0.8684); p < 0.0001 ns
€g25025181 SMYD3 —045;, p=6.18e-39  r-031; p=2.36e-19 0,9324 (C:0.9163-0.9486); p < 0.0001 ns
cg01268824  ZNF154 042; p=4.68e-34 r-063; p=1.44e-85 0,9002 (Cl:0.8778-0.9226); p < 0.0001  p=0.0097
cg09578475  ZNF177 0.51; p=4.87e-40 r0.20; p=2.73e-8 0,9378 (C1:0.9219-0.9537); p < 0.0001 ns
cg08065231 046; p=9.51e-39 r0.23; p=1.54e-10 0,9320 (C:0.9153-0.9486); p < 0.0001 ns
€g13703871 047; p=291e-40 r0.17; p=3.13e-6 0,9410 (C:0.9257-0.9562); p < 0.0001 ns
€g22674699  HOXD9 040; p=3.15e-28 r-0.17; p=1.12e-6 08679 (Cl:0.8427-0.8931); p < 0.0001  p=0.0381
cg10119075  ITIH5 041; p=151e-39 r-0.26; p=1.73e-13 0,9397 (Cl:0.9243-0.9552); p < 0.0001 ns

Bottom 7 cgl15165122  ANKRD53 041; p=20%-34 r—048; p = 2.34e-46 0,9028 (Cl:0.8827-0.9229); p <0.0001  ns
€g12743248  EFCABI —045; p=53%-45 1. 044; p=_849e-38 09664 (Cl:0.9553-0.9775); p < 00001 ns
cg12374721 PRAC2 046; p=9.42e-36 r0.39; p=1.63e-30 0,9118 (Cl:0.8923-0.9313); p < 0.0001 p=0.0134
cg27170427  RIMBP2 —046; p=124e-46 1035, p=1.79%-24 0,9766 (Cl:0.9680-0.9851); p < 0.0001 ns
cg17192862 —041; p=1.29e-46 r.045; p=6.74e-40 0,9765 (C1:0.9675-0.9856); p < 0.0001 ns
€g10224098  RNF220 045; p=1.01e-39 r-0.09; p=151e-2 0,9393 (C1:0.9220-0.9566); p < 0.0001 ns
€g18081940  TDRDI10 041; p=1.58e-39 r-0.20; p=4.17e-8 09360 (Cl:0.9189-0.9531); p<0.0001  p=0.0037
cgl10216717  TMEM132C ~ —045; p=2.02e-49  r046; p =3.44e-42 0,9920 (Cl:0.9872-0.9968); p < 0.0001 ns
cg04475027 042; p=1.19e-40 r-0.23; p=3.24e-11 0,9446 (C1:0.9289-0.9604); p < 0.0001 p=0.0291

ns not significant

The “Top 7" and “Bottom 7" genes (based on OncoScore results) selected for analysis as potential methylation biomarkers

(decreased expression in tumor tissue) as tumor sup-
pressor genes.

Roadmap of epigenomic regulatory elements

We used the Roadmap Epigenomics database [40] to
analyze the 5 CpQG sites that showed both diagnostic and
prognostic potential in BC. Using data from normal
breast myoepithelial cells, we plotted DNA methylation
status, histone modification marks and chromatin acces-
sibility (chromHMM) data for these CpG sites and their
associated genes.

Sites ¢g01268824 (ZNF154), cg22674699 (HOXDY),
cgl18081940 (TDRDI10), and cg04475027 (TMEM132C)
localized to gene promoter regions, were hypermethy-
lated, and were negatively correlated with expression in
breast tumor tissue, suggesting that DNA methylation at
these sites may silence gene transcription (Table 1). At
all 4 of these CpG sites Roadmap Analysis revealed that
in normal breast cells low methylation levels was associ-
ated with open chromatin and active histone modifica-
tion marks, namely H3K4mel and H3K4me3 (Fig. 4b
and ¢, Additional file 3: Figure S4). Accordingly, hyper-
methylation of these CpG sites may hinder the binding
of transcription factors or enhancers and/or modify
chromatin accessibility leading to gene silencing in
breast cancer.

Conversely, site ¢gl2374721 (PRAC2) was hyper-
methylated and positively correlated with gene transcrip-
tion in tumor tissue (Table 1). Roadmap analysis
revealed that cg12374721 was located in a polycomb re-
pressive region in normal breast myoepithelial cells,
which is associated with repressive chromatin marks, in-
cluding enrichment of H3K27me3 marks (facultative
heterochromatin) and lack of H3K4mel and H3K4me3
(Fig. 4a). Therefore, the gain of methylation in this CpG
may contribute to transcriptional activation by inhibiting
the binding of transcriptional repressors or altering the
repressive chromatin conformation in cancer.

Identification of 3 new breast cancer-related genes

Genes PRAC2, TDRI10 and TMEM132C showed differ-
ential methylation and differential expression in breast
tumor samples relative to normal breast tissue and also
contained CpG sites showing diagnostic and prognostic
value in breast cancer. None of these genes has previ-
ously been reported in the cancer literature. PRAC2 is
upregulated in breast tumor tissue whereas TDRI0 and
TMEM132C are both downregulated.

We further analyzed expression of these 3 genes in 13
non-breast cancer TCGA cohorts including colorectal
adenocarcinoma, head and neck cancer, hepatocellular
carcinoma, lung adenocarcinoma, lung squamous cell

carcinoma, prostate adenocarcinoma, and thyroid
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carcinoma (Additional files 7 and 8: Table S6 and S7).
Expression of TMEM132C was downregulated across all
13 non-breast cancer cohorts while PRAC2 was upregu-
lated in 77% of cohorts. TDRDI10 was downregulated in
46% of cohorts (similar to BC) but was upregulated in
kidney clear cell carcinoma and thyroid carcinoma co-
horts (Fig. 5). We further analysed the diagnostic ability
of the 3 CpG sites associated with these genes in
non-breast cancer cohorts. All 3 sites correlated with
cancer diagnosis in 10 or more of the 12 TCGA cohorts
containing methylation data (Fig. 5). Correlation with
survival was identified in 50% (TDRD10), 42% (PRAC2),
and 25% (TMEM132C) of the 12 TCGA cohorts, with
no significant opposing results (Fig. 5). None of the 3
CpGs sites showed diagnostic or prognostic potential in
the thyroid carcinoma cohort, suggesting that these
pathways are not important for the pathogenesis of this
particular cancer.

Discussion

DNA methylation is an important epigenetic alteration
that can modify gene expression and is commonly per-
turbed in cancer [14]. Its impact on aberrant gene ex-
pression in breast cancer remains poorly understood.
Here we report a roadmap of DNA methylation changes
in breast cancer and their association with gene expres-
sion changes in matched samples. Using a breast cancer
cohort from TCGA we identified 368 individual CpG
sites that were differentially methylated between tumor
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and normal breast tissue. A majority of sites were hyper-
methylated and located in upstream transcriptional regu-
latory regions, including the promoter. This finding is in
agreement with previous studies reporting promoter
hypermethylation as a mechanism of tumor suppressor
gene silencing in breast cancer [46]. Functional analysis
revealed that the hypermethylated gene set was enriched
for homeobox genes and transcription factors. Homeo-
box genes have previously been reported as differently
methylated in breast cancer [47], as well as in other can-
cer types [48]. Hypomethylated CpG sites were located
primarily in the gene body, consistent with intragenic
DNA hypomethylation as a feature of many tumors,
where it enables spurious transcription initiation and
consequent abnormal transcripts [42, 43].

Our results also confirm that DNA methylation is
strongly associated with repression of gene expression in
breast cancer. A majority of the 209 CpG sites located in
differentially-expressed genes showed negative correla-
tions between the direction of methylation change and
the direction of expression change. These CpG sites
were located primarily in upstream transcriptional regu-
latory regions. Conversely, CpG sites showing positive
correlations with direction of gene expression change
were found primarily in the gene body. Functional en-
richment of these latter genes was positive for homeo-
box genes. Further studies are required to elucidate the
role of DNA methylation in the regulation of this im-
portant class of genes.

Differential expression across 13 TCGA cohorts
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Using the METABRIC [31] dataset we were able to
validate the direction of expression change in 88 of the
differentially-methylated genes. The OncoScore tool [37]
was used to identify which of these genes (along with 8
genes that did not appear in the METABRIC data) had
previously been associated with cancer in the medical lit-
erature. We then selected the 7 genes with the highest
OncoScores and 7 genes with the lowest OncoScores to
analyze their associated CpG sites as potential diagnos-
tic and prognostic biomarkers in breast cancer. Intri-
guingly, all of the CpG sites in all 14 genes, including
those not previously associated with cancer, were able
to accurately distinguish breast tumor and normal tis-
sue (AUC>0.8 and p<0.0001, Table 1). The highest
discriminative accuracy was shown by site cg10216717
located in the TMEM132C gene (Table 1). Furthermore,
3 CpGs located in genes not previously associated with
cancer, PRAC2, TDRD10 and TMEM132C, were able to
predict breast cancer overall survival, and more
particularly survival of ER-positive patients (Table 1,
Fig. 4), suggesting their potential as diagnostic and
prognostic markers in BC.

The PRAC2 gene is located between the HOXB13 and
PRAC genes, both of which encode small nuclear pro-
teins. PRAC2 is highly expressed in prostate tissue and
has been suggested to play a role in prostate growth and
development [49]. For this reason PRAC2 was given the
name “Prostate Cancer Susceptibility Candidate 2” gene.
However, it has not previously studied or associated with
any type of cancer [37]. In the TCGA dataset, PRAC2
was highly expressed in breast tumor tissue relative to
normal tissue (Additional file 5: Table S4). Methylation
of its associated CpG site, cgl12374721, which is located
in the gene promoter, was positively correlated with gene
transcription in tumor tissue. This contradicts one of
the central paradigms of DNA methylation, namely that
promoter methylation results in gene silencing [20].
Analysis of data from the Roadmap Epigenetics Atlas
shows enrichment of H3K27me3 in this region in normal
breast cells, a histone mark that is associated with repres-
sive chromatin. Thus methylation of this site in breast
tumor tissue may contribute to PRAC2 transcriptional ac-
tivation by blocking the binding of transcriptional repres-
sors. Additionally, hypermethylation of site cgl12374721
was associated with reduced survival (Table 1, Fig. 4d).
This may suggest an oncogenic role for PRAC2 in BC, as
has been suggested in prostate cancer [49].

Unlike PRAC2, genes TDRDIO and TMEMI132C are
both downregulated in breast tumor tissue when com-
pared to normal tissue (Additional file 5: Table S4).
Their hypermethylated CpG sites, cg18081940 (TDRDI10
5'UTR) and ¢g04475027 (TMEMI132C gene body), are
negatively correlated with gene expression (Table 1).
Methylation of both of these sites is also associated with
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reduced survival (Fig. 4e and f), independent of ER sta-
tus (Additional file 3: Figure S5). Analysis of histone
marks in normal breast tissue reveals that cg18081940
(TDRDI10) and cg04475027 (TMEM132C) both overlap
with open chromatin and histone modification marks as-
sociated with enhancers (H3K4mel and H3K4me3) (Fig.
4b and c). Accordingly, hypermethylation of these CpGs
may hinder the binding of transcription activators lead-
ing to gene silencing in breast cancer, suggesting a
tumor suppressor function for those genes. TDRDIO
(Tudor domain containing 10) is a member of the TDRD
protein family, that binds to methylated arginine/lysine
residues and plays a crucial role in chromatin and
transcriptional regulation, genome stability and RNA
metabolism [50, 51]. Dysregulation of TDRDs has been
reported in BC. Surprisingly, a negative correlation has
been observed between DNA copy number and mRNA
expression for TDRD10, demonstrating its importance in
suppressing carcinogenesis [50]. Finally, the TMEM132C
(Transmembrane Protein 132C) gene belongs to a family
of five TMEM132 proteins, which are associated with
hearing loss, panic disorder and cancer [52, 53]. However,
the biological function of these genes is still under investi-
gation and as yet there is no scientific literature relating to
TMEM132C.

In addition to the identification of PRAC2, TDRIO and
TMEM132C as novel DNA methylation-gene markers in
breast cancer, analysis of their expression and diagnostic
and prognostic potential revealed they may also be rele-
vant in other cancer types (Fig. 5). Interestingly, in thyroid
carcinoma, which is a relatively indolent tumor, none of
the 3 CpGs analyzed showed diagnostic or prognostic po-
tential (Additional file 7: Table S7). Thus PRAC2, TDRI10
and TMEM132C may be more relevant in rapidly growing
cancers. These genes merit further study to better under-
stand their role in breast cancer pathogenesis. Moreover,
validation of these and other DNA methylation-based
diagnostic and prognostic markers may have significant
clinical benefits, namely in terms of sample stability and
cost when compared to RNA-based tests (eg. Oncotype
and Mammaprint) [5, 10].

Conclusion

We have investigated DNA methylation patterns in BC
using a genome-wide approach and have correlated
methylation changes with gene expression data from
TCGA and METABRIC datasets. This work provides a
landscape of aberrant DNA methylation changes in
breast cancer and their association with gene expression
regulation. Both positive and negative correlations were
observed, suggesting that both CpG hypermethylation
and hypomethylation may be crucial events in breast
carcinogenesis. Three novel DNA methylation-gene can-
didate biomarkers for breast cancer were identified and
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validated in other cancer datasets. Sites cgl12374721
(PRAC2), ¢gl8081940 (TDRDI10) and cg04475027
(TMEM132C) may be effective as diagnostic and prog-
nostic tools not only in breast cancer but also in other
cancer types.
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