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Abstract

Background: Cancer immunotherapy with immune checkpoint blockade (CKB) is now standard of care for multiple
cancers. The clinical response to CKB is associated with T cell immunity targeting cancer-induced mutations that
generate novel HLA-binding epitopes (neoepitopes).

Methods: Here, we developed a rapid bioinformatics pipeline and filtering strategy, EpitopeHunter, to identify and
prioritize clinically relevant neoepitopes from the landscape of somatic mutations. We used the pipeline to
determine the frequency of neoepitopes from the TCGA dataset of invasive breast cancers. We predicted HLA class
I-binding neoepitopes for 870 breast cancer samples and filtered the neoepitopes based on tumor transcript
abundance.

Results: We found that the total mutational burden (TMB) was highest for triple-negative breast cancer, TNBC,
(median = 63 mutations, range: 2–765); followed by HER-2(+) (median = 39 mutations, range: 1–1206); and lowest
for ER/PR(+)HER-2(−) (median = 32 mutations, range: 1–2860). 40% of the nonsynonymous mutations led to the
generation of predicted neoepitopes. The neoepitope load (NEL) is highly correlated with the mutational burden
(R2 = 0.86).

Conclusions: Only half (51%) of the predicted neoepitopes are expressed at the RNA level (FPKM≥2), indicating the
importance of assessing whether neoepitopes are transcribed. However, of all patients, 93% have at least one
expressed predicted neoepitope, indicating that most breast cancer patients have the potential for neo-epitope
targeted immunotherapy.
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Background
Immune evasion is a hallmark of cancer [1]. Immune
checkpoint pathways contribute to cancer-induced
immunosuppression, and immune checkpoint blockade
(CKB) therapy has been successful in multiple cancers
[2, 3]. Blockade of the immune regulatory molecules
PD-1/PD-L1 and CTLA-4 reactivates T cell immunity
and overcomes underlying T cell exhaustion [4, 5]. Sus-
tained clinical responses and improved survival have
been observed in the treatment arms of checkpoint
blockade clinical trials, especially in tumors with high
mutational burdens, such as melanoma and non-small
cell lung cancer (NSCLC) [5–7]. Immune CKB is now

FDA proved in melanoma [8], NSCLC [9], head and
neck cancer [9] and bladder cancer [10], with ongoing
clinical trials in multiple other cancer types.
Even though checkpoint blockade has achieved signifi-

cant clinical success, it is not universally successful
across patients [6, 10, 11]. There are two predictive bio-
markers of response to CKB therapies. First, expression
of PD-L1 in tumor samples correlates with checkpoint
blockade response [11, 12]. Second, there is a strong
association between the total mutational burden and
clinical response [13–15]. In colorectal cancer, the ob-
jective response rate is 40% in tumors with defects in
mismatch repair, which have mutational burdens 10–100
times higher than tumors with functional mismatch
repair [16].
Neoepitopes are targets for vaccine development [17–19]

and adoptive T cell therapy [20]. Neoepitopes occur, in part,
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as a result of unique somatic mutations in tumor cells, and
are predicted to occur in tumors harboring more than 1
somatic mutation per Mb [21]. Mutation-specific CD8+ T
cells have been identified in patients who respond to check-
point blockade [15, 22]. The combination of checkpoint
blockade with a patient-specific neoepitope vaccines are
being developed [23].
Breast cancer typically harbors lower mutational loads

than melanoma and NSCLC, averaging one mutation per
Mb, but the mutational burden varies both within and
across breast cancer subtypes [24]. The most frequently
mutated genes are TP53 and PIK3CA [24]. Mutation-spe-
cific tumor-infiltrating T cells have been identified in me-
tastases derived from breast cancer patients, and
significant tumor responses have been observed after
adoptive T cell transfer [25]. High levels of tumor infiltrat-
ing lymphocytes are correlated with improved clinical
prognosis [26]. Two clinical trials of PD-1/PD-L1 inhibi-
tors in advanced triple negative breast cancer (TNBC)
have been reported, highlighting the clinical importance
of immunotherapy in breast cancer. First, in the phase Ib
KEYNOTE-012 trial of pembrolizumab, a 19% of overall
response rate was observed, and, in the phase Ia trial of
atezolizumab, a 24% overall response rate was observed
[27, 28]. Identification of neoepitopes in breast cancer is
essential for monitoring therapies and to generated per-
sonalized vaccines.
Next generation sequencing combined with high per-

formance computing has resulted in the exploration and
prediction of neoepitopes in multiple cancers [23, 29–
31]. The general approach includes HLA-typing and
neoepitope prediction from whole exome sequence
data [32]. There are also large databases for neoepitope
prediction using a combination of somatic mutations
and HLA-types; the oldest is SYFPEITHI [33], while the
Immune Epitope Database, IEDB [34], is most widely
used [32]. A few of the publically available pipelines used
NetMHC [35] for epitope prediction like pVAC-seq [36]
and INTEGRATE-neo [37]. Prediction methods have
been applied to identify neoepitopes in melanoma,
NSCLC, and chronic lymphocytic leukemia [14, 19, 23].
In a study of murine melanoma cells, B16F10, 50
validated mutations out of 962 non-synonymous point
mutations were tested in vivo, and one-third elicited an
immunogenic response [29]. A meta-analysis focused on
neoepitopes generated exclusively by missense mutations
reported between 1 to 147 immunogenic mutations per
patient across 181 patients with different cancer types
[38]. However, the neoepitope landscape of breast cancer
has not yet been fully explored.
In this study, we evaluate the landscape of neoepitope

burden across breast cancers included in The Cancer Gen-
ome Atlas (TCGA) [39]. We develop an efficient and pub-
licly available prediction pipeline, EpitopeHunter (Fig. 1), to

identify and prioritize clinically relevant mutations from the
landscape of somatic mutations from tumor and normal
exome data, patient-specific HLA-types, and neoepitope
expression. Our prediction strategy employs the IEDB [34]
binding affinity prediction algorithm, which dynamically
selects the best possible method based on the predictive
performance of several prediction methods [40–43], for a
given MHC molecule. Other publicly available pipelines
[36, 37], on the other hand, use only one of the binding
affinity prediction method for MHC molecules. We applied
our pipeline to 870 breast cancer samples from TCGA [39].
Both somatic mutational burden and neoepitope load varies
widely across tumors in breast cancer sub-types, and
are highly correlated. We find that half of the predicted
neoepitopes are expressed at the RNA level (FPKM≥2).
Despite this, 93.5% of the patients have at least one
expressed neoepitope that may serve as a candidate for
targeted immunotherapy.

Methods
Breast cancer samples
The controlled access sequence data from The Cancer
Genome Atlas (TCGA) was obtained for all submitted
breast cancer samples via the genomics data com-
mons (GDC) data portal with dbGap approval to Dr.
Wilson Sayres (https://portal.gdc.cancer.gov; dbGap
approval #46688).

Fig. 1 EpitopeHunter: Pipeline to identify clinically relevant
neoepitopes. Proposed pipeline to generate and identify clinically
relevant neoepitopes from the landscape of somatic mutations from
tumor and normal exome sequencing data
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Calling cancer specific variants
Tumor and germline whole exome sequencing BAM
files were obtained for each patient, aligned to the
GRCh37 human reference genome. We used this version
of the genome to compare with the TCGA RNAseq
calling and annotation available at the time, for which all
samples were aligned to hg19/GRCh37. Samtools version
1.3.1 [44] was used to convert the aligned bam files to
the pileup format. High confidence SNPs and indels
were retrieved using VarScan2 version 2.3.9 [45] with
minimum coverage of 10, minimum variant allele fre-
quency of 0.08 and somatic p value of 0.05. Additionally,
we removed somatic mutations from the high confi-
dence SNPs that fell within 1 bp of an indel position,
which are likely false positives due to alignment errors.

Variant annotation and neoepitope generation
We annotated mutations identified in the somatic vari-
ant calling using the Variant Effect Predictor tool [46]
with ensemble transcripts annotated for the hg19 refer-
ence genome. For each non-synonymous amino acid, we
generated all possible peptides including the mutated
amino acid at every position in a sequence with total
lengths of 8, 9, 10, 11 amino acids (called –mers) using
the utility generate fasta from pvacseq [36]. That is, all
possible 8-mers where the mutated amino acid is at the
first position, then the second, third, and so on in a
sliding window fashion. We also extracted the corre-
sponding non-mutated reference sequence for each
potential neoepitope. Thus, for every mutated amino
acid we generated 38 possible neoepitopes.

HLA typing for each patient
We used POLYSOLVER (POLYmorphic loci reSOLVER)
[47] to infer the HLA type of each patient using the
germline whole exome sequencing data. This method
employs a Bayesian classifier and selects and aligns puta-
tive HLA reads to an imputed library of full-length HLA
alleles. We analyzed three major MHC class I genes
(HLA-A, −B, −C) for HLA typing.

Predicting class I binding epitopes
To find neoepitopes predicted to bind to the
patient-specific HLA alleles, we used the consensus pre-
diction method from the Immune Epitope Database
(IEDB) [34]. We began by matching the 4-dight HLA
type of the patient to the HLA alleles in the IEDB data-
base. If the matching HLA type of the patient did not
exist in the current IEDB list, we identified the closest
allele by keeping the first two digits same and searching
for the best available match for the third and fourth
digit. For each combination of HLA allele and peptides
for each nonsynonymous amino acid (using those gener-
ated as 8, 9, 10, and 11-mers above), Epitopehunter

selects the epitopes with lowest IEDB score. Thus, for
each allele and mutant amino acid combination, it re-
tains only one epitope. To get all high affinity binding
neoepitopes with the patient-specific MHC class I mole-
cules, we filtered epitopes with a binding affinity less
than or equal to 500 nM, and for the current study, we
call these potential binding neoepitopes.

RNAseq expression filtering
We obtained the gene level FPKM (Fragments Per Kilo-
base of transcript per Million mapped reads) values from
the GDC portal for tumor samples with matched tran-
scriptome data (https://portal.gdc.cancer.gov). Neoanti-
gens were selected if the gene in which the neo-antigen
appears was expressed in that patient’s tumor. Based on
our previous analysis of FPKM thresholds [48], a gene
was considered to be expressed using a cut-off of
FPKM≥2. We also evaluated a more stringent cut-off of
FPKM≥5.

Statistical analysis
All statistical comparisons and correlations were per-
formed using an unpaired t-test and variation among
and between groups was calculated using ANOVA
(GraphPad Prism 6). The clinical data were described by
the percentage, Kaplan-Meier method for calculation of
survival, Log-Rank method for the univariate factor ana-
lysis (GraphPad Prism 6). P-values≤0.05 was considered
significant. Significance testing of data from the three
subtypes was performed using Wilcox rank sum test
with *** P < 0.001 ** P < 0.01.

Molecular subtyping of breast cancer samples
To assign samples to molecular subtypes of breast can-
cer, we used the clinical calls of biomarkers using immu-
nohistochemistry (IHC) status available for TCGA data
(https://cancergenome.nih.gov). We subdivided the clin-
ical samples into three categories based on the immuno-
histochemical expression of the estrogen receptor (ER),
progesterone receptor (PR) and the HER-2 receptor, into
three types: 1) ER/PR(+)HER-2(−), those with ER and/or
PR(+), HER-2(−); 2) HER-2(+), regardless of ER/PR sta-
tus; and, 3) TNBC, triple negative breast cancer negative
for all three ER, PR, and HER-2. The total numbers of
TCGA samples and those used in this study for each
subtype are reported in Additional file 1: Table S1.

Results
EpitopeHunter pipleline
The EpitopeHunter pipeline (Fig. 1) is broadly divided
into the following steps: (1) variant calling and filtering;
(2) variant annotation, peptide generation and generat-
ing a list of predicted neoepitopes; (3) HLA typing; and,
(4) filtering epitope candidates based on IEDB binding
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score and epitope expression. The first step calls cancer
specific mutations as described in the methods section.
The user can use any cancer specific variant calling
strategy and submit a variant file in vcf format (variant
call format) for the next step. Next, we conduct variant
annotation and generate a list of neoepitopes from non-
synonymous variants. This step will generate a total of
38 possible neoepitopes of lengths ranging from 8 to 11
amino acids for every non-synonymous cancer-specific
variant. HLA typing can be performed using any of the
HLA calling programs available for MHC class I; here
we use Polysolver. Next, we predict which neoepitopes
have a high likelihood to bind to the patient specific
HLA alleles using IEDB and filter the high-affinity
binding alleles on the basis of RNAseq expression
(Methods). The final output file is a list of filtered/se-
lected neoepitopes with binding scores for both WT
and mutant epitopes.

Patient characteristics suggest a range of primary breast
cancer samples
A total of 870 breast cancer patient samples from TCGA
were included in our study; characteristics of the
patients are summarized in Additional file 2: Table S2.
The ER/PR(+)HER-2(−) was the most common subtype
(72.4%) in this study, following by the HER-2(+) subtype
(16.2%) and TNBC (11.4%). A higher proportion of pa-
tients with the TNBC subtype were under 50 years old
(37%) compared to non-TNBC (25–26.5%). The majority
of patients had early stage tumors; 83.4–88% of patients
had a primary tumor size of T1-T2 across subtypes.
Lymph node status was negative in less than half of
patients with ER/PR(+)HER-2(−) subtype (44.6%) and
patients with the HER-2(+) subtype (41.8%), but 68% of
patients with the TNBC subtype had a negative lymph
node status. Most of the patients included in our
analysis were diagnosed with stage I/II breast cancer,
with only 14–28.4% of patients were stage III-IV.

Confirmation of frequently mutated genes in subtypes of
breast cancer
We identified the somatic mutational landscape across
the three subtypes of breast cancer defined here (Add-
itional file 3: Figure S1). For ER/PR(+)HER-2(−) cases,
PIK3CA was mutated in 33% of the samples, TP53 was
mutated in 13% of the samples, and TTN was mutated
in 9% of the samples. In HER-2(+) cases, PIK3CA was
mutated in 33% of the cases, TP53 was mutated in 24%
of the cases, and TTN was mutated in 10% of cases. The
most frequently mutated genes in TNBC cases are TP53
(present in 40% of samples), TTN (present in 17% of
samples) and FAT3 (present in 10% of samples). Muta-
tions called by the current protocol are also comparable
with those called previously and available via cBioportal

(Additional file 4: Figure S2). The current protocol ap-
pears to be more conservative, limiting potential
non-synonymous mutations; we have a uniform variant
calling protocol to call mutations with high confidence.
The total number of nonsynonymous mutations are
comparable to reports using previous methods in most
cases (Additional file 4: Figure S2), and we chose to err
on the side of being conservative with our mutation
calling, to limit the number of false positive neoepitopes.

Mutational burden in subtypes of breast cancer
Mutational burden has a large range both within and
between breast cancer subtypes (Fig. 2a). Overall, we ob-
served the highest median nonsynonymous mutational
burden among samples from patients with TNBC (me-
dian = 63 nonsynonymous mutations, range: 2–765);
followed by HER-2(+) (median = 39 nonsynonymous
mutations, range: 1–1206); and the lowest median muta-
tional burden for samples from patients with ER/
PR(+)HER-2(−) tumors (median = 32 nonsynonymous
mutations, range: 1–2860). The mutational burden over-
laps significantly across breast cancer subtypes, with
extreme outliers on either end of the range (Fig. 2a).

Range of generated neoepitopes in subtypes of breast
cancer
For each patient sample, we generated all possible
neoepitopes from nonsynonymous mutations called in
each tumor sample relative to the patient-specific
germline (Methods). We selected the potential binding
neoepitopes (neoepitope load) as those with ≤500 nM
binding affinity to the set of patient-specific HLA class
I alleles (Methods). Across tumors subtypes, ~ 37% of
the nonsynonymous mutations in the ER/PR(+)HER-
2(−) subset, ~ 41% of nonsynonymous mutations in the
HER-2(+) subset and ~ 43% of the nonsynonymous mu-
tations in the TNBC subset had a binding affinity ≤500
nM and were called as potential binding neoepitopes.
Following the trend for the median mutational burden,
the number of potential binding neoepitopes is highest
for TNBC (median = 26, range:0–237), followed by
HER-2(+) (median = 15, range:0–717); and is lowest for
ER/PR(+)HER-2(−) (median = 10, range:0–864; Fig. 2b).
The neoepitope load is highly correlated with the muta-
tional burden in all the breast cancer samples consid-
ered together (R2 = 0.86, p < 0.001; Fig. 3a), or when
broken up by subtypes (Additional file 5: Figure S3):
ER/PR(+)HER-2(−) (R2 = 0.90, p < 0.001), HER-2(+) (R2

= 0.86, p < 0.001), and TNBC (R2 = 0.84, p < 0.001). The
ratio of somatic mutational burden to predicted neoepi-
tope load for the entire breast cancer dataset is 2.5:1
(Fig. 3a), similar to published values [49, 50].
We tested for the binding of all possible neoepitopes

in sliding windows around the mutation of size 8 amino
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acids (8-mer), 9-mer, 10-mer, and 11-mer, with the
patient-specific HLA (Methods), and found potential
binding neoepitopes were largely skewed towards
9-mers. In particular, we find that the highest affinity
binding epitope for any mutation is the 9-mer 57% of
the time, in contrast to the 10-mers (33%), 11-mers (6%)
and 8-mers (4%; Additional file 6: Figure S4).

Filtering neoepitopes on the basis of expression
We sought to identify neoepitopes that are expressed,
and thus likely to elicit a response with immunotherapy.
For this, we measured the expression of potential bind-
ing neoepitopes using available RNAseq data. We
included neoepitopes as expressed if the gene in which
the mutation occurred was expressed with FPKM≥2

A

B

C

Fig. 2 Mutational burden, potential neoepitopes, and expressed neoepitopes in breast cancer determined using Epitopehunter. (a) The
mutational load is highest in triple negative breast cancer (TNBC), followed by the HER-2(+) breast cancer subtype, and least for the ER/PR(+)HER-
2(−) subtype. The median and range of non-synoymous mutations per cancer type are: 32 (1–2860) in ER/PR(+)HER-2(−), 39 (1–1206) in HER-2(+)
and 63 (2–765) in TNBC. The number of samples in each subtype are: 630 (ER/PR(+)HER-2(−)), 141 (HER-2(+)), 99 (TNBC). (b) The range of potential
binding neoepitopes (IEDB score≤ 500 nM) is highest for the TNBC subtype, followed by HER-2(+); and lowest for the ER/PR(+)HER-2(−) subtype.
The median and range of high affinity binding neoepitopes are as follows: 10 (0–864) in ER/PR(+)HER-2(−), 15 (0–717) in HER-2(+) and 26 (0–237)
in TNBC. The number of samples in each subtype are: 586 (ER/PR(+)HER-2(−)), 138 (HER-2(+)), 93 (TNBC). (c) The median and range of predicted
neoepitope with expression (FPKM ≥5) across breast cancer subtypes are: 3 (0–230) in ER/PR(+)HER-2(−), 4 (0–226) in HER-2(+) and 8(0–82) in
TNBC. The number of samples in each case are: 583(ER/PR(+)HER-2(−)), 138(HER-2(+)), 92(TNBC). Significant differences between subtypes of
cancer are computed pairwise for each breast cancer subtype using a Wilcox rank sum test, *** P < 0.001 ** P < 0.01
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(Rupp et al., 2017; Additional file 7: Figure S5). Add-
itionally, we also tested a more stringent cutoff of
FPKM≥5 (Fig. 2c). The number of expressed neoepitopes
(cutoff of FPKM≥5; Fig. 2c) is highest for TNBC (me-
dian = 8 epitopes, range:0–82), followed by HER-2(+)
(median = 4 epitopes, range:0–226), and lowest for ER/
PR(+)HER-2(−) (median = 3 epitopes, range:0–230) sub-
type. As we expected, the neoepitope burden across all
breast cancers is highly correlated with the number of
expressed neoepitopes (R2 = 0.94, p < 0.001) (Fig. 3b), as
well as each of the three subtypes individually (Add-
itional file 8: Figure S6): TNBC (R2 = 0.93, p < 0.001),
HER-2(+) (R2 = 0.99, p < 0.001), ER/PR(+)HER-2(−) (R2

= 0.95, p < 0.001).

Using a threshold of expression less than 5 FPKM, two
thirds (~ 65%) of the neoepitopes are not expressed
(TNBC = 65.2%, HER-2(+) = 64.4%, ER/PR(+)HER-2(−)
= 65.5%; Fig. 4a), and are thus considered not expressed.
For the three subtypes, approximately half of the
expressed neoepitopes have an expression value less than
2 FPKM (TNBC = 50.3%, HER-2(+) = 47.2%, ER/
PR(+)HER-2(−) = 49.4%; Additional file 9: Figure S7A).
Despite most neoepitopes not being expressed, we find
that 87% (709/815) of patients have at least one
expressed neoepitope (Fig. 4b), with a threshold of ex-
pression less than 5 FPKM. Similarly 93.5% (762/815) of
patients have at least one expressed neoepitope with
FPKM≥2: TNBC (n = 90/94, 96%); HER-2(+) (n = 131/

A

B

Fig. 3 Correlations between predicted neoepitopes, mutational burden, and expressed neoepitopes. (a) The number of predicted binding
neoepitopes (IEDB score≤ 500 nM) is highly correlated (R2 = 0.86, p < 0.0001) with the number of nonsynonymous mutations across all breast
cancers. (b) The number of predicted binding neoepitopes (IEDB score≤ 500 nM) is highly correlated (R2 = 0.94, p < 0.0001) with the number of
expressed neoepitopes (FPKM≥5) in all breast cancers. A fitted line from a linear regression is shown in red, with 95% CI levels shown in the grey
shaded areas
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138, 95%); and ER/PR(+)HER-2(−) (n = 541/583, 93%;
Additional file 9: Figure S7B).
We also looked at the number of neoepitopes pre-

dicted for each HLA class I allele in the TCGA samples.
The total number of neoantigens for each allele, as well
as for each breast cancer subtype, are shown in Add-
itional file 10: Table S3. We notice that different alleles
retrieve different proportion of neoepitopes in the breast
cancer subtypes. Overall, patients with the ER/
PR(+)HER-2(−) subtype has a higher proportion of
HLA-A binding alleles, while patients with the HER-2(+)
and the TNBC subtypes have a higher proportion of
HLA-B binding alleles (Additional file 11: Figure S8).

Association of total mutation burden with clinical
outcome
Mutation burden has been associated with clinical out-
come in colorectal and ER(+) breast cancer patients [51,
52]. Here, we first compared the clinical outcome
between high and low mutation burden groups. We
defined the top quartile of mutation burden as high and
the bottom quartile as low. No significant difference of
disease-free survival was observed between high and low
mutation burden groups in any subtype of breast cancer
(Additional file 12: Figure S9). However, we noticed low
mutation burden was associated with improved overall
survival in the HER-2(+) subtype (p = 0.008; Add-
itional file 12: Figure S9B). There were thirty-three
patients in the low mutation burden group and thirty-
seven subjects in the high mutation burden group; five
patients died in the high mutation burden group,
compared to none in the low mutation burden group.
We next compared the clinical outcome between high

and low neoepitope load in the three subtypes of breast
cancer. Neoepitope load was not associated with
disease-free survival or overall survival (Additional file 13:
Figure S10). In this study, we observed tumors that pre-
sented a higher neoepitope load (NEL) than the matched
TMB (tumor mutation burden), indicative of neoepi-
topes that bind to multiple HLAs with high affinity and
are expressed. There were more samples with NEL >
TMB in TNBC (40%) than ER/PR(+)HER-2(−) (27%)
and HER-2(+) (27%). We did not observe any association
between high or low NEL/TMB ratio and prognosis (ei-
ther disease-free survival or overall survival) across the
breast cancer subtypes (Additional file 14: Figure S11).

Discussion
We developed a pipeline to rapidly predict neoepitopes,
EpitopeHunter (Fig. 1), and applied it to the TCGA
breast cancer exome and expression data to characterize
the mutational landscape of somatic mutations and
predict clinically-relevant neoepitopes. Our pipeline for
neoepitope prediction uses the advanced method (IEDB)
for epitope binding affinity prediction, which selects the
best method out of a few methods [40], SMM [41],
NetMHCpan [42], Comblib [43] for a given MHC mol-
ecule. Other publically available pipelines [36, 37], on
the other hand, use only one method to predict binding
affinity. Using efficient and parallel computational re-
sources, the pipeline can be used in clinical settings to
provide a list of prioritized neoantigens that can be
tested in vitro to find potential vaccine candidates. We
confirmed that, of the three subtypes of cancer, the
TNBC subtype has both the highest median mutational
burden and highest median neoepitope load. Further, by
incorporating analysis of expression, we found that
approximately half of predicted neoepitopes are not

A

B

Fig. 4 Expression analysis for the high affinity neoepitopes (FPKM
≥5). (a) The number of the expressed neoepitopes (normalized by
total number of samples in each breast cancer subtype) is shown for
each FPKM range. 35% (6098/17518) of the neoepitopes are
expressed with an FPKM threshold of ≥5. (b) The number of
neoepitopes (normalized by the number of samples in each breast
cancer subtype) with the highest expressed neoepitope for each
patient is shown. 87% (709/815) of patients have at least one
potential binding epitope. < 1 includes neoepitopes with expression
less than 1.0 FPKM (not including 1.0 FPKM), 1–2 includes
neoepitopes with expression equal to or greater than one and less
than 2 FPKM, and so on, for all categories
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expressed at the RNA level, suggesting that RNA expres-
sion data is needed to predict neoepitope vaccine candi-
dates, as the majority of neoepitopes predicted from
exome sequencing alone will not result in effective
tumor targeting. That said, as many as 93.5% of breast
cancer patients in this study have at least one expressed
neoepitope that could serve as a candidate for a vaccine.
Our analysis finds that overall neoepitope load is not
associated with either disease-free survival, nor overall
survival (Additional file 13: Figure S10). In contrast,
for HER-2(+) only, we find that overall survival is
higher in patients with a lower mutational burden.
We hypothesize that the lack of correlation between
mutational burden or neoantigen load and survival may
be due to several factors, including different treatments
among the patients in each class, or potentially that the
magnitude of mutation in a tumor isn’t sufficient to
predict survival, but rather, that it may be important to
use additional criterion to identify the types of mutations
and neoantigens that are associated with survival out-
comes. Thus, it may be more important to prioritize and
identify any high-affinity and expressed neoepitopes for
vaccine development, rather than being able to identify
many candidates. We also find that 9-mer neoepitopes are
most often predicted to be the highest affinity binders
across all breast cancer subtypes, with most, but not all,
high affinity binding neoepitopes being expressed at least
2 FPKM (Fragments per Kilobase per transcript per
Million mapped reads). Rooney et al. [53], identified high
mutational burden in breast cancers, that we recapitulate.
We extend on this by performing our own variant calling,
annotation and high affinity binding neoepitope prediction
of cancer specific variants for the three breast cancer sub-
types (ER/PR(+)HER-2(−), HER-2(+), and TNBC), and
found that TNBC has higher mutational burden than other
subtypes. Our findings suggest that most breast cancers, es-
pecially TNBC, have strong candidate neoepitopes that
may serve as targets for personalized vaccines, and identify
patients who may benefit from checkpoint treatment.
The pioneering study of neoepitope prediction of

breast cancer only includes neoepitopes restricted to
HLA0201 [23], and reported about 10 neoepitopes per
sample. Another study, including 760 breast cancer
samples from the TCGA dataset, reported the average
mutational burden being 52.3 (1–393) and predicted the
neoepitopes (9mers and 10mers) binding to each pa-
tient’s imputed HLA alleles (< 500 nM), reporting an
average of 9.6 neoepitopes per sample (0–64) [53]. An
average of 679 and 449 mutations per sample were
reported in the study of melanoma and lung cancer,
yielding a higher number of mean neoepitopes per sam-
ple, 63 and 46 per sample, respectively [21]. Generally,
50% of non-silent mutations were found with ≥1 pre-
dicted neo-epitope across cancer types [53].

Checkpoint blockade therapies targeting the immune
microenvironment have demonstrated clinical activity in
multiple tumors [6, 54, 55], including TNBC [28, 56].
The response rate ranges from 20 to 40% even in sensi-
tive tumors, such as melanoma and NSCLC [57]. The
response rate of checkpoint block might be improved
when combined with a targeted neoantigen vaccine.
In this study, we only analyzed single nucleotide vari-

ant for HLA class I restricted neoepitope prediction.
Giannakis et al. has reported that frameshifts generate
larger proportion of neoantigens than SNVs [58], and
more neoantigen specific CD + 4 T cells have been iden-
tified after immunotherapy [19, 59], which indicates the
broad potential targets in breast cancer. In the future,
we can extend EpitopeHunter to include insertions and
deletions, in addition to point mutations.

Conclusions
Therapeutic tumor vaccination and CAR-T therapy have
been tested in both preclinical and early phase clinical
trials [19, 29, 60–63]. Two recent publications in melan-
oma evaluated mutation-specific personalized vaccin-
ation [18, 19], and multiple other trials are ongoing.
Sustained progression free intervals have been observed
in a subset of patients with vaccine alone or combined
with a PD-1 inhibitor [64]. However, neo-epitope spe-
cific vaccination remains a manufacturing challenge due
to the limited overlap of neoepitopes between patients,
and identification of the dominant neoepitopes within
tumors with multiple potential targets. Our analysis of
the neoepitope landscape across subtypes of breast
cancer – notably that over 90% of patients have at least
one expressed neoepitope, provides a strong rationale
for the development of tumor vaccine trials for breast
cancer.
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Additional file 1: Table S1. Number of patients for breast cancer
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initial dataset, and for samples that were able to be included at each
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the percentage of samples with a mutation in the annotated particular gene
(PDF 179 kb)

Additional file 4: Figure S2. Comparison of mutations called by the
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Additional file 5: Figure S3. Correlation of number of potential binding
neoepitopes with number of nonsynonymous mutations. The number of
potential binding neoepitopes (IEDB score ≤ 500) are highly correlated
with the number of nonsynonymous mutations for all three subtypes of
breast cancer. In all the plots, a linear regression model is used to fit the
data; the fitted line is shown in red and 95% CIs are shown as grey
shaded area around the line (PDF 268 kb)

Additional file 6: Figure S4. Length of potential binding neoepitopes
in breast cancer. The number of potential binding neoepitopes (IEDB
≤500) are plotted against peptide sizes (8, 9, 10, 11 mers). 4% of the
predicted neoepitopes are 8-mers, 57% of the predicted neoepitopes
are 9-mer, 33% of the predicted neoepitopes are 10-mers and 6% are
11mers (PDF 101 kb)

Additional file 7: Figure S5. Expressed neoepitopes (FPKM≥5) in
subtypes of breast cancer. The range of expressed neoepitopes (with
FPKM≥5) is highest for the TNBC, followed by HER-2(+); and lowest for
the ER/PR(+)HER-2(−) subtype of breast cancer. The median and range of
the number of expressed neoepitopes are: 4 (0–131) in ER/PR(+)HER-
2(−), 3 (0–82) in HER-2(+) and 8 (0–230) in TNBC. The number of
samples in each case are: 583 (ER/PR(+)HER-2(−)), 138 (HER-2(+)), 92
(TNBC). Significant differences between reported FPKM values are
computed pairwise for each breast cancer subtype using a Wilcox
rank sum test, *** P < 0.001 (PDF 196 kb)

Additional file 8: Figure S6. Correlation of number of potential binding
neoepitopes with number of expressed (FPKM≥2) neoepitopes. The
number of potential binding neoepitopes (IEDB score ≤ 500) are highly
correlated with the number of expressed neoepitopes (FPKM≥2) for all
three subtypes of breast cancer. In all the plots a linear regression model
is used to fit the data; the fitted line is shown in red and 95% CIs are
shown in grey (PDF 255 kb)

Additional file 9: Figure S7. Expression analysis for the high affinity
neoepitopes (FPKM ≥2). (A) The number of the expressed
neoepitopes (normalized by total number of samples in each breast
cancer subtype) is shown for each FPKM range. 51% (8927/17518) of
predicted neoepitopes are expressed with an FPKM threshold of ≥2.
(B) Number of neoepitopes (normalized by the number of samples in
each breast cancer subtype) with the highest expressed neoepitope
for each patient as shown. 93% (762/815) of patients have at least
one potential binding epitope. < 1 includes neoepitopes with
expression less than 1.0 FPKM (not including 1.0 FPKM), 1–2 includes
neoepitopes with expression equal to or greater than one and less
than 2 FPKM, and so on, for all categories (PDF 87 kb)

Additional file 10: Table S3. Number of neoepitopes predicted for HLA
class I alleles in all the breast cancer samples as well as for the three
subtypes. For each allele, we also list the proportion of neoepitopes for
each subtype (PDF 54 kb)

Additional file 11: Figure S8. Distribution of neoepitopes binding to
HLA class I alleles in the three subtypes of breast cancer. HLA-A and HLA-
C binding alleles are seen in higher proportion in ER/PR(+)HER-2(−) sub-
type, while HLA-B binding alleles are in higher proportion in HER-2(+)
and TNBC subtype. (PDF 240 kb)

Additional file 12: Figure S9. Kaplan-Meier estimates for high and low
mutation burden. KM survival curves are shown for (A) disease-free sur-
vival and (B) overall survival between cases with high and low mutation
(MB) burden, the upper and lower quartiles, in each subtype of breast
cancer. Here we defined the top quartile of mutation burden as high and
the bottom quartile as low (PDF 903 kb)

Additional file 13: Figure S10. Kaplan-Meier estimates by neoepitope
load. KM curves of (A) disease-free survival and (B) overall survival be-
tween cases with high and low neoepitope load (NEL) in each subtype
of breast cancer. High and low are defined as the upper and bottom
quartile, respectively, for each breast cancer subtype (PDF 885 kb)

Additional file 14: Figure S11. Kaplan-Meier estimates based on muta-
tion burden and neoepitope load. KS curves of (A) disease-free survival
and (B) overall survival between cases with NeoEpitope Load (NEL) >
Tumor Mutation Burden (TMB) and NEL < TMB in all three subtypes of
breast cancer (PDF 234 kb)
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