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Abstract

Background: Microtubule-associated protein Tau (MAPT) overexpression has been linked to poor prognosis and
decreased response to taxane-based therapies in several cancer types, but its relevance in prostate cancer is
unknown.

Methods: In this study, MAPT expression was analyzed by immunohistochemistry on a tissue microarray
containing 17,747 prostate cancers.

Results: MAPT was absent in normal prostate epithelial cells but detectable in 1004 (8.2%) of 12,313 interpretable
cancers. Its expression was associated with advanced tumor stage, high Gleason grade, positive lymph nodes, and early
biochemical recurrence (p < 0.0001 each). For example, MAPT was found in 3.6% of 2072 Gleason ≤3 + 3 cancers but in
14.4% of 704 Gleason ≥4 + 4 cancers. High-level MAPT staining was also linked to TMPRSS2:ERG fusions (p < 0.0001).
MAPT staining was seen in 15.2 and 16% of cancers with TMPRSS2:ERG fusion detected by immunohistochemistry and
fluorescence in-situ hybridization, but in only 3.5 and 3.9% of cancers without ERG staining or ERG rearrangements.
Moreover, an association was found between MAPT expression and PTEN deletions, with 19% MAPT positivity in 948
PTEN deleted cancers but only 7% MAPT positivity in 3895 tumors with normal PTEN copy numbers (p < 0.0001).
Multivariate analysis revealed that the prognostic value of MAPT was independent from established parameters.
Conventional large section analyses showed intratumoral MAPT heterogeneity in all three analyzed cancers.

Conclusions: The results of our study identify MAPT, as a moderate prognostic marker in prostate cancer, whose
clinical impact, however, may be limited due to the rarity and heterogeneity of its expression.
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Background
In men with Western lifestyle the most prevalent cancer
is prostate cancer [1]. Although most cancers show an
indolent course, the disease still represents the third
most common cause of cancer related death in men.
Therefore a specific and sensitive prediction of aggressive
forms is warranted to improve decision-making [2, 3]. At

present Gleason grade and tumor extent on biopsies, pre-
operative prostate-specific antigen (PSA), and clinical
stage are established pretreatment prognostic parameters.
These parameters are statistically powerful but not suffi-
ciently reliable for optimal individual outcome prediction.
For example the Gleason grade suffers from substantial
interobserver variation [4]. Therefore the identification of
new clinically applicable molecular markers may enable a
more reliable prediction of prostate cancer aggressiveness
in the future.
MAPT facilitates tubulin assembly and microtubule

stabilization [5]. MAPT is mainly expressed in neuronal
axons and glial cell cytoplasm, but is also present in
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various non-neuronal cells including lymphocytes, epi-
thelial and glandular cells [5–8]. Aberrant expression of
MAPT has been reported for many cancer types such as
gastric, breast, and colorectal cancer [9–12], and has
been linked to adverse tumor features and poor progno-
sis in some of them [12]. Little is known about the role
of MAPT in prostate cancer. Only a few studies demon-
strated MAPT expression in prostate cancer cell lines
and in clinical samples but did not attempt to link MAPT
expression to clinical features of the disease [13–15]. How-
ever, MAPT might be of interest in prostate cancer since
overexpression has been found to represent a prognostic
marker in several cancers [12, 16, 17]. MAPT overexpres-
sion has also been linked to resistance to taxane-based ther-
apies in various other cancer types [10–12, 18]. To date,
taxanes are the most important cytotoxic agents for ad-
vanced and hormone-refractory prostate cancer [19–21].
Here, we employed a large - more than 17,000 prostate

cancers - and highly annotated tissue microarray (TMA)
to elucidate the role of MAPT expression in this disease.

Methods
Patients
The 17,747 patients had radical prostatectomy between
1992 and 2014 at the University Medical Center
Hamburg-Eppendorf (Department of Urology and the
Martini Clinics). Follow-up was available for 14,464

patients with a median follow-up of 48 months (range: 1
to 275 months; Table S1). PSA recurrence was defined as
a postoperative PSA of 0.2 ng/ml and increasing in sub-
sequent measurements. Histological analysis was done
by a standard method [22]. Quantitative Gleason grading
was performed using the percentage of Gleason 4 and
tertiary Gleason 5 patterns as described before [23]. The
TMA spot size was 0.6 mm and each TMA had internal
controls with normal prostate tissue [24, 25]. The highly
annotated TMA contained data on ERG expression [26],
ERG break apart fluorescence in situ hybridization
(FISH) [27] and deletion status of 5q21 (CHD1) [28],
6q15 (MAP3K7) [29], 10q23 (PTEN) [30]) and 3p13
(FOXP1) [31]) cancers.

Immunohistochemistry (IHC)
Freshly cut TMA sections were stained the same day
and in one experiment. Slides were deparaffinized and
exposed to heat-induced antigen retrieval for 5 min in an
autoclave at 121 °C in pH 7.8 Tris-EDTA-citrate buffer. Pri-
mary antibody specific for MAPT (mouse monoclonal anti-
body, clone 2B2.100, Biomol GmbH, Germany; cat#T1029;
dilution 1:450) was applied at 37 °C for 60min. Bound anti-
body was visualized with the EnVision Kit (Dako, Glostrup,
Denmark) according to the manufacturer’s directions.
MAPT staining was found in the cytoplasm of cells. In
MAPT positive cancers, staining was mostly seen in all

Fig. 1 Representative images of (a) negative, (b) low, (c) high and (d) heterogeneous microtubule-associated protein Tau (MAPT) staining in
prostate cancer at 100x and 400x (inset) magnification; original spot size was 600 μm
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(100%) tumor cells. Accordingly, the average staining inten-
sity in prostate cancer cells was recorded in three categories
as negative (no detectable staining), low and high staining
(Fig. 1).

Statistical analysis
Contingency tables and the chi-square test were com-
puted to study association between MAPT expression
and clinico-pathological variables. Kaplan-Meier analysis
and the log-rank test were employed with PSA recur-
rence as the endpoint. Cox proportional hazards were
calculated in a uni- and a multivariate model to test for
independence and significance of the variables. JMP 12
(SAS Institute Inc., NC, USA) was used.

Results
A total of 12,313 (69%) of tumor samples were interpret-
able. Reason for non-informative cases (5434 spots; 31%)
included lack of tissue samples or absence of unequivo-
cal cancer tissue in the TMA spot. Normal prostate tis-
sues showed no staining. In tumors, MAPT staining was
seen in 8.2% (1004 / 12,313) samples and was considered
low in 7.1% and high in 1.1% of cancers. Typical pictures
of MAPT immunostaining are given in Fig. 1. Because
heterogeneous findings were occasionally seen in TMA
spots (Fig. 1d), three cancers with high MAPT expression
were selected for analysis of intratumoral heterogeneity.
In these cases, additional IHC analysis was done on con-
ventional large sections of all available tumor-containing
tissue blocks. Ten slides per cancer were analyzed. All
cancers showed distinct areas with and without MAPT
staining.

Association with TMPRSS2:ERG fusion status and ERG
protein expression
MAPT staining and TMPRSS2:ERG fusion status by
FISH were available from 5028 and by IHC from 7500
cases. In 96% (4644/4849) of the cases ERG FISH and
IHC results were concordant. MAPT staining was linked
to TMPRSS2:ERG rearrangement and ERG positivity
(Additional file 1: Figure S1).

Association with tumor phenotype and PSA recurrence
MAPT expression levels were significantly associated
with advanced tumor stage, high Gleason grade, positive
nodal stage, and positive resection margin (p ≤ 0.0011
each, Table 1). These associations held also true in the
subsets of ERG negative and ERG positive cancers, al-
though not all p values remained significant probably due
to the overall small numbers of MAPT positive cancers
(Additional file 1: Table S2 and S3). High MAPT expres-
sion levels were also associated with a higher risk for bio-
chemical recurrence in all cancers and in the subsets of
ERG positive and ERG negative cancers (p < 0.0001 each,

Fig. 2). To further validate the prognostic power of
MAPT, we tested within subsets of identical classical and
quantitative Gleason score. In line with the Cox hazard ra-
tio analysis (Additional file 1: Table S4), MAPT staining
provided prognostic information beyond the Gleason
score in subsets defined by an identical traditional Gleason
score (Fig. 3a) and in the subgroup with 50–60% Gleason
4 pattern (Fig. 3g) defined by the quantitative Gleason
score (Fig. 3b-h).

Association with other key genomic deletions
Previous studies showed that prostate cancers could be
grouped by various somatic mutations including
TMPRSS2:ERG fusions and PTEN, 3p13, 5q21 and 6q15
genomic deletions. These alterations are of interest be-
cause they are linked to poor prognosis and either to the
ERG-fusion positive (PTEN, 3p) or the ERG-fusion nega-
tive subset (5q, 6q). A comparison of MAPT expression
levels with these deletions revealed a significant associ-
ation between high MAPT expression and PTEN deletions
irrespectively of the ERG status (p < 0.0001, Fig. 4). MAPT
expression was largely unrelated to other deletions.

Table 1 Association between microtubule-associated protein
Tau (MAPT) staining and prostate cancer phenotype

MAPT (%)

Parameter N Negative Low High P

All cancers 12,313 91.8 7.1 1.1

Tumor stage

pT2 7764 94.2 5.2 0.6 < 0.0001

pT3a 2809 88.9 9.6 1.5

pT3b-pT4 1688 85.7 11.7 2.6

Gleason grade

≤ 3 + 3 2072 96.4 3.3 0.3 < 0.0001

3 + 4 6702 92.6 6.7 0.8

3 + 4 Tertiary 5 614 91.0 8.1 0.8

4 + 3 1257 88.5 9.7 1.8

4 + 3 Tertiary 5 925 86.3 10.9 2.8

≥ 4 + 4 704 85.5 11.6 2.8

Lymph node metastasis

N0 7604 91.3 7.5 1.2 < 0.0001

N+ 943 85.9 11.7 2.4

Preoperative PSA level (ng/ml)

< 4 1418 89.6 8.9 1.6 0.0506

4–10 7278 92.3 6.7 1.0

10–20 2629 91.8 7.2 1.0

> 20 918 91.8 7.3 0.9

Surgical margin

Negative 9733 92.3 6.7 1.0 0.0011

Positive 2536 90.0 8.6 1.3
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Multivariate analysis
Four different scenarios were performed evaluating the
clinical relevance of MAPT expression (Table 2). For ex-
ample the preoperative scenario 4 included the Gleason
grade obtained on the original biopsy, the PSA level, the
cT stage and the MAPT expression. MAPT proved to be
an independent prognostic parameter in all four scenarios
when all tumors were analyzed (p < 0.0001 each, Table 2).
This held also true for ERG negative and ERG positive
cancers (p ≤ 0.02, Table 2). The hazard ratios for PSA
recurrence-free survival after prostatectomy for the uni-
variate and multivariate model of the established pre-
operative prognostic parameters and MAPT expression
(scenario 4) are shown in the Table S4. MAPT expression
was an equally strong prognostic marker as the other
known preoperative prognostic markers in both analyses.

Discussion
The results of our study identify MAPT overexpression
as a moderate prognostic feature occurring in a relatively
small subset of prostate cancers.
In this study, detectable MAPT expression was seen in

about 8% of prostate cancers whereas normal prostate
tissues remained negative under the selected experimental
conditions. Only one study has analyzed MAPT expression

by IHC in prostate cancer before. Cirak et al. reported 23%
MAPT positive cases in a series of 30 prostate cancers [13].
It is well possible, that the large section approach of Cirak
et al. lead to a higher detection rate of tumors with a het-
erogeneous MAPT expression. Our data indeed suggest
that MAPT expression might be heterogeneous in a con-
siderable fraction of tumors. Clear-cut heterogeneity was
even found in some TMA spots (Fig. 1d) and a thorough
analysis of all cancer-containing tissue blocks of three of
our cancers with high MAPT expression on TMA spots al-
ways revealed both MAPT positive and MAPT negative
cancer areas. Such heterogeneity represents a limitation for
TMA studies analyzing only single spots per tumor.
MAPT overexpression was associated with to unfavor-

able tumor phenotype and early biochemical recurrence
in this study (p < 0.0001 each). The independent prog-
nostic impact of MAPT overexpression from established
prognostic parameters and the difference in the five-year
recurrence rate of more than 20% between patients with
and without detectable MAPT expression argues for a
potential clinical relevance of this molecular feature. A
similarly strong prognostic role has recently been de-
scribed for aberrant βIII-tubulin (TUBB3) expression in
prostate cancer. TUBB3 is a microtubule protein, which
is normally expressed in cells of neuronal origin but

Fig. 2 Association between microtubule-associated protein Tau (MAPT) expression and prostate specific antigen (PSA) recurrence in (a) all
cancers, (b) the TMPRSS2:ERG negative and (c) the TMPRSS2:ERG positive subset
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Fig. 3 Kaplan-Meier plots of prostate specific antigen (PSA) recurrence after radical prostatectomy and negative or positive (low and high)
microtubule-associated protein Tau (MAPT) expression in subsets defined by (a) classical and (b-h) quantitative Gleason score, defined by the
percentage of Gleason 4 grade
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Fig. 4 Association between positive microtubule-associated protein Tau (MAPT) staining and 10q23 (PTEN), 5q21 (CHD1), 6q15 (MAP3K7), 3p13
(FOXP1) deletions in (a) all cancers, (b) the TMPRSS2:ERG negative and (c) the TMPRSS2:ERG positive subset
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not in prostate epithelium [32]. Overall, the striking
prognostic impact of the expression of proteins influen-
cing structure and maintenance of microtubules sug-
gest a considerable impact of composition and function
of the cytoskeleton on the behavior of cancer cells.
The extensive molecular database attached to our

TMA allowed us to further study the role of MAPT
expression in prostate cancer and to search for possible
interactions. About 50% of prostate cancers carry gene
fusions linking the androgen-regulated TMPRSS2 with
the transcription factor ERG [26, 33]. As a result of this
rearrangement, ERG becomes androgen regulated and
massively overexpressed. Our data demonstrate strik-
ingly higher MAPT expression levels in ERG positive
than in ERG negative cancers. This finding is consistent
with data suggesting that ERG may have a regulatory
role in microtubule dynamics [17, 34] and that ERG can
even destabilize microtubules by binding soluble tubulin
in the cytoplasm [35]. The exact molecular mechanism
for this is unknown. According to the eukaryotic pro-
moter database [36] MAPT is not a direct target of the
ERG transcription factor. It is possible, however, that
ERG has an indirect impact on MAPT transcription
through at least one of its more than 1600 target genes
[37–39]. Our comparison of MAPT expression with fre-
quent genomic deletions identified PTEN as the only
deletion linked to high MAPT expression. This fits well

to earlier work in neurodegenerative diseases reporting
that PTEN can affect MAPT phosphorylation, aggrega-
tion or it’s binding to microtubules [40, 41].
The existing data suggest a general role of MAPT protein

in cancer. High rates of MAPT positivity have been re-
ported from several other important cancer types including
43–52% in breast cancer [16, 42, 43], 63–74% in ovarian
cancer [12, 44], and 55–70% in gastric cancer [11, 45, 46].
The clinical and prognostic value of MAPT may greatly de-
pend on the tumor type. For example, high MAPT protein
expression level has been linked to good prognosis in breast
cancer [47], but to poor prognosis in ovarian cancer [12]. It
is unknown why MAPT exerts a different impact on tumor
cell aggressiveness in different cancer types. As the micro-
tubule composition varies between cell types, it may be
speculated that MAPT induced modifications of the micro-
tubule dynamics may have a diverse impact on cell behavior
depending on the tissue of origin. It is also known that
MAPT interacts with other cancer related proteins and
pathways. For example, it has been shown that MAPT can
cooperate with various growth related kinases such PI3K,
Fyn, cSrc, and Fgr [14, 48, 49]. Such kinases may have a dif-
ferent role in different cell types. Moreover, MAPT interac-
tions depend on its phosphorylation status. Substantial
differences in cell lines derived from prostate and brain
cancers suggest that MAPT phosphorylation might strongly
depend on the tumor type [14, 50–52].

Table 2 Multivariate analyses including microtubule-associated protein Tau (MAPT) expression in all cancers, the ERG negative and
ERG positive subset

P for PSA recurrence-free survival after prostatectomy

Subset Scenarioa N Preoperative
PSA-level

pT-stage cT-stage Gleason prostatectomy Gleason biopsy pN-stage R-status MAPT-expression

All cancers

1 6467 < 0.0001 < 0.0001 – < 0.0001 – < 0.0001 < 0.0001 < 0.0001

2 9690 < 0.0001 < 0.0001 – < 0.0001 – – < 0.0001 < 0.0001

3 9545 < 0.0001 – < 0.0001 < 0.0001 – – – < 0.0001

4 8146 < 0.0001 – < 0.0001 – < 0.0001 – – < 0.0001

ERG-negative

1 2541 0.0215 < 0.0001 – < 0.0001 – 0.0005 0.0601 0.0195

2 3873 0.0013 < 0.0001 – < 0.0001 – – < 0.0001 0.0180

3 3833 < 0.0001 – < 0.0001 < 0.0001 – – – 0.0013

4 3779 < 0.0001 – < 0.0001 – < 0.0001 – – < 0.0001

ERG-positive

1 1900 0.0005 < 0.0001 – < 0.0001 – 0.0145 0.0010 0.0122

2 2995 < 0.0001 < 0.0001 – < 0.0001 – – < 0.0001 0.0185

3 2944 < 0.0001 – < 0.0001 < 0.0001 – – – 0.0115

4 2900 < 0.0001 – < 0.0001 – < 0.0001 – – 0.0003
aScenario 4 combines preoperatively available parameters (preoperative PSA, clinical tumor (cT) stage, and Gleason grade obtained on the original biopsy) with
the postoperative MAPT expression. In scenario 3 the biopsy Gleason is replaced by the Gleason grade obtained on radical prostatectomy. In scenario 2 cT stage
is superseeded by pathological tumor (pT) stage and surgical margin (R) status. In scenario 1 the lymph node (pN) stage is added
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In several tumor types, MAPT has been suggested to
represent a potential predictive marker in patients
treated with taxanes [12, 46, 53–57]. MAPT competes
with taxanes for the same binding site at the microtu-
bules. Although MAPT stabilizes microtubules in the
same way as paclitaxel, its binding is more reversible
[18]. Consequently, overexpression of MAPT has been
suggested to render microtubules insensitive to pacli-
taxel therapy [18, 58, 59]. In prostate cancer, taxanes are
the most important cytotoxic agents for advanced meta-
static disease. However, response rates in clinical studies
(measured as a 50% decline of PSA) are about 45–50%
[60]. It would be interesting to study the relationship be-
tween expression of proteins related to the microtubules
system - such as MAPT and TUBB3 - and response to
taxanes in prostate cancer in clinical trials.

Conclusions
MAPT expression is a moderate and independent prog-
nostic factor in prostate cancer, which is particularly
linked to PTEN-deleted cancers. Heterogeneity of ex-
pression within tumors may limit the practical use of
MAPT measurement in clinical practice, however.

Additional file

Additional file 1: Table S1. Pathological and clinical data of the arrayed
prostate cancers. Table S2. Association between microtubule-associated
protein Tau (MAPT) staining results and prostate cancer phenotype in
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associated protein Tau (MAPT) staining results and prostate cancer pheno-
type in ERG fusion positive tumors. Table S4. Cox proportional hazards for
PSA recurrence-free survival after prostatectomy of established preoperative
prognostic parameter and MAPT expression. Figure S1. Association
between positive microtubule-associated protein Tau (MAPT) staining and
ERG status (IHC/FISH) in all cancers. (PDF 231 kb)
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