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Abstract

cancer risk in related individuals.

degree relatives of G and A allele carriers at rs55705857.

developing cancer (RR=1.50, p=0.007, Cl 1.15-2.01).

Background: /DH1/2 mutated glioma has been associated with a germline risk variant, the rs55705857 G allele. The
Utah Population Database (UPDB), a computerized genealogy of people in Utah, is a unique resource to evaluate

Methods: One hundred and two individuals with IDH1/2 mutant or 1p/19q co-deleted glioma were genotyped
and linked to the UPDB. DNA came from blood (21), tumor tissue (43), or both (38). We determined congruence
between somatic and germline samples and estimated the relative risk for developing cancer to first and second-

Results: Somatic (glioma) DNA had 85.7% sensitivity (Cl 57.2-98.2%) and 95.8% specificity (Cl 78.9-99.89%) for
germline rs55705857 G allele. Forty-one patients were linked to pedigrees in the UPDB with at least three
generations of data. First-degree relatives of rs55705857 G allele carriers were at significantly increased risk for
developing cancer (RR=1.72, p=0.045, Cl 1.02-2.94), and specifically for oligodendroglioma (RR=57.61, p=0.017,
Cl 2.96-320.98) or prostate cancer (RR=4.10, p =0.008, Cl 1.62-9.58); relatives of individuals without the G allele
were not at increased risk. Second-degree relatives of G allele carriers also had significantly increased risk for

Conclusions: Tumor DNA may approximate genotype at the rs55705857 locus. We confirmed this locus confers an
increased risk of all cancers and especially of oligodendroglioma. No increased cancer or brain tumor risk is seen in
family members of individuals without the high-risk G allele.
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Background

Germline genetic testing is a powerful tool that can yield
important predictive information about a person’s future
health [1-3]. Detection of germline pathogenic muta-
tions can lead to improved screening, additional preven-
tion strategies, and better understanding of personal
cancer risk [1-3]. Gliomas are categorized by somatic
genetic/molecular profiling in addition to histology in
order to improve treatment targets or provide
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prognostic information [3—6]. Germline genetic associa-
tions with specific somatic molecular subtypes are just
beginning to be understood [2—4, 6, 7].

Glioma is the most common type of primary brain can-
cer, with an overall glioma incidence of approximately 5
per 100,000 persons per year [8]. Gliomas are now charac-
terized based on the presence of mutations in the isoci-
trate dehydrogenase family of genes (IDHI and IDH?2) [6].
Mutations in IDHI or IDH2 are found in 100% of oligo-
dendrogliomas, 70-80% of lower grade astrocytomas, and
in secondary glioblastoma [9]. Co-deletion of chromo-
somes 1p and 19q can be used as a surrogate for IDH mu-
tation because 1p/19q co-deletion is invariably associated
with IDH mutation [10].
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Many studies have found genetic contributions to famil-
ial glioma risk (RR ~ 2.0-3.8), but the original studies were
unable to identify the origin of the increased risk [11, 12].
Recently, genome wide association studies have consist-
ently identified the rs55705857 G allele at 8q24 as a risk
factor for gliomagenesis that is specific for IDH1/2 mu-
tated gliomas [5, 7, 13—18]. Approximately 40% of individ-
uals with [DH1/2 mutated oligodendrogliomas and
astrocytomas carry the germline rs55705857 G allele,
compared with approximately 8% of the general popula-
tion [5, 13]. The identification of rs55705857 G allele as a
contributing factor to glioma development specific for
IDH mutated gliomas provides an opportunity to more
precisely calculate risks to relatives of patients with glioma.

All prior studies of risk alleles have been case-control
or GWAS studies. We explore the heritability of glioma
associated with the rs55705857 G allele in a population
based cohort database. We used the Utah Population
Database (UPDB), a computerized resource that links
data from the Utah Cancer Registry, Utah birth and
death certificates, and Utah driver licenses, among other
data sources. Over 6.5 million individuals have data
linked to the UPDB computerized resource. Data avail-
able from the Utah Cancer registry, a Surveillance, Epi-
demiology and End Results registry, spans from 1973 to
2012 and includes primary site, histology, age at diagno-
sis, stage, grade, survival, and treatment data. Over 2.5
million individuals have at least three generations of ge-
nealogy data that connects to the original Utah geneal-
ogy [19]. The UPDB resource allowed us to evaluate the
association between the rs55705857 G allele and several
types of IDH associated cancers in relatives of individ-
uals with IDH1/2 mutated glioma.

We hypothesized that first and second-degree relatives
of patients with an IDH1/2 mutated glioma and a germ-
line rs55705857 G allele had higher risk for developing
one or more of the following cancers in which IDHI1/2
mutations have been found: glioma, prostate, colon, hep-
atic, lymphomas, biliary tumors, primary myelofibrosis,
central chondrosarcoma, chrondroma/enchondroma,
thyroid, acute lymphoblastic leukemia, and acute mye-
logenous leukemia [20-22]. We also aimed to determine
the accuracy of tumor tissue for assessing the
rs55705857 G allele and the relative risk of specific can-
cers in first and second-degree relatives of individuals
with IDHI1/2 mutated gliomas with and without the
rs55705857 G allele.

Methods

Patient identification/Proband sample population

The population of this study was derived from the
Huntsman Cancer Institute Cancer Clinical Research
Database (CCR). Secondary analyses of patient data and
specimens with a waiver of informed consent were
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approved by the University of Utah IRB and all research
was conducted following the international standards set
forth in the Declaration of Helsinki. Patients were identi-
fied using CPT and ICD-9 codes for histology and location
to find Grade II-III oligodendroglioma, oligoastrocytoma,
glioma NOS, and/or astrocytoma patients, and only indi-
viduals with tumors with documented IDH1 mutations,
IDH2 mutations, or 1p/19q codeletion were included.
Stored germline tissues, somatic tissues, or DNA was ob-
tained from the HCI Biorepository. In total, 102 unique
patients had DNA or tissue samples available and were ge-
notyped for the G allele of rs55705857 SNP (Table 1).

Genotyping

G allele genotyping at rs55705857 was performed by the
Mayo Clinic Genotyping Core, utilizing a TagMan Assay
from ABI with Genotyping Master Mix. Amplification
and post amplification genotype readings were per-
formed on an Applied Biosystems HT7900. Samples
were submitted in 96-well plates. Fifteen water blanks
and replicate samples were plated at random.

We considered the patient to be germline positive for
the rs55705857 G allele when at least one replicate of
the sample had complete agreement with two runs de-
tecting heterozygote/homozygote status for the G allele.
Somatic DNA was considered positive for detection of
the rs55705857 G allele when one of the two runs de-
tected the G allele (Additional file 1: Table S1).

Linking records to the UPDB

The Utah population is predominantly of Northern
European ancestry with average rates of consanguinity
similar to those for the United States and negligible gen-
etic drift [23, 24]. We linked patients meeting our study
criteria to the UPDB; after linkage, no identifiers were
used. Record linkage and analyses were approved by The
University of Utah Institutional Review Board and the
Resource for Genetic Epidemiologic Research. There
was no contact with human subjects. Familial cancer risk
analyses were only performed on patients with at least
three generations of genealogy.

Table 1 DNA sample characteristics of glioma patients
harboring IDH1/2 mutant or 1p/19q co-deletion

DNA Source Male Patients Female Patients
Somatic 15 28
Germline 10 11
Somatic and Germline 21 17

Somatic DNA was derived from tumor samples. Germline DNA was derived
from blood samples. One hundred and two individuals had one or more
sources of DNA available for analysis
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Analysis

Methods used to analyze genealogical data within the
UPDB have been previously described in detail [11, 19, 25].
Our work estimated the Relative Risk (RR) of cancer in
first and second-degree relatives of genotyped patients.
The RR of cancer in relatives of genotyped patients is de-
fined as the ratio of the observed number of cancers for a
given set of relatives to the expected number of cancers.
Expected numbers of cancers are based on cohort-specific
population rates for each cancer, calculated from within
the UPDB. Cohorts represent sex, birth state (Utah or
not), and 5-year birth-year groups. The expected number
of relatives with cancer was estimated by counting all rela-
tives of the genotyped patients by cohort, then multiplying
the number of relatives in a given cohort by the
cohort-specific rate of each tumor subtype. That value was
summed over all cohorts to create estimates of the RR for
each cancer. Given a null hypothesis RR< 1, we calculated
one-sided probabilities that RR > 1. We assumed the num-
ber of observed cancers followed a Poisson random vari-
able with a mean equal to the expected number of cases.

Results

Presence or absence of the rs55705857 G allele was suc-
cessfully determined for one hundred two individuals
(Table 1). We determined congruence between somatic
and germline DNA for 38 of 102 (37%) individuals. We
assumed DNA derived from blood or other non-tumor
tissue was an accurate representation of germline DNA
complement. Somatic (glioma) DNA had 85.7% Sensitiv-
ity (CI 57.2-98.2%) and 95.8% Specificity (CI 78.9-
99.89%) for predicting the presence of the rs55705857 G
allele in the germline. Somatic DNA had a positive pre-
dictive value (PPV) of 93.2% (CI 90.1-94.0%) and 90.9%
negative predictive value (CI 89.2-91.3%). The overall
accuracy of tumor genotype was 92.1% (CI 78.6—98.3%)
(Fig. 1). Germline DNA was not available for all
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<

Fig. 1 Accuracy of genotype in 38 individuals with somatic and
germline DNA samples. Abbreviations: AA, rs55705857 A allele
homozygote; AG, rs55705857 G allele heterozygote; GG, rs55705857
G allele homozygote. Calculations assume that DNA derived from
blood is the true germline representation of the individual
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participants. Based on the high rate of concordance be-
tween the germline and somatic rs55705857 genotype,
germline genotypes were inferred for those without
germline DNA based on the somatic genotype.

Of the 102 genotyped individuals, forty-one individuals
were linked to 23 generation UPDB genealogies. Eight-
een of 41 subjects were found to have the rs55705857 G
allele (G allele carriers). The G allele carriers had 140
first-degree relatives in UPDB; 13 cancers were observed
in that population. The G allele carriers had 412 s-degree
relatives with 44 cancers. Relative risk estimates for a
subset of cancers are summarized in Table 2.

First-degree relatives of G allele carriers were at sig-
nificantly increased risks for developing any cancer (RR
=1.72, p = 0.045, CI 1.02-2.94) and specifically for devel-
oping oligodendroglioma (RR=57.61, p=0.017, CI
2.96-320.98) or prostate cancer (RR =4.10, p =0.008, CI
1.62-9.58). Conversely, first-degree relatives of individ-
uals who did not carry the high-risk G allele
(rs55705857 A allele homozygotes) were not at signifi-
cantly increased risk for developing cancer overall, or for
developing any individual cancer tested (Table 3).

Second-degree relatives of G allele carriers had an
overall significantly increased risk for developing cancer
(RR=1.50, p=0.007, CI 1.15-2.01), and specifically for
developing colorectal cancer (RR=2.21, p=0.043, CI
1.04-4.55) (Table 4).

Again, no increased cancer risk was seen in
second-degree relatives of rs55705857 A allele homozy-
gote individuals (Table 5).

Discussion

We report a novel association between the rs55705857 G
allele and multiple cancers. It is possible that this risk al-
lele is not responsible for these cancers and that instead
cosegregation between the rs55705857 G allele and one or
more risk-associated single-nucleotide-polymorphisms in
8q24 is responsible for the excess prostate and colon

Table 2 Cancer incidence for 1st degree relatives of G allele carriers

Cancer Type Obs Exp 1T P-Value RR 95% Cl
ANY CANCER 13 756 0045 172 1.02-294
BRAIN <5 * 0.163 561 029-3124
- OLIGODENDROGLIOMA <5 * 0017 5761 296-32098
COLORECTAL <50 0% 0.546 0 0-4.95
THYROID <5 * 0.750 0 0-1043
PROSTATE <5 0.008 4.1 1.62-9.58

Abbreviations: Obs observed number of individuals with given cancer, Exp
expected number of individuals with given cancer, 1 T P-Value one-tailed
p-value, RR relative risk, C/ confidence interval

For all cancer sites with <5 observed cases, exact values are not shown for
observed and expected to preserve patient anonymity per the Utah Resource
for Genetic and Epidemiologic Research (RGE) requirements and are marked
with an asterisk. Cancer incidence calculated in one hundred forty
first-degree relatives
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Table 3 Cancer incidence for 1st degree relatives of rs55705857
A allele homozygote individuals

Page 4 of 6

Table 5 Cancer incidence for 2nd degree relatives of
rs55705857 A allele homozygote individuals

Cancer Type Obs Exp 1TP-Value RR 95% Cl Cancer Type Obs Exp 1TP-Value RR 95% Cl
ANY CANCER 121191 0528 101  058-1.76  ANY CANCER 43 3473 0097 124 094-167
BRAIN <5 * 0.772 0 0-11.58 BRAIN <5 * 0.569 0 0-5.31

- OLIGODENDROGLIOMA <5 % 0976 0 0-124.9 - OLIGODENDROGLIOMA <5 * 0.970 0 0-97.08
COLORECTAL <5000 0.260 202 036-73 COLORECTAL <5 0338 131 051-3.05
THYROID <5 * 0.665 0 0-7.35 THYROID <5 * 0.554 0 0-5.07
PROSTATE <5 * 0.097 0 0-1.28 PROSTATE 8 787 0529 1.02  051-2.00

Abbreviations: Obs observed number of individuals with given cancer,

Exp expected number of individuals with given cancer, 1 T P-Value one-tailed
p-value, RR relative risk, C/ confidence interval

For all cancer sites with <5 observed cases, exact values are not shown for
observed and expected to preserve patient anonymity per the Utah Resource
for Genetic and Epidemiologic Research (RGE) requirements and are marked
with an asterisk. Cancer incidence calculated in one hundred and seventy-six
first-degree relatives

cancer in our patient’s families [26—-30]. However, studying
a population of individuals with rare cancers and extended
family history data may have allowed us to detect an asso-
ciation missed by previous GWAS and whole
genome-sequencing studies [26—30]. Given that screening
recommendations for prostate and colon cancer in high
risk populations already exist, confirmation of this possi-
bility in larger studies is warranted.

The ability to use tumor DNA for germline genotypes
greatly expands the population available for familiality
studies involving the 8q24 region. With tumor DNA,
there is always a concern that somatic mutations or de-
letions will mask accurate genotypes and that tumor
genotype may change over time [3, 31]. The confidence
intervals on our results suggest that that the accuracy of
tumor DNA from initial surgeries for genotype analysis
of the rs55705857 G allele in tumor is at least ~ 80%.
Our result of high accuracy in 8q24 tumor DNA is in
line with previous literature indicating that this region
may contain gliomagenesis driver mutations that are

Table 4 Cancer incidence for 2nd degree relatives of G allele

carriers

Cancer Type Obs  Exp 1TP-Value RR  95% Cl
ANY CANCER 44 294  0.007 1.5 1.15-2.01
BRAIN <500% 0.603 0 0-5.92

- OLIGODENDROGLIOMA <5 * 0972 0 0-106.05
COLORECTAL 7 317 0043 221 1.04-4.55
THYROID <5 * 0.114 348 0.62-12.56
PROSTATE 7 62 0426 113 053-233

Abbreviations: Obs observed number of individuals with given cancer,

Exp expected number of individuals with given cancer, 1T P-Value one-tailed
p-value; RR relative risk, C/ confidence interval

For all cancer sites with <5 observed cases, exact values are not shown for
observed and expected to preserve patient anonymity per the Utah Resource
for Genetic and Epidemiologic Research (RGE) requirements and are marked
with an asterisk. Cancer incidence calculated in four hundred and twelve
second-degree relatives

Abbreviations: Obs observed number of individuals with given cancer,

Exp expected number of individuals with given cancer, 1 T P-Value one-tailed
p-value, RR relative risk, C/ confidence interval

For all cancer sites with <5 observed cases, exact values are not shown for
observed and expected to preserve patient anonymity per the Utah Resource
for Genetic and Epidemiologic Research (RGE) requirements and are marked
with an asterisk. Cancer incidence calculated in four hundred and thirty-six
second-degree relatives

preserved and rarely deleted in gliomas [5]. Our results
cannot assess whether tumor genomic evolution would
affect this accuracy in tumor samples from reresection
after chemotherapy and/or radiation.

Limitations of this study include the rarity of glioma in
the general population and small number of tissue sam-
ples available in the CCR, which leads to large confi-
dence intervals. Data censoring is present due to 61
samples failing to link to genealogy data and lack of data
on cancers treated outside of Utah or diagnosed before
1966. However, from previous studies the number of
such cancers is expected to be low [25]. Selection bias
due to unknown confounders may be present but clin-
ical factors such as age were not significantly different
between individuals linked to genealogy data and those
unlinked. Confirmation of our findings in other inde-
pendent datasets is needed to validate our findings and
refine risk estimates.

Although we expect 50% of first-degree relatives of G
allele carriers to carry the G allele, first and
second-degree relatives were not genotyped, which
might have diluted the results for association between a
high-risk allele and cancer incidence. It is possible that
the risk of cancer in people who carry the G allele and
who have a first degree relative with an IDH mutated gli-
oma is twice as high as estimated. Greater sample size is
needed to confirm these preliminary results.

Conclusion

This was the first epidemiological study estimating can-
cer risks among first and second-degree relatives of
rs55705857 G allele carriers [32]. Our population-based
analysis confirms and extends previously published re-
sults associating the rs55705857 G allele with IDH mu-
tated gliomas [5, 13, 15, 32-34]. We provide the first
evidence in a prospectively identified cohort of this
association.
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We showed for the first time that relatives of
rs55705857 G allele carriers have an increased risk of
any cancer and especially of oligodendrogliomas, while
relatives of A allele homozygote carriers had no in-
creased risk of any cancer. A link between the G allele of
rs55705857 and both prostate and colon cancer was sug-
gested, but these results should be confirmed in an inde-
pendent population [26, 27]. This manuscript provides
evidence that allele status at rs55705857 is stable in tu-
mors, confirms an increased risk of oligodendroglioma
in first-degree relatives of rs55705857 G allele carriers,
and suggests that further study of the role of the G allele
in other cancers is warranted. Future work identifying
the cancer risk based on relatives’ genotype and on iden-
tifying the IDH status in non-gliomas associated with
the rs55705857 G allele is warranted.

Additional file

Additional file 1: Table S1: DNA sample characteristics of glioma
patients harboring IDH1/2 mutant or 1p/19q co-deletion. Legend: Shown
are the genotype results of 102 unique individuals. Samples were submitted
in 96-well plates. Fifteen water blanks and replicate samples were plated at
random. Cells highlighted in blue were called G Allele positive for
rs55705857. Cells highlighted in orange have discrepancy between G allele
status at rs55705857 in blood and tumor samples. Blood is germline and
thus was held to be the true representation of an individual's G allele status
at rs55705857. (PDF 315 kb)
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