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Abstract

Background: The miRNA isoforms (isomiRs) have been suggested to regulate the same pathways as the canonical
miRNA and play an important biological role in miRNA-mediated gene regulation. Recently, a study has demonstrated
that the presence or absence of all isomiRs could efficiently discriminate amongst 32 TCGA cancer types. Besides, an
effective reduction of distinguishing isomiR features for multiclass tumor discrimination must have a major impact on
our understanding of the disease and treatment of cancer.

Methods: In this study, we have constructed a combination of the genetic algorithms (GA) with Random Forest (RF)
algorithms to detect reliable sets of cancer-associated 5’isomiRs from TCGA isomiR expression data for multiclass tumor
classification.

Results: We obtained 100 sets of the optimal predictive features, each of which comprised of 50–5’isomiRs that could
effectively classify with an average sensitivity of 92% samples from 32 different tumor types. We calculated the
frequency with which a 5’isomiR found in these sets as measuring its importance for tumor classification. Many highly
frequent 5’isomiRs with different 5′ loci from canonical miRNAs were detected in these sets, supporting that the
isomiRs play a significant role in the multiclass tumor classification. The further functional enrichment analysis showed
that the target genes of the 10 most frequently appearing 5’isomiRs were involved in the activity of transcription
activator and protein kinase and cell-cell adhesion.

Conclusions: The findings of the present study indicated that the 5’isomiRs might be employed for multiclass tumor
classification and the suggested that GA/RF model could perform effective tumor classification by a series of largely
independent optimal predictor 5′ isomiR sets.
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Background
The accumulation of genetic alteration drives cancer de-
velopment and progression [1]. The Cancer Genome Atlas
(TCGA) consortium integrated comprehensive clinico-
pathologic annotation data together with molecular pro-
files of over 11,000 human tumors across 30 different
human tumor types [2]. Analyzing these large datasets can
provide more exciting opportunities to better understand
the tumor characteristics and discover novel and effective
predictive and prognostic tumor biomarkers and

therapeutic targets. While most of the previous studies on
tumor classifications have focused primarily on the gene
expression data, including RNA-seq and microarray data
[3–5]. miRNAs and isoforms of human miRNAs (isomiRs)
also play essential roles and may serve as potential bio-
markers for tumor classification [6–11]. The isomiRs are
predominantly generated from the alternative cleavage of
Drosha or Dicer and 3′addition events, which produce
mature miRNA different from the canonical miRNA by a
few nucleotides at the 5′ or 3′ end and designated as
5’isomiR or 3’isomiR [12, 13]. Both computational and ex-
perimental analyses revealed that the isomiRs are involved
in regulating distinctive target genes and could play a cru-
cial biological role in miRNA-mediated gene regulation
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[14–18]. In a recently conducted study, the presence or
absence of 7466 isomiRs could be effectively discriminated
amongst 32 TCGA cancer types with 90% sensitivity [19].
Moreover, an average sensitivity of 82% was achieved by
using 456 most significant isomiRs. In the present study,
we aimed to evaluate the effective reduction of discrimin-
ant isomiR features for multiclass TCGA tumor discrimin-
ation classification.
The filter, wrapper and embedded methods are typically

utilized for feature selection, though all of them are not
good at dealing with data which contain a large number of
collinear variables. [20, 21]. The isomiRs may belong to
the same miRNA family, the same miRNA cluster, or
some of them even have same seed region, leading to simi-
lar or related function and highly correlated expression. In
the previous studies, the wrapper method could outper-
form embedded methods by the combined machine learn-
ing algorithm for classification [21]. The genetic
algorithms combined with the machine learning algo-
rithm, which employs a GA as the search engine for fea-
ture subset selection and the machine learning algorithm
as the classification tool, was efficiently used for classifica-
tion of gene expression data [3, 4]. This algorithm could
identify and classify more than 90% of samples from 31
tumor types with a set of 20 genes [3]. Beside the machine
learning algorithms -- such as support vector machines
(SVM), sparse representation (SR), sparse representation
classifier (SRC), random forest (RF), and k-Nearest Neigh-
bors (KNN) -- has been extensively applied in cancer
prognosis and prediction analysis [3, 22–25]. Nevertheless,
GA has proven ability to detect the optimal classifier
effectively for multiclass cancer discrimination [4, 26]. GA
is based on Darwin’s theory of natural evolution, and it is
typically implemented using computer simulations in
which an optimization problem is specified. GA is fre-
quently used to generate high-quality solutions to
optimization problems using genetic operators: selection,
crossover, and mutation [27]. In this study, we constructed
a combination of the GA with random forest algorithms
to detect reliable sets of cancer-associated 5’isomiRs from
TCGA isomiR expression data.
Furthermore, 5’isomiR may target very different

transcripts as compared with their canonical miRNAs
attributed to shifting in the seed region (typically 2–7
nt of the miRNA), which is recognized to be very
critical in determining miRNA target specificity [28–
31]. Various 5′ isomiRs play an important role in
suppression and progression of cancer [32, 33]. Using
the combined GA/RF algorithms, reliable sets of can-
didate tumor biomarkers for multiclass tumor dis-
crimination was detected by combining all the
miRNA isoforms with same loci of 5′ end together in
TCGA isomiR expression data. In this step, the
miRNA isoforms with same loci of 5′ end will be left

with only one in the reliable sets, which will dramat-
ically reduce the type of isomiRs. The findings of the
present study revealed that the 5’isomiRs might be
utilized for effective tumor classification and classifier
can achieve an average sensitivity of 91.5% with only
50–5’isomiRs.

Methods
Datasets
All the TCGA isomiR expression data for 10,999 TCGA
datasets representing 33 tumor types was downloaded
(April 2018) from the TCGA data portal (https://tcga-da-
ta.nci.nih.gov). Only primary solid tumor samples with in-
fix ‘01’ in the TCGA sample barcode, with the exception
of the blood samples derived from acute myeloid leukemia
(LAML; sample infix ‘03’) were included in the study.
After excluding all samples that were annotated as ‘poten-
tially problematic’ datasets (file_annotations.txt files), 9085
eligible datasets (isoform.quantification.txt files) were
finally included for further analysis (Table 1). For each
dataset, we generated 5’isomiR profiles by combing all the
sequences together with same loci at 5′ end, and the
expression level of each 5’isomiR was calculated by the
sum of all corresponding RPM (read per million) values.
In order to avoid noise generated due to poorly expressed
isomiRs, we only included the 5’isomiR profiles with read
depths of ≥10 in more than 10 samples. Next, we
log2-transformed the combined normalized read depths
for each 5’isomiR; however, as the read depths ≤1 RPM
were considered noise, we filtered them by assigning all
values less than 1 the value 1 before log transformation.

Multiclass GA/RF classifier
In this study, we used the GA/RF based model for tumor
classification. GA/RF utilizes a GA to select a set of sali-
ent features from input and classification module using
RF [27]. The selected features were used as inputs to RF
[22]. In a genetic algorithm, a population of strings
(designated as chromosomes), which encode candidate
solutions (the 5’isomiR signature in this case) to an
optimization problem, evolves toward better solutions.
The evolution typically starts from a population of ran-
domly generated 5’isomiR sets and occurs in genera-
tions. In the present study, the parameters including the
“chromosome” length, the “population” size and the
maximum number of “generations” were set to 50
(including 50–5’isomiR set), 50, and 300, respectively.
For RF classification, the randomForest was used
(https://cran.r-project.org/web/packages/randomForest/
randomForest.pdf ). Besides, we use SVM classification
for comparison, and the e1071 package in R with linear
kernel function was run (https://cran.r-project.org/web/
packages/e1071/index.html).
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For tumor, classification prediction may vary based on
different samples assigned to the training set. We
repeated the above the GA/RF procedure100 times. Dur-
ing each of the 100 runs, the training and testing were
carried out, each time using one distinct subset of ran-
domly selected for training and the remaining subsets
for testing. In a given run, the training sets were gener-
ated by randomly selecting 75% of each cancer’s available
tumor datasets, and the testing sets were generated by
the remaining 25% datasets. Finally, we achieved optimal
5’isomiR sets after 300 generations of GA/RF steps.

5’isomiR target prediction and function enrichment
analysis
Using the TargetScanHuman (http://www.targetscan.org)
and the TargetScanHuman Custom (http://www.targetsca-
n.org/vert_50/seedmatch.html) prediction of the target
genes of 5’isomiRs with original seed region along with
different seed region of canonical miRNA, respectively,
were performed [40]. Then, the predicted target genes were
submitted to the functional annotation tools of DAVID for
the functional enrichment analysis [41, 42]. For functional
annotation, the 3 Gene Ontology items (GOTERM_BP_FA
GOTERM_CC_FAT, and GOTERM_MF_FAT) were
selected with the Enrichment Thresholds or EASE set as
0.001.

Results
Tumor classification
Here, we have constructed a combination of the genetic
algorithms (GA) with Random Forest (RF) algorithms to
detect reliable sets of cancer-associated 5’isomiRs from
TCGA isomiR expression data for multiclass tumor clas-
sification (Fig. 1). After 100 independent runs, the pre-
diction accuracies of each classifier for each cancer
could be obtained with 300 generations of GA. Based on
the initial pre-selected set population size, we obtained
100 sets of the optimal predictive features, each of which
is comprised of 50–5’isomiRs. The GA/RF and GA/SVM
achieved quite similar results (the average sensitivities
were 92 and 91.5%, respectively), and then our following
analysis only used the result from GA/RF classifier. The
100 generated predictor sets required relatively similar
classification accuracies(Fig. 2a, Fig. 2b), which indicated
that our selected 5’isomiR sets were remarkably accurate
for multiclass tumor classifications. Besides, the predic-
tion accuracies for cholangiocarcinoma (CHOL), rectum
adenocarcinoma (READ) and esophageal carcinoma
(ESCA), were recorded to be relatively low, indicating
that these tumors were often classified as other types
(Fig. 2c). Interestingly, the samples of these cancers
could be effectively classified in some runs by altering
the training and test set, with different isomiR sets,
except for READ. Further, in order to investigate which
tumor types could be hardly distinguished from all
others, we calculated the mean prediction sensitivity for
all runs. Notably, similar tumor classification was
obtained as reported previously (Fig. 2d). Moreover, the
majority of samples from READ tumor were misclassi-
fied as colon adenocarcinoma (COAD), which could be
attributed to similar molecular expression, histology, and
anatomical location [19, 34]. These findings suggested
that the GA/RF model could perform effective tumor
classification by a series of largely independent optimal
predictor 5′ isomiR sets.

Table 1 Tumor types and number of TCGA isomiR samples
used in the analysis

Tumor Types # of samples

Adrenocortical carcinoma [ACC] 79

Bladder Urothelial Carcinoma [BLCA] 366

Breast invasive carcinoma [BRCA] 1064

Cervical squamous cell carcinoma and endocervical
adenocarcinoma [CESC]

299

Cholangiocarcinoma [CHOL] 35

Colon adenocarcinoma [COAD] 386

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
[DLBC]

46

Esophageal carcinoma [ESCA] 183

Head and Neck squamous cell carcinoma [HNSC] 487

Kidney Chromophobe [KICH] 60

Kidney renal clear cell carcinoma [KIRC] 455

Kidney renal papillary cell carcinoma [KIRP] 261

Acute Myeloid Leukemia [LAML] 105

Brain Lower Grade Glioma [LGG] 497

Liver hepatocellular carcinoma [LIHC] 356

Lung adenocarcinoma [LUAD] 445

Lung squamous cell carcinoma [LUSC] 419

Mesothelioma [MESO] 82

Ovarian serous cystadenocarcinoma [OV] 349

Pancreatic adenocarcinoma [PAAD] 152

Pheochromocytoma and Paraganglioma [PCPG] 178

Prostate adenocarcinoma [PRAD] 472

Rectum adenocarcinoma [READ] 144

Sarcoma [SARC] 243

Skin Cutaneous Melanoma [SKCM] 94

Stomach adenocarcinoma [STAD] 425

Testicular Germ Cell Tumors [TGCT] 149

Thyroid carcinoma [THCA] 483

Thymoma [THYM] 122

Uterine Corpus Endometrial Carcinoma [UCEC] 514

Uterine Carcinosarcoma [UCS] 55

Uveal Melanoma [UVM] 80
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Characterization of the highly frequent 5’isomiRs
For all 100 runs, we acquired 100 sets of GA/RF classi-
fiers and each set comprised of 50 items. Then, the fre-
quency of selected 5′ isomiR across all the optimal
predictive set was calculated. The relative significance of
each 5′ isomiR for tumor classification was assessed by
counting how often it appeared in these predicted opti-
mal feature sets. For the functional enrichment analysis,
we included all 5′ isomiRs with the frequency of ≥11 in
these sets. It is difficult to randomly select a gene for
more than 11 times in a 100 subset from 100 runs for a

given dataset of 2231 samples, and the significance of
adjusted p-value was calculated as less than 0.01
followed by Bonferroni correlation for multiple testing.
Finally, 41 highly frequent 5’isomiRs were selected
(Table 2). Notably, of which 28 had different 5′ loci than
that of the canonical miRNA from miRBase 21, and
some 5’isomiRs even originated from the same
pre-miRNA.
Next, we examined the expression level of these highly

frequent isomiRs (Fig. 3). Many of them showed higher
than 10 rpm, which was the threshold value as derived

10999 TCGA 
datasets

9085 eligible 
datasets

GA-based 

Highly frequent 
isomers

Functional 
enrichment

analysis

Filter

100 times
Chromosome: 50

Population: 50

Generations: 300

Target prediction

Fig. 1 The work flow of our GA/RF based algorithm for detecting reliable sets of cancer-associated 5’isomiRs from TCGA isomiR expression data
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Fig. 2 Analysis of GA/SVM-derived optimal feature sets for 100 runs generated by GA/SVM. a The average sensitivity for 100 generated predictor
sets. b The average MCC (Matthew’s Correlation Coefficient) for 100 generated predictor sets [43]. c The prediction accuracies for 32 tumor
classifications. d The average sensitivity of test-set samples predicted to be each of the 32 tumor types. X-axis and Y-axis list the actual and the
predicted cancer type, respectively. The color of each cell in the heatmap is the average sensitivity of the test-set samples originally as the cancer
type in X-axis to be predicted as the cancer type in Y-axis
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Table 2 Detail description of 41 highly frequent 5′ isomiRs in 100 generated predictor sets

5’isomiR ID Chromosome Strand Start site Corresponding miRNA ID Frequency in 100 runs Canonical seed region?

313 Chr1 + 209,432,166 hsa-miR-205-5p 88 Y

698 Chr6 + 52,144,401 hsa-mir-206 85 Y

233 Chr7 – 27,169,550 hsa-mir-196b-5p 75 N

121 Chr2 + 176,150,330 hsa-miR-10b-5p 40 N

39 Chr2 + 176,150,329 hsa-miR-10b-5p 36 Y

151 Chr17 – 48,579,926 hsa-miR-10a-5p 32 Y

301 Chr2 – 219,001,669 hsa-miR-375 24 Y

193 Chr2 – 219,001,670 hsa-miR-375 24 N

317 Chr2 – 219,001,671 hsa-miR-375 23 N

103 Chr3 + 189,829,974 hsa-mir-944 21 N

350 Chr2 + 176,150,331 hsa-miR-10b-5p 20 N

529 Chr1 – 220,117,937 hsa-miR-215-5p 18 N

275 Chr17 – 48,579,925 hsa-miR-10a-5p 18 N

506 Chr3 + 189,829,975 hsa-mir-944 16 Y

207 Chr5 – 149,062,395 hsa-miR-584-5p 16 N

188 Chr12 + 6,963,742 hsa-miR-200c-3p 15 Y

594 Chr12 + 62,603,694 hsa-let-7i-5p 14 N

119 Chr11 – 64,891,426 hsa-miR-194-5p 14 N

884 ChrX + 136,550,892 hsa-miR-934 13 Y

297 ChrX – 151,958,652 hsa-miR-224-5p 13 N

264 Chr17 – 1,713,934 hsa-miR-22-3p 13 N

208 Chr17 – 48,579,928 hsa-miR-10a-5p 13 N

91 Chr6 – 71,403,576 hsa-miR-30a-3p 12 N

90 Chr17 + 31,560,016 hsa-miR-193a-5p 12 Y

854 ChrX + 136,550,928 hsa-mir-934 12 N

449 Chr11 – 64,891,390 hsa-miR-194-3p 12 N

372 Chr14 – 101,560,347 hsa-miR-1247-3p 12 N

247 Chr1 – 207,802,474 hsa-miR-29b-3p 12 N

124 Chr5 + 149,428,977 hsa-miR-143-3p 12 N

120 Chr1 – 220,118,228 hsa-miR-194-5p 12 N

572 Chr20 + 62,564,971 hsa-miR-133a-3p 11 N

475 Chr2 + 176,150,328 hsa-miR-10b-5p 11 N

429 Chr20 + 62,554,351 hsa-miR-1-3p 11 Y

392 Chr9 – 21,512,179 hsa-miR-31-5p 11 N

37 Chr6 – 71,403,617 hsa-miR-30a-5p 11 N

358 Chr7 – 129,774,987 hsa-miR-183-5p 11 N

324 Chr7 – 129,770,466 hsa-miR-182-5p 11 N

316 Chr1 + 1,167,124 hsa-miR-200b-5p 11 Y

248 Chr7 – 130,877,491 hsa-miR-29b-3p 11 N

232 Chr1 + 1,167,160 hsa-miR-200b-3p 11 Y

113 Chr21 + 16,539,101 hsa-miR-99a-5p 11 Y
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from a previous study for presence or absence of
isomiRs [19]. Noticeably, some of them showed ex-
tremely lower expression, nearly all of 5’isomiRs showed
less than 10 rpm. It is worth noting that we combined 5′
isomiRs with same 5′ loci together in this study.

Tumor classification and functional analysis with the 9
most frequently appearing 5′ isomiRs
Next, the 9 most frequently appearing 5’isomiRs from all
100 runs were selected to determine whether a rational
classification could be obtained using a reduced set. The
training set and the corresponding test set were
randomly produced 1000 times. Then, the RF algorithm
was performed to determine the prediction accuracy of
multiclass tumor classification (Fig. 4a). We could still
achieve a reasonable prediction accuracy (the average
sensitivity was 73.7%). In the list of 9 most frequently
appearing 5’isomiRs, two 5’isomiRs were from hsa-
miR-10b-5p and three 5’isomiRs belonged to hsa-
miR-375. In order to investigate whether these 5’isomiRs
with different 5′ loci could provide an additional contri-
bution to the tumor classification, we removed the three
5’isomiRs which had different 5′ loci from the canonical
miRNA, and randomly rebuilt the training set and the
corresponding test set 1000 times again. Finally, we
could only obtain an average sensitivity of 72.3% by the

RF algorithm, which suggested that the isomiR shown
different contribution in multiclass tumor classification
than the canonical miRNA.
Furthermore, to investigate the candidate target genes

of the 9 most frequently appearing 5’isomiRs, the Tar-
getScanHuman was performed for the 5–5’isomiRs with
canonical seed region and the TargetScan Custom was
used for other 4–5’isomiRs with a shift in seed regions.
The target genes predicted were subjected to the func-
tional enrichment analysis. Finally, 2345 genes were rec-
ognized by the DAVID web tools to analyze the
functional annotation and the detection of enriched
functional categories. The gene ontology enrichment
analysis suggested that these target genes were highly
enriched in genes implicated in the activity of transcrip-
tion activator and protein kinase and cell-cell adhesion
(Fig. 4b).

Discussion
We report a novel GA/RF analytical model for multiclass
tumor classification using the miRNA expression data
that may reveal effective predictive and prognostic bio-
markers and therapeutic targets for drug development.
With an average sensitivity of 92%, we were able to
accurately classify the tumor samples using 100 different
50–5’isomiR sets, though some 5’isomiRs appeared

Fig. 3 The expression level of 41 highly frequent isomiRs in 100 generated predictor sets. X-axis lists the 5’isomiR ID used in this study (Detail description
can be found in Table 2). Y-axis is the log2-transformed RPM value. The line indicates the value of log2-transformed 10 rpm. The outliers are hidden
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repetitively in the sets. These predictive 5’isomiRs sets
could achieve similar prediction accuracies with slight
overlap; suggesting that even less sensitive 5’isomiRs
could be detected for the tumor classification. Not-
ably, most of the tumor types could be easily distin-
guished with high sensitivity. However, there were
also some cancers that exhibited low prediction
accuracy due to similar histology and anatomical loca-
tion [19, 34]. In this study, we used GA algorithm to
obtain the optimal isomiR set for maximizing the pre-
diction accuracy in all TCGA cancer types but not
for some individual cancer. Therefore, the samples
from some cancers that cannot be classified by one
set may be successfully classified by another set. In
addition, we calculated the frequency with which each
5’isomiRs appeared in these sets. More than half of
41 highly frequent 5′ isomiRs showed different 5′ loci
than the canonical miRNA, supporting that the iso-
miRs play a significant role in the multiclass tumor
classification. It is noted that our analysis only
included tumor samples, and we cannot distinguish
cancer-specific isomiRs from tissue-specific bio-
markers. Actually, a group from Saarland university
had utilized a tissue specificity index to define the
distribution of miRNA across 61 tissue biopsies of
two individuals, and people can check whether the
detected isomiRs correspond to the tissue-specific
miRNA expression in their web-based repository [35].

In a recent study, the RNA-seq expression data ana-
lysis revealed that many development-related genes are
essential for the analysis of TCGA cancer classification
[3]. Similar clues were also revealed in the present study.
5’isomiR-233, one of the most frequently appearing
5’isomiRs in 100 generated predictor sets, derived from
the shift in the seed region of canonical hsa-
mir-196b-5p, which usually appears to be expressed
from the intragenic regions of HOX gene clusters that
are major regulators of animal development [36].
Increasing studies have suggested that 5’isomiR-313,
combined from the isomiRs with identical 5′ loci of the
canonical hsa-miR-205-5p, play an important role in
normal cellular development as well as in cancer devel-
opment [37, 38]. Moreover, TBX5, one of the most
important genes for tumor classification from the previ-
ous study [3], could be regulated by one of the 5 most
frequently appearing 5’isomiRs in our sets (miR-10b-5p/
5’isomiR-39) as derived from the TargetScanHuman
prediction.
Using only 50–5’isomiRs, the present GA/RF model

could achieve comparable prediction performances con-
sistent with previous report, with an average accuracy of
90% for all isomiRs [19]. We also detected the similar
discriminatory isomiRs as their finding. For example, the
isomiRs of has-miR-205-5p and has-miR-944, two of the
most important miRNAs detected by the method using
the presence or absence of isomiRs amongst 32 TCGA

A B

Fig. 4 Tumor classification and functional enrichment analysis with the 9 most frequently appearing 5’isomiRs. a Tumor classification. Y-axis is the
average sensitivity for 1000 randomly produced test sets. “a” is the 9 most frequently appearing 5’isomiRs. In the list of 9 most frequently appearing
5’isomiRs, two 5’isomiRs were from hsa-miR-10b-5p and three 5’isomiRs belonged to has-375. “b” is obtained from “a” by removing three 5’isomiRs
which had different 5′ loci from the canonical miRNA (one was from hsa-miR-10b-5p and two belonged to has-375). b Bar plot shows the enriched
GO terms from DAVID functional annotation analysis. The clusters integrated with enrichment score are shown as Y-axis. The –log10(P-value after
correlation) is plotted on the X-axis
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cancer types, are also listed in the ten highly frequent
isomiRs from 100 generated predictor sets. The isomiR
of hsa-mir-196b-5p, the most frequently appearing 5’iso-
miRs with a shift in seed regions found in our study,
showed a high VI score in previous report [19]. Further,
we reduced the number of features by employing two
strategies. In the first approach, we combined the isomiR
with same 5′ loci to reduce the type of isomiRs. While
in the second approach, the GA-based isomiR selection
reduced the feature selection significantly. We also
found that the 9 most frequently appearing 5’isomiRs
could achieve an average sensitivity of 73.7%, suggesting
that a reasonable accurate performance could be
obtained with less number of features. The features can
be further reduced by additional approaches, including
hybrid GA-based machine learning method [39]. The
highly expressed 5’isomiRs (rpm > 10 in all samples) and
slightly expressed 5’isomiRs (rpm < 10 nearly in all sam-
ples), demonstrated that the expression level of isomiRs
could also be beneficial for the tumor classification.

Conclusions
In conclusion, the present study demonstrated that the
5’isomiRs might be employed for multiclass tumor classifi-
cation and the suggested that GA/RF model could per-
form effective tumor classification by a series of largely
independent optimal predictor 5′ isomiR sets.
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