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Abstract

Background: Antibody-drug conjugates (ADCs) are intended to bind to specific positive target antigens and
eradicate only tumor cells from an intracellular released payload through the lysosomal protease. Payloads, such as
MMAE, have the capacity to kill adjacent antigen-negative (Ag–) tumor cells, which is called the bystander-killing
effect, as well as directly kill antigen-positive (Ag+) tumor cells. We propose that a dose-response curve should be
independently considered to account for target antigen-positive/negative tumor cells.

Methods: A model was developed to account for the payload in Ag+/Ag– cells and the associated parameters were
applied. A tumor growth inhibition (TGI) effect was explored based on an ordinary differential equation (ODE) after
substituting the payload concentration in Ag+/Ag– cells into an Emax model, which accounts for the dose-response
curve. To observe the bystander-killing effects based on the amount of Ag+/Ag– cells, the Emax model is used
independently. TGI models based on ODE are unsuitable for describing the initial delay through a tumor–drug
interaction. This was solved using an age-structured model based on the stochastic process.

Results: β ∈ (0, 1] is a fraction parameter that determines the proportion of cells that consist of Ag+/Ag– cells. The
payload concentration decreases when the ratio of efflux to influx increases. The bystander-killing effect differs with
varying amounts of Ag+ cells. The larger β is, the less bystander-killing effect. The decrease of the bystander-killing
effect becomes stronger as Ag+ cells become larger than the Ag– cells. Overall, the ratio of efflux to influx, the amount
of released payload, and the proportion of Ag+ cells determine the efficacy of the ADC. The tumor inhibition delay
through a payload-tumor interaction, which goes through several stages, may be solved using an age-structuredmodel.

Conclusions: The bystander-killing effect, one of the most important topics of ADCs, has been explored in several
studies without the use of modeling. We propose that the bystander-killing effect can be captured through a
mathematical model when considering the Ag+ and Ag– cells. In addition, the TGI model based on the age-structure
can capture the initial delay through a drug interaction as well as the bystander-killing effect.

Keywords: Bystander-killing effect in ADCs, Antibody-drug conjugates (ADCs), Dose-response curve, Age-structure
model, Tumor growth inhibition (TGI) model

Background
ADCs are complex engineered compounds consisting of
a monoclonal antibody (mAb), cytotoxic payload, and
linker connecting the mAb and payloads [1]. In addition,
mAbs are responsible for a specific target (Ag+) in the
tumor cells. Payloads are potent drugs for the killing of
tumor cells. Emtansine [2] and MMAE [3] are examples
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of substances used in the treatment of breast cancer and
Hodgkin’s lymphoma or anaplastic large cell lymphoma,
respectively [4]. The mechanism of ADCs [5] can be
described as follows: ThemAbs bind to a specific target on
the surface of the tumor cells and are effectively internal-
ized through endocytosis. Payloads are then released into
the cytosol as a result of the lysosomal protease, followed
by their binding to tubulin to prevent microtubule poly-
merization, which results in tumor death. It is known that
the releasedMMAE in Ag+ cells enters the target negative
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(Ag–) cells, which do not directly interact with the ADCs,
based on the membrane permeability [6]. This is called
the bystander-killing effect, which induces an additional
tumor reduction.
A compartment system [7] comprises of a finite num-

ber of compartments, each of which is homogeneous and
well mixed, interacting through the exchange of materi-
als. However, tumors exist in a heterogeneous manner [8]
and are a mixture of various types of cells. This obscures
the modeling of the interaction between the tumor cells
and administered drug. To simplify such complicity, two
homogenous tumor cells are considered, one of which is
Ag+ cells, and the other is Ag– cells. This study proposes
that the tumor growth of Ag+/Ag– cells should be treated
independently. Otherwise, the modeling considering two
types of cells makes no difference after a proper time
scale is applied, upon which the model becomes mean-
ingless. To support this idea, we developed a model to
account for the released payload in Ag+ cells trickling into
Ag– cells with suitable tumor proportions. The amount of
intracellular-released payload in the tumor cells is known
to determine the ADC efficacy [6]. We observed that the
ADC efficacy also depends on the ratio of influx/efflux,
from the intercellular to the extracellular spaces, and the
amount of Ag+ cells among all of the cells. This study sur-
veyed such reasons through a mathematical model. The
other main purpose is to capture the bystander-killing
effect. Considering two types of cells, the change in the
total tumor sizes through the bystander-killing effect was
investigated according to the ratio of Ag+ to Ag– cells.
Meanwhile, because exponential/logistic tumor growth
models are not applicable owing to a lack of description
regarding the tumor inhibition delay by drug-tumor cell
interaction, we suggest an age-structured model to eluci-
date the delay. Consequently, the model formulates that
the amount of intracellular-released payload, the influx-
to-efflux ratio, and the amount of Ag+ cells among all of
the cells determine the ADC efficacy and demonstrate the
bystander-killing effect.

Methods
Emax and TGI models
An Emax model (or function) [9] describes a dose-
response curve governing the binding of a drug to a target
antigen based on the law of mass action. Biologically, the
response over the amount of drug dose reaches a maxi-
mum Emax similar to the Michaelis-Menten kinetics [10].
The Emaxmodel E for a response inhibition by the applied
drugs is given by

E = E0

(
1 − Emaxcγ

ICγ
50 + cγ

)
,

where E0 is the response predicted when the released pay-
load is zero, Emax is the maximum killing effect, IC50 is
the concentration when the effect of the concentration
reaches Emax/2, and the hill coefficient γ is a coopera-
tive or sigmoid coefficient. The TGI model is used for a
tumor reduction based on the drug administration [11].
The model reads as follows:

dT
dt

= cEF(t)T(t) − λT(t), (1)

where F(t) = 1 or 1 − T/Tmax. We additionally add a
logistic growth, which will be discussed later.

Modeling of payloads considering Ag+ and Ag– cells
Tumor cells consist of target positive/negative antigens in
terms of the mAbs. In such a heterogeneous manner, the
change in the total tumor size over time will be inves-
tigated. That is, the payload concentration of Ag+ cells
diffusing to Ag– cells is explored. The translated pay-
load concentration may trigger an additional TGI effect
in Ag– cells. We are not concerned with the mecha-
nism, such as ADC dynamics, that represents the ADC-
target interaction, because doing so makes the system
more complex, and many parameters need to be esti-
mated. A drawback here is that the ADC dynamics are
not considered, nor is the direct payload diffusivity to
the tumor. Our study describes the degree of bystander-
killing through the model when a direct administering
of drugs with bystander-killing is applied. In vitro exper-
iments were assumed by not considering the clearance
within the extracellular space. Thus, we studied the pay-
load in intracellular diffusion into Ag– cells and how it
triggers the bystander-killing effect. Because a fraction
β ∈ (0, 1] is considered, the proportion of Ag+ cells
among all tumor cells will be determined. For example, if
β = 2/3, then the tumor cells consist of 70% Ag+ and 30%
Ag– cells. Assume that the payload is only administrated
once in the Ag+ cells, and the payload in Ag+ is expressed
by Cint,p. The payload concentration in the Ag– cells is
given using Cint,n, and Cext,p is the payload concentration
in an extracellular space. In the model, we do not regard
the increasing payload concentrations, which cause ADC
cleavage to occur during binding or circulation through
phagocytes and cathepsin B. Therefore, we only reflect the
case in which the linker is broken in the lysosome after the
internalization of the ADC, and the payload concentration
then increases. Considering this, the following system of
ODEs can be considered.

dCint,p
dt

=βkinCext,p − koutCint,p

dCint,n
dt

=(1 − β)kinCext,p − koutCint,n

dCext,p
dt

= − kinCext,p + koutCint,p + koutCint,n,

(2)
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where kin and kout are the influx and efflux rates, respec-
tively. A schematic diagram is shown in Fig. 1. Because the
system of ODEs is linear, it can be solved explicitly.
Some parameter values are known. These parameter

values are derived from mAbs, such as Herceptin, and
ADCs, including brentuximab-vedotin and T-DM1, and
may vary depending on the experimental environment
[12–16]. Based on a particular study [16], the payload
influx/efflux rate kin and kout were deemed to be 8.46·10−2

and 4.122 · 10−2 per minute, respectively. The values are
at a day-scale of approximately 121.824 and 5.9357 · 104.
The ratio, k = kout/kin, is investigated using 1, 2, and 3
to examine the influence of the tumor reduction. In addi-
tion to applying the TGI model, IC50 = 300 nM from
[12], E0 = 120 nM from [16], and the initial tumor size
T0 = 1000mm3 are chosen. The maximum killing rate
Emax = 0.6931 is from [17]. The tumor growth rate, rep-
resented by c ·E0, is properly determined for a comparison
with the exponential tumor growth when the payload is
not injected. The hill constant γ influences the stiffness
of the TGI curve, and we assume γ = 1 in the present
study. The degradation rate λ is assumed to be 0.5 per
day. The initial condition in (1) is considered as follows:
From the initial total tumor size T0, the Ag+ cells/Ag–
cells are divided by the value β , i.e., if β = 1/4, then the
positive target tumor cell size is 1/4 · T0, and the neg-
ative target tumor cell size is 3/4 · T0. Thus, the initial
tumor size in the Ag+ cell is β · T0. The initial pay-
load concentrations Cint,p(0), Cint,n(0), and Cext,p(0) are
chosen to be 200 nM, 0, and 0, respectively. The gamma
probability density function, which has a skewed bell-
shape curve, may be used to demonstrate the payload dose
heuristically, but ADC disposition in plasma, ADC-target
interaction, and ADC-target complex, ADC diffusion

into tumors should be added in the model for better
clinical setting.

Results
We first examine the case without a payload admin-
istration. If no payload is injected, then the tumors
grow exponentially if F = 1. From this, c is prop-
erly chosen to be 4.6 · 10−3 per day. Thus, the tumor
growth rate is c · E0 = 0.552, which is compared to
the degradation rate λ = 0.5. Conveniently, k uses 2
instead of 2.0442, which is from kout/kin = (5.9357 ·
104)/121.824. Because kin is too fast, it is difficult to cap-
ture the payload dynamics at the initial time, and we
thus assume kin = 1. Here, F is used as the logistic
growth without comment. The logistic TGI model is con-
sidered along with the drug-tumor model [11] and the
logistic tumor model [18]. In this case, the maximum
tumor size Tmax is assumed to be 2 · 104 after several
trials.

Change in tumor cell growth using the total payload
The TGI model is used to investigate the delay in the
tumor growth by substituting the total payload Cint,p +
Cint,n into E, in which the initial payload C0 = 200nM is
used. Although the values of β under a fixed k are varied, a
difference in tumor delay is not observed. This is because
the total payload Cint,p +Cint,n is independent on β owing
to d(Cint,p + Cint,n)/dt = kinCext,p − kout(Cint,p + Cint,n).
Thus, the values of β become regardless of the tumor
reduction. This indicates that the model is not valuable if
the total concentration is substituted into E. In the present
study, E = E0 · (1 − Emax(Cint,p + Cint,n)γ )/(ICγ

50 +
(Cint,p + Cint,n)γ ) by the total payload will not be used for
determining the influence of the Ag+/Ag– cells.

Fig. 1 Schematic diagram. The payload in cytosol trickles out into the extracellular space and reenters into the cytosol. Some of the
extracellular-released payload enters into the Ag– cells, which results in a bystander-killing effect
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Influences of C0, k, and β

Here, initial payloads C0 = 0, 10, 100, and 200 nM
are applied to the model. The initial payload concen-
trations in the intracellular space are considered a case
of direct injection into the tumors, rather than deter-
mining the payload concentration through the dosing
process. This is clear if C0 increases, and the tumor
(growth) delay is stronger. In addition, k = kout/kin
under a fixed kin = 1 is investigated using values of
1, 2, and 3. If k is smaller, then the tumor delay is
strengthened. That is, a decrease in k causes a stronger
tumor reduction because the payload concentration is
slowly released into the extracellular space by decreas-
ing the efflux rate kout , which results in a higher pay-
load concentration in the tumor cells. Thus, the tumors
will be more suppressed. In addition, a small change
in k may trigger both tumor (growth) suppression and
tumor stimulation. That is, if we consider the exponential
growth in the TGI model, from dT/dt = (cE − λ)T(t),
tumors will increase if cE > λ, and decrease otherwise.
An increase in payload depends on a decrease in k, fol-
lowed by a decrease in E, and vice versa. We thus choose
a suitable k̃ among k’s such that, for the given ε > 0,
c(Ẽ − ε) < λ, and cẼ > λ within a particular time inter-
val. Here, β determines the amount of Ag+/Ag– cells,
and an increase in β causes an increase in the payload
concentration in Ag+ cells, but not in Ag– cells. The
total payload concentration, which is independent of β ,
converges to a point below the initial C0 after a certain
amount of time has passed based on the extracellular

payload. Meanwhile, it is unclear how each Ag+/Ag– cell
is suppressed by β . In Fig. 2a and b, the payload con-
centration in Ag+/Ag– cells increases as k decreases. In
addition, the values of β determine the payload concen-
tration in each cell. The payload concentration increases
as β decreases in Ag– cells, contrary to the Ag+ cells
shown in (c). For example, β = 0.7 implies that the
size of the Ag+ cells is 700mm3, and the payload con-
centration converges at approximately 50 nM, at which
the payload in Ag– cells is approximately 20 after 2 days.
Thus, the total payload is approximately 70 nM, as shown
in Fig. 2b and c.

Independent Ag+/Ag– cell growth
Tumor cells present in a heterogeneous manner, and show
a mixture of several types of cells; however, we have con-
sidered two different types of cells, and the total cells are
assumed to be homogeneously separated into two regions,
as previously mentioned. In a simple case, we suppose that
the separated cells grow independently. This motivated an
investigation into the influence of the value of β . The TGI
model is used to observe the tumor-growth delay of each
cell, one of which is T1/T2 representing Ag+/Ag– cells,
respectively. The total tumor size T1 +T2 is considered to
account for the values of β and the tumor reduction. The
parameter values are same as the fixed k = 2, and TGI
models, both exponential and logistic, are used; however,
the results are only plotted in the logistic growth model,
although both models show similar dynamical behaviors
with the exception of the tumor sizes. We examined the

(a) (b) (c)

Fig. 2 Payload dynamics. (a) As k decreases, the payload concentration in the Ag+, Ag–, and all cells increases, as shown in (a) and (b). For a fixed
k = 2, the payload concentration over time in the Ag+/Ag– cells is plotted with variations in β in (c)
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total tumor reduction using βs when the tumors were
suppressed independently by the payload. In addition to
each tumor size based on β , normalization for a com-
parison of the Ag+/Ag– cell sizes is conducted, namely,
100 · (Ti/Ti,0 − 1), where Ti, i = 1, 2 are the Ag+ and Ag–
cell sizes, respectively, and Ti,0 is the initial tumor sizes
in Ti. We investigated that the total payload differs from
that of β , followed by a different tumor reduction. Biolog-
ically, T1 + T2 appears to support the idea that, if the Ag+
cells occupy a large proportion, then the TGI effect may
be stronger. In addition, the ADC efficacy may depend
on the amount of Ag+ cells. Moreover, we may see from
β = a ∈ (0, 1] and β = 1 − a that both TGI effects of
T1 + T2 are similar, as shown in Fig. 3c. The total payload
Cint,p + Cint,n in the tumor cells quickly converges to an
equilibrium point. The reason that TGI effects of T1 + T2
are similar when the ratio of Ag+ cells is β and 1 − β is
because the model (2) is the closed system, that is, there
is no elimination rate (clearance/volume) of Cext,p. This
yields that the total payload Cint,p +Cint,n is constant after
time elapses (around 1days here) regardless of β . Thus, the
concentration of Cint,p when an initial size of Ag+ cells is
given by β ·T0 is approximately similar toCint,n if the initial
Ag+ cell size is (1−β) ·T0. Wemay consider a case β → 0.
Then Cint,p → 0 and so the tumor cells are only inhibited
by bystander killing, but if β → 1, then Cint,n → 0 and so
the tumor cells are inhibited by direct killing. In addition,
if β = 0, then the concentration of the payload in Ag+ cells
should be zero, which cannot define an initial payload C0.
This is the reason to assume β > 0.

Bystander-killing effect
Using the developed model, we investigated the influ-
ence of k, β , and the initial payload concentration.
The dynamics of the released payload and the tumor
growth were observed in separate tumor cells. We
next proceeded with capturing the bystander-killing.
In addition to the direct killing of Ag+ cells, some
of the antibody-drug conjugates (ADCs) also have the
capacity to kill adjacent antigen-negative tumor cells,
which is called the bystander-killing effect. From the
derived payloads Cint,p and Cint,n, the bystander-killing
effect was explored to capture the additional tumor
delay shown in previous known studies [6, 8, 19].
The translated small drug concentration from the Ag+ to
Ag– cells may trigger an additional tumor delay. As we dis-
cussed earlier, k is greater than or equal to 1 because the
efflux rate appears to be naturally faster than the influx
rate. If the maximum value of Cext,p is represented as C,
we then add the first and second equations in (Fig. 1). The
rate of the total payload as an inequality is

d
(
Cint,p + Cint,n

)
dt

≤ kinC − kout
(
Cint,p + C(int, n)

)
.

This can be calculated and Cint,p + Cint,n results
in a value of less than or equal to exp (−koutt)C0 +
C0 (1 − exp (−koutt)) because of k ≥ 1. Thus, Cint,p +
Cint,n ≤ C0, where C0 is the initial payload concentra-
tion in an Ag+ cell. Thus, it is expected that the TGI
effect based on a payload with the bystander-killing effect
is weaker than that without it when β = 1, as shown in

(a) (b) (c)

Fig. 3 Tumor dynamics. The values of β were investigated to examine changes to each tumor size in (a). The legend shows the ratio of Ag+ to Ag–
cells. Here, T1, T2, and T1 + T2 represent Ag+, Ag–, and total tumor cell sizes, respectively. Each T1 and T2 appear complex owing to the different
initial sizes, although a normalized form may elucidate the differences among β ’s, as shown in (b). We also show the percentage of changes in the
total tumor sizes in (c)
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Fig. 4a and b (yellow solid curve). Suppose the two cases,
“with and without a bystander-killing” whose condition
is kout positive or zero, respectively. Such an ideal case
is likely to be reasonable for the following reason: Based
on research by Tai et al. [20], monomethyl auristatin E
and F (MMAE and MMAF) can be used to determine
the bystander-killing of two potent auristatin payloads.
Although MMAE and MMAF are structurally similar,
MMAF has more hydrophilic molecules and is less mem-
brane permeable than MMAE, which is consistent with
its lower membrane permeability. As shown in Fig. 4,
if β �= 1, then bystander-killing is observed. Here, T3
and T4 are Ag+ and Ag– cells, respectively, when the
bystander-killing effect is off. From Fig. 4a and b, if there
is no bystander-killing effect, then the fully Ag+ cells
(β = 1) are the most suppressed, followed by 90% and
80% Ag+ cells in turn. However, if the bystander-killing
effect is considered in Fig. 4b, then the dynamics of each
tumor in 90% and 10% Ag+ cells among all cells are sim-
ilar, followed by 80% and 20% Ag+ cells in turn. If the
ratio of Ag+ cells to the total cells is higher, then the
bystander-killing effect is initially smaller, and an inter-
mediate phase (at approximately zero to 30 days) occurs
based on the parameters, i.e., when β is smaller, the
bystander-killing effect is stronger. This indicates that the
efficacy of the ADCs should consider the ratio of Ag+ to
Ag– cells. This supports the existence of the bystander-
killing effect through the mathematical model. In addi-
tion, the extent of the bystander-killing effect is shown
in Fig. 4c. As the figure indicates, the ratio of the cells
may determine the extent of the bystander-killing effect.

Specifically, if β = 0.7, then the bystander-killing effect
will be expected after 30 days under the parameter val-
ues and C0 = 200. To maximize the tumor treatment
when considering the bystander-killing effect, we believe
that the amount of intracellular released payload, the ratio
of influx rate kin to efflux rate kout , and β should be
considered. As a remaining aspect, a direct use of the
TGI model appears to be unrealistic, as shown in Fig. 4a
and b, because the initial tumor inhibition delayed by the
tumor-drug interaction cannot be captured in the initial
phase. Thus, a newmodel should be developed to describe
this aspect.

TGI model used to describe the tumor growth when
considering the drug delay
To overcome this problem, we propose an age-structure
model [21, 22] based on a non-Markovian stochastic pro-
cess (see Additional file 1: Appendix). By interacting the
payload with the tumor cells, the tumor cells can pass
through with abnormal kinetics, which is represented
based on the elapsed time. A detailed plan of this is pre-
sented as follows. After payload C interacts with tumor
cell T, T progresses through different stages, which have
a time elapse of a. Each process has a corresponding
age-dependent hazard rate γ (a), represented by γ (a) =
φ(a)/�(a), where � is a survival function such that

d�(a)
da

= −γ (a)�(a).

The probability density function φ (pdf) is used to
account for the probability that a tumor cell will interact

(a) (b) (c)

Fig. 4 Bystander-killing. T3 and T4 represented by the Ag+ and Ag– cells are the tumor sizes without the bystander-killing effect in (a). A comparison
with/without the bystander-killing effect was investigated in (b). The relative change in ratio is presented in (c). This indicates that the
bystander-killing effect should consider the amount of target-positive cells as well as the payload concentration
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from the eclipse stage into the effect state, which results in
a reduction of the tumor cell. To model this stage, assume
that E and T are in L1, which is a collection of the function
f such that

∫ ∞
0 f (x) dx < ∞. Applying only the non-

Markovian removal process shown in [23], the TGI model
is developed as follows.

dT
dt

=
∫ ∞

0
cφ(a)E(t − a)F(t − a)T(t − a) da − λT .

There are many candidates of φ such as gamma,
Weibull, and Mittag-Leffler distributions. The pdf in
gamma and Weibull distributions is a combination of the
exponential and power function, and the power func-
tion and power of the exponential, respectively. It is
difficult to find the exact form of the pdf in a Mittag-
Leffler distribution, although an age-structure model
results in the form of a fractional-order derivative [23].
We first applied a Mittag-Leffler distribution, but the
results showed a strong tumor delay for all fractional
orders α ∈ (0, 1). A Weibull distribution achieved a
better result, but the equation is not simple, and the
implementation of the simulation took much longer
because of the power of the exponential. As a result,
we used a gamma distribution for two reasons. It con-
sists of a power function and an exponential, which can
describe more phenomena than an exponential alone
(Markovian process), and a linear trick may be applied
[24, 25], namely, substituting an age-structure model with
a system of ODEs. If a probability density function φ

has an Erlang distribution [26], it is considered a spe-
cial gamma distribution with an integer shape parameter,
developed to predict the waiting times in queuing systems
[27]. Here,

φ(a) = 1
	(n)θn

· an−1e−
a
θ , n = 1, 2, 3, · · · ,

where θ is a rate parameter and n is a shape parameter.
This motivated us to define Fn

φ(t) by

∫ ∞

0

c
	(n)θn−1 a

n−1e−
a
θ E(t − a)F(t − a)T(t − a) da.

Note that θn−1 is used instead of θn because of unit
consistency. Thus, Fn

φ(t) is represented by

Fn
φ(t) =

{ ∫ t
0

c
	(n)θn−1 an−1e− a

θ E(t − a)F(t − a)T(t − a) da for t ≥ a
0 for t < a.

By applying a change of variables with η = t − a, and
differentiating both sides with respect to t, the TGI model
is obtained as a system of ODEs. Thus, the TGI model, T,
is presented as follows.

dF1
φ(t)
dt

=cE(t)F(t)T(t) − 1
θ
F1

φ(t)

dFn
φ(t)
dt

=1
θ

(
Fn−1

φ (t) − Fn
φ(t)

)
dT(t)
dt

=1
θ
Fn

φ(t) − λT(t),

(3)

where n = 2, 3, · · · , F1
φ(0) = cE0T0, and Fn

φ(0) = 0 for
n > 1. The rate parameter θ is chosen as 0.1 days, and the
other parameters are the same. An initial tumor growth
is observed even if the payload is injected, as shown in
Fig. 5. The model is expected to capture a realistic TGI
effect. As a result, we propose two new models, one of
which is a payload considering two distinct types of cells,
and the other is the TGI model, which substitutes the
Emax function E with the tumor model, based on the age
structure.

Discussion
We explored how an intracellular released payload inter-
acts with the positive and negative target tumor cells. Two
tumor cells, Ag+ cells and Ag– cells, were considered. We
have investigated that the amount of payload in the Ag+
tumor cells, k, and β may determine the ADC efficacy. To
support this, we proposed that two tumor growth models
be applied independently, namely, T1 and T2. Otherwise,
it is not necessary for TGI models to treat separate tumor
cells because the total payload is independent of β . Here,
k = kout/kin brings about a difference in the payload con-
centration in Ag+/Ag– cells, as well as their sum. The
bystander-killing effect was also examined. Previous stud-
ies emphasized that the bystander-killing effect causes
an additional tumor reduction during ADC treatment.
We observed the difference from the TGI effect through
the on/off states of the bystander-killing effect. Finally, a
TGI model based on the age-structure using an Erlang
distribution enables the tumor inhibition delay to be cap-
tured during the initial phase. In addition, the model
was transformed into a system of ODEs using a linear
trick. Our model suggests a way in which an intracellular-
released payload in Ag+ cells can be extracted through
lysosomal degradation and mediate the bystander-killing
effect, as shown in [6, 28–30]. The models, (2) and (3),
are expected to account for the complex ADC dynamics
if the mAb-target process is considered. Because mAbs
binds reversely to the target antigen in a one-to-one cor-
respondence, a target-mediated drug disposition [31] is
likely to be used. In addition, ADC modeling should con-
sider the drug-antibody ratio and the diffusivity from the
ADC blood capillary to the tumors, resulting in partial
differential equations. This may increase the complexity
of the integrated ADC model. As this model does not
consider the cleaving extracellularly, the payload concen-
tration is preserved in the tumor cells. Because we did
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(a) (b) (c)

Fig. 5 Initial tumor growth. The model based on the age structure shows the tumor inhibition delay for the initial phase at approximately 2 days
even though a 200 nM payload is administrated. Here, T1 + T2 in (b) is the total tumor cell size, represented by Ag+ and Ag– cells, and considers the
bystander-killing effect from the payload, whereas T3 + T4 in (a) does not consider the bystander-killing effect. The ratio of difference between them
to the initial tumor size is shown in (c)

not measure the payload concentration from the ADCs,
we may more accurately estimate the bystander-killing if
the diffusion rate of the payload-cleaved ADCs and the
clearance in the extracellular space are given. To demon-
strate the bystander-killing effect in our proposed model,
we need to account for the heterogeneous tumor cell envi-
ronments and explain them independently. Otherwise,
capturing may be difficult when the total amounts of the
payloads are considered in the tumors. One may con-
sider the case where Ag+ cells are preferentially affected
by drug-induced death. This may be realistic in the ADC
mechanism. To reflect this in the model, the ADC-target
interaction and its internalization process (endocytosis
and lysosome) must be considered. If the linker is not
rarely broken before ADCs bind to the target and so small
amount of the payload diffuses to Ag– cells, then Ag+ cells
will be suppressed first. In this case, it is expected that
its complex (ADC-target) could be influenced by the tar-
get expression level. Therefore, the target concentration
may be expressed depending on β . In a future study, we
plan to develop an integrated model of ADCs that consid-
ers the Ag+/Ag– cells and the diffusivity of the payload to
demonstrate how the amount of released payload effects
the extent of the bystander-killing.

Conclusions
The bystander-killing effect has been investigated using
the released payload in the Ag+ cells. The proportion of
β determines amount of Ag+/Ag– cells and the change
of the tumor sizes by the proportion of β is applied in

the TGI model independently for capturing bystander
killing. Also, we found that the TGI model based on the
age-structure may describe the initial delay through the
drug-tumor interaction.

Additional file

Additional file 1: contains Appendix for a survival function and
development of an age-structure model related to the TGI model in the
main body of the paper. (PDF 130 kb)
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