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Abstract

point target PD-LT.

real-time PCR and western blot.

of de-novo and recurrent glioblastoma.

Background: In recent years, PD-1/PD-L1 immune checkpoint inhibitors have improved cancer therapy in many
tumor types, but no benefit of immune checkpoint therapy has been found in glioblastoma multiforme (GBM).
Based on the results of our earlier work, which showed a reduction of PD-L1 expression in patients treated
with temozolomide (TMZ), we aimed to investigate the link between TMZ therapy and the immune control

Methods: RNA-sequencing data from de-novo and recurrent glioblastoma were analyzed by AutoPipe algorithm.
Results were confirmed either in a cell model by two primary and one established GBM cell line and specimens of
de-novo and recurrent GBM. PD-L1 and pathway activation of the JAK/STAT pathway was analyzed by quantitative

Results: We found a significant downregulation of the JAK/STAT pathway and immune response in recurrent tumors.
The cell model showed an upregulation of PD-L1 after IFNy treatment, while additional TMZ treatment lead to a
reduction of PD-L1 expression and JAK/STAT pathway activation. These findings were confirmed in specimens

Conclusions: Our results suggest that TMZ therapy leads to a down-regulation of PD-L1 in primary GBM cells.
These results support the clinical findings where PD-L1 is significantly reduced in recurrent GBMs. If the target
is diminished, it may also lead to impaired efficacy of PD-1/PD-L1 inhibitors such as nivolumab.
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Background

Glioblastoma Multiforme (GBM) is the most common
and malignant primary brain tumor in adults, with an
annual incidence of 3-4 cases per 100,000 people in
Europe [1, 2] and the United states [3]. In spite of the
best available treatment, the prognosis for patients with
GBM is poor, with a median survival of 14—16 months
[4-8]. The standard-of-care treatment combines adju-
vant radio- plus TMZ chemotherapy [9], however, the
median increase of survival is limited [9]. In the last
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years, a new class of therapeutic drugs has revolution-
ized cancer therapy [10]. PD-1/PD-L1 immune check-
point inhibitors such as pembrolizumab and nivolumab
revealed a strong response and improvement in overall
survival in various tumor entities such as metastatic
melanoma [11], non-small-cell lung cancer (NSCLC)
and head and neck tumors [12]. PD-L1 receptors on the
surface of tumor cells interact with PD-1 positive mye-
loid cells and reduce immune-mediated cell damage
[13]. In 2014, a large randomized phase III trial, Check-
mate 143 (NCT02617589), was performed to explore the
PD-1 inhibitor Nivolumab in patients with recurrent
GBM tumors [14]. Despite high expectations, early re-
sults of the Checkmate 143 study surprisingly revealed
no significant benefit of Nivolumab treatment for
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patients with a recurrent GBM [15]. In a recent study
performed by our group, we analyzed PD-L1 expression
in de-novo and recurrent GBM samples [16]. Contrary
to primary assumptions, we found a downregulation of
PD-LI in recurrent GBM. Further, we identified ex-
tended TMZ therapy as significantly inverse correlated
with PD-LI expression. This led us to further investigate
the role of TMZ in PD-L1 regulation, which has so far
been associated with various signaling pathways, in par-
ticular the activation of the interferon-gamma (IFN)
pathway [17-19]. [FNy is released by immune cells after
activation of the immune system and partially controls
immune response [20]. JAK/STAT pathway activation
via the IFNy receptor on the surface of the tumor cell
leads to an increased expression of Interferon-stimulated
genes (ISGs), including PD-L1 [20]. Under physiological
conditions, this mechanism contributes to immune
homeostasis and limits inflammation [21].

The purpose of this study was to investigate the effect
of TMZ on intracellular signaling with a special focus on
the PD-L1 pathway. Therefrom we aimed to investigate
potential synergistic or antagonistic effects that might
result from combined treatment with TMZ and PD-1/
PD-L1 inhibition.

Methods

Contact for reagent and resource sharing

Further information and requests for resources, raw data
and reagents should be directed and will be fulfilled
by the Contact: D. H. Heiland, dieter.henrik.heiland@
uniklinik-freiburg.de.

Ethical approval

For this study all included patients were diagnosed with
a primary glioblastoma multiforme WHO grade IV
(without known lower-grade lesion in the patient’s his-
tory), who underwent surgery at the Department of
Neurosurgery of the Medical Center, University of
Freiburg. The local ethics committee of the University of
Freiburg approved data evaluation and experimental de-
sign (protocol 100,020/09 and 5565/15). The methods
were carried out in accordance with the approved guide-
lines. Written informed consent was obtained.

Cell culture

Brain tumor tissue was obtained during the neurosur-
gical tumor resection and further processed in sterile
conditions under a tissue culture hood. First, the tis-
sue was fragmented to small pieces and resuspended
in cell-dissolving solution. The tissue fragments were
centrifuged at 1000 rpm for 5min and subsequently
resuspended with 5ml ACK Lysing Buffer to remove
blood cells. The cells were finally resuspended in
medium and transferred into a tissue culture flask.
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Cell treatment and environmental simulation

Two patient-derived cell lines were each divided into 4
groups, which were seeded in different dishes: the first
group (ctrl) received no treatment and functioned as
control group. The second group (IFNy) was treated
with IFNy (100 ng/pl) to achieve activation of immune
response pathways. The third group (TMZ) was treated
with Temozolomide in a concentration of 75uM to
simulate standard-of-care chemotherapeutic treatment.
To the fourth group (IFNy+TMZ), 75uM TMZ was
added plus IFNy (100 ng/ul). Treatment medium was al-
ways prepared freshly using serum-free cell culture
medium and was directly administered to the cells after
splitting, counting and seeding. After a treatment of 48
h, cells were harvested and frozen in the —80°C fridge
for later RNA and Protein extraction. The same treat-
ment set up was used for immunofluorescence experi-
ments. All cell culture experiments were performed
three times in biological independence.

Immunoblotting

Cells were lysed using Radio Immuno Precipitation Buffer
(RIPA buffer) and protease inhibitor on ice. Afterwards,
the lysate was centrifuged at 14.000 rpm for 30 min at
4°C. The supernatant was used to measure the pro-
tein concentration by NanoDrop. Laemmli buffer was
added to the samples and the concentration was
equalized. The specific, primary antibody was dis-
solved in 5% BSA TBS-0.1%T buffer, added to the
membrane and incubated under constant agitation at 4 °C
overnight. Used primary antibodies were: Anti-PD-L1
(rabbit, conc. 1:500, Cell Signaling), Anti-STAT3 (rabbit,
conc. 1:500, Santa Cruz), Anti-phospho-STAT3 (rabbit,
conc. 1:500, Santa Cruz) and Anti-a-Tubulin (mouse,
conc. 1:1000, Abcam). A digital imager ChemiDoc XRS
detected the chemiluminescence emanation from the
membrane by transforming the signal into a digital image.

Quantitative real-time PCR

RNA was extracted by All Prep Kit (Qiagen, Venlo,
Netherlands) according to the manufacturer’s instruc-
tions. RNA integrity was measured using the Agilent
RNA Nano Assay Bioanalyser 2100 (http://www.home.
agilent.com) according to the manufacturer’s instruc-
tions. Primers were produced by life technology
(www lifetechnologies.com). The qRT-PCR reaction was
performed using the SYBR Green PCR Master Kit.
The PCR reaction was run using the 7900HT Fast
Real-Time PCR System with the standard SYBR green
protocol. Average cDNA quantities relative to a standard
amplified gene (Housekeeper Gene: 18S) were calculated
using R-statistics.
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Immunofluorescence

For immunostaining, cells were cultivated on slides and
fixed with 3% formaldehyde for 10min at room
temperature. Immunostaining was performed as recently
published by our group [22]. A Fluoview FV10i confocal
microscope from Olympus was used for fluorescence
microscopy. All measurements and image processing
were performed using the company’s software. Optical
magnification settings of 10X and 60X with oil were
used. A laser with wavelengths of 647 nm (ALEXA 647),
594 nm (ALEXA 594) and 358 nm (DAPI) was selected
for imaging. Laser power was manually optimized and
used with equal settings for all imaged samples.

Predictive analysis of transcriptome data

In order to identify differentially expressed genes be-
tween de-novo GBM and recurrent tumors, RNA se-
quencing data from Bao and colleagues [23] were
downloaded from GEO containing 272 patients. The
AutoPipe R-package, an algorithm based on a supervised-
condition specific machine-learning approach (github.
com/heilandd) was used to identify gene expression
changes between de-novo and recurrent GBM samples.
This algorithm calculated the optimal number of clusters
in a first step. By using clinical features such as recurrence
status, the algorithm predicts genes who are exclusively
expressed in different groups by a machine-learning ap-
proach as described earlier [24]. In order to identify the
core samples of each cluster, we sorted out patients of
each cluster based on a negative silhouette width. The
given prediction values of each cluster were further used
to analyze functional aspects.

Functional analysis by enrichment analysis

A permutation-based pre-ranked Gene Set Enrichment
Analysis (GSEA) was applied to each module to verify
its biological functions and pathways [25] by using the
predefined gene sets of the Molecular Signature Data-
base v5.1. Enrichment score was calculated by the rank
order of gene/metabolite computed by random forest ac-
curacy [25]. For significant enrichment, p-values were
adjusted by FDR. Gene Set Variation Analysis (GSVA)
was performed with the GSVA package implemented in
R-software. The analysis was based on a non-parametric
unsupervised approach, which transformed a classic
gene matrix (gene-by-sample) into a gene set by sample
matrix and resulted in an enrichment score for each
sample and pathway [26].

Results

Recurrent glioblastoma are marked by a distinct
transcriptomic profile

We started our examination by analyzing RNA-sequencing
data of de-novo and recurrent GBM patients in order to
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identify transcriptomic patterns that occur predominantly
in recurrent GBM (Fig. la). In a next step, we used
RNA-seq data from Bao and colleagues [23] and performed
a supervised clustering followed by gene set enrichment
analysis (GSEA) to uncover pathway activation (Fig. 1b-c).
In line with our previous results, the inflammatory response
and JAK-STAT pathway was found to be significantly de-
creased, which has been described as the major driver for
PD-L1 expression. We hypothesized that differences in
JAK/STAT pathway activation with consecutive downregu-
lation of PD-L1 in the recurrent state could be related to
previous therapy such as radiotherapy or TMZ therapy.
Even though there is a well-known immune sensitizing ef-
fect of radiotherapy, we focused on the role of TMZ and its
potential immune suppressive effect on tumor cells.

Temozolomid treatment decreases PD-L1 expression
Next, we aimed to analyze the effect of TMZ on PD-L1
expression in three different cell lines. As previously
shown by our group, PD-LI expression is distributed dif-
ferently within all molecular subgroups [27]: especially
tumors with a mesenchymal signature showed high
levels of PD-L1. In order to respect subgroup properties,
we used a commercial cell-line (LN229) and two primary
glioma-stem-like cell lines (GSC168 and GSC-HEO1]P),
which were characterized as proneural or mesenchymal,
respectively. An overview of the experimental workflow
is given in Fig. 2a. First, we analyzed PD-LI expression
in all three cell lines. In untreated control cell culture
samples, PD-LI expression was only measurable in the
primary mesenchymal cell line (GSC HEO1JP), Fig. 2b.
We hypothesized that the cell lines require an external
stimulus that mimics the presence of the immune sys-
tem in order to drive PD-LI expression. We adminis-
tered a treatment with IFNy as an immune stimulator to
the cells, which increased the PD-L1 expression signifi-
cantly in all three cell lines (p <0.01), Fig. 2b. In a next
step, we analyzed the effects of additional TMZ treat-
ment. In the primary cell lines GSC 168 and HEO1JP, a
significant loss of PD-LI upregulation was observed after
a 48 h TMZ plus IENy treatment (p < 0.001). In contrast
to the primary cell lines, commercial LN229 cells
showed no significant differences of PD-LI expression
after TMZ treatment, Fig. 2b.

Temozolomide treatment inhibits JAK-STAT pathway
signaling

PD-L1 expression is predominantly regulated by the
JAK-STAT signaling pathway after stimulation with
IFNy. Alterations of this pathway were shown to be as-
sociated with resistance to immune therapy in melan-
oma [19]. We analyzed the JAK-STAT signaling by an
expression target-panel of the JAK-STAT pathway in-
cluding Interferon-gamma-stimulated genes (ISGs) such
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as STATI, STAT3 IRFI, IDOI, ITK, ICAM and CCLS. In
line with previously published studies [27], the mesen-
chymal cells showed an increased baseline-level of JAK/
STAT signature genes, Fig. 2c. All three cell lines in-
creased their pathway activation after IFNy stimula-
tion, Fig. 2c. Additional TMZ treatment altered the
stimulating effect of IFNy and lead to decreased
expression-levels of the JAK-STAT target panel. This
effect was only observed in the two primary cell lines
(p<0.001, Fig. 2c left panel) but not detectable in
LN229 cells (Fig. 2c right panel). In order to validate
our results on a protein level, a PD-L1 Immunoblot
was performed, Fig. 2d. Our findings showed a sig-
nificant increase of PD-LI expression in the IFNy
stimulated groups as well as the previously described
decrease of PD-L1 expression after additional TMZ
treatment, except in the LN229 cell line, Fig. 2d. An
Immunofluorescence of the GSC168 cell line treat-
ment groups was performed to visualize PD-L1 ex-
pression and confirm an increase of PD-LI signaling
after IFNy administration (ctrl compared to IFNy),
Fig. 2e-f. In line with the western blot and expres-
sion analysis results, we showed a reduction of
PD-L1 by combined IFNy and TMZ treatment
mainly caused by the decrease of STAT3 phosphoryl-
ation, Fig. 2f-g.

Reduced JAK-STAT signaling in recurrent glioblastoma
In a next step, we aimed to analyze tumor specimens in
order to detect the crosslink between PD-L1 expression
and the JAK-STAT pathway. Therefore, we examined
tissue samples of de-novo and recurrent GBM of pa-
tients of the University Hospital of Freiburg. All pa-
tients had received the adjuvant standard-of-care
Stupp-Protocol treatment after first diagnosis. Our
JAK-STAT expression panel showed an increased in-
tensity for JAK-STAT pathway activation in de-novo
GBM tissue in comparison to recurrent samples after
TMZ therapy, Fig. 2h. This downregulation consecu-
tively resulted in significantly decreased PD-L1 ex-
pression levels in recurrent samples. This effect was
also confirmed in an immunoblot by PD-L1 and
phospho-STAT3 protein levels, Fig. 2h. In addition,
we analyzed 4 patients with exceptionally high PD-L1
levels in the de-novo tumors, selected from our
tumor database, and their recurrent tumor tissue
counterpart. Even though patients’ PD-L1 levels were
individually distributed, we observed an overall de-
crease of PD-L1 and phospho- STAT3 protein levels
after TMZ therapy, Fig. 2i.

In conclusion, all findings from qRT-PCR, Immu-
noblot and Immunofluorescence support our hypoth-

esis: Temozolomide treatment can alter immune
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response by interfering with the intratumoral JAK/ Discussion

STAT pathway signaling. As PD-L1 expression seems Temozolomide (TMZ) is an alkylating chemotherapeutic
to be mostly controlled via the JAK/STAT pathway, agent [28] and established as adjuvant standard-of care
the TMZ induced alterations may lead to a de- treatment for GBM patients [9]. With the emergence of
creased capacity for PD-L1 expression within the novel immune-checkpoint inhibitors for cancer therapy,
tumor cell. an ongoing discussion addresses the role of TMZ as
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first-line treatment for GBM patients [10]. Especially
MGMT non-methylated patients may not benefit from
TMZ therapy, but will mainly experience adverse side ef-
fects such as myelo- and immunosuppression [29]. At
the worst, these effects may even disrupt active anti-
glioma immune response and lead to poor results of im-
mune checkpoint inhibitors like the PD-1/PD-L1
checkpoint inhibitor Nivolumab. In a previous study, we
showed that an extended therapy with TMZ (above 6 ad-
juvant cycles) significantly lowers the PD-L1 expression
in recurrent tumors independently from the MGMT
promoter methylation [16]. We hypothesized that TMZ,
in addition to its chemotherapeutic effects, might also
induce changes in intracellular signaling cascades or
other pathway activations, which leads to decreased
PD-L1 signaling. Following this hypothesis, we aimed to
investigate TMZ effects on PD-LI expression and its as-
sociated regulatory pathways in a glioma cell model.
First, we used a publicly available database and analyzed
differences between de-novo and recurrent GBM speci-
mens. The analysis revealed a relatively constant expres-
sion of the typical subtype expression of proneural,
mesenchymal and classical expression signatures Fig. 1b,
bottom, which is in line with other reports [30]. The
only outstandingly down-regulated pathways were in-
flammatory response and JAK/STAT activation, which
has not been reported to far. In a next step, we aimed to
confirm our findings in cell culture models from one
commercial (LN229) and two primary, patient-derived
cell lines. To respect any possible effects of GBM sub-
group properties, both primary cell lines were classified
beforehand by RNA-sequencing analysis [22]. We no-
ticed, that a baseline PD-L1 expression was only observ-
able in the mesenchymal cell line. This is in line with
previous reports that show a significant association be-
tween the mesenchymal subgroup and PD-LI expression
[27]. The baseline PD-L1 expression of the cell lines was
most likely low due to the lack of inflammatory signaling
within the cell culture model. Therefore, we used IFNy
stimulation to simulate a pro-inflammatory environment.
In literature, this mechanism of IFNy stimulation has pre-
viously been described to lead to an increased expression
of PD-L1 by activation of the JAK/STAT pathway [31, 32].
Among other pathways like the MAPK/ERK [33] and
PI3K/AKT [17] pathway, several studies have identified
the JAK/STAT pathway as the main pathway for PD-L1
regulation [18, 31, 34]. TMZ was administered to the cells
to mimic standard of care treatment and observe effects
on the PD-L1 expression and regulation. We showed that
TMZ significantly reduces the PD-LI expression com-
pared to the IFNy stimulation. In line with previous re-
ports that suggest an immune-modulating effect of TMZ
[29], we hypothesized that TMZ interacts with PD-L1 up-
stream targets such as the JAK/STAT pathway.
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We confirmed a reduction of the JAK/STAT pathway
by combined TMZ and IFNy. Different results were ob-
served in the LN229 cell line, TMZ treatment did not in-
duce a significant decrease of PD-LI levels, which could
be explained by the character of the LN229 cell line. In
line with many previous reports, commercial cell lines
such as LN229 or U87 drift away from the “real” condi-
tions in GBM tumors passage after passage and lose the
properties of a naive, patient-derived cell line [35]. Re-
spectively, this may be a possible explanation for false
positive or false negative results. As most studies on
PD-L1 are performed using commercial cell lines, this
decrease of PD-L1 expression after TMZ exposure has
not been described before. Our findings may highlight
the need for a more “personalized” approach to PD-LI
analysis and the consecutive treatment choices. In a sec-
ond step, we tried to verify the cell culture results by
examining patient-derived brain tumor tissues of
de-novo and recurrent samples. Even though all samples
showed individual levels of PD-L1 in the de-novo state,
the expression was downregulated in all recurrent sam-
ples compared to the de-novo state. All patients had re-
ceived standard-of-care treatment with TMZ after the
first surgery. The extended qRT-PCR panel revealed a
significant downregulation of the IFNy- associated JAK/
STAT pathway.

Conclusions

In conclusion, this study reveals the crosslink between
TMZ treatment and PD-LI downregulation in GBM
cell lines and tumor tissues. TMZ seems to inhibit
the JAK/STAT-pathway, which is one of the main
pathways that controls PD-L1 expression after stimu-
lation by IFNy. This hypothesis is supported by re-
sults from Zaretsky and colleagues, who showed a
resistance to PD-L1 therapy in melanoma based on
alterations in the pathways involved with Interferon
gamma signaling [19]. As PD-LI has gained special
interest in neurooncology as target for the immune-
checkpoint inhibitor, a decrease in PD-LI expression
might lead to disappointing treatment results. Espe-
cially the use of PD-1/PD-L1 checkpoint inhibitors in
the recurrent state after TMZ treatment does not
seem promising. Our study was limited by the small
number of assessed cell lines (n =3) and tumor tissue
samples (n =15). A closer analysis of the properties
of commercial GBM- like cell lines compared to pri-
mary patient-derived cell lines might offer new and
better insights to PD-L1 regulation and quantification
in vivo. As it is within the nature of a cell culture
model, this study was only able to show TMZ effects
in an artificial in vitro environment. An in-vivo brain
tumor, influences on PD-L1 expression are more
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complex, not yet fully understood and highly individ-
ual due to differences in immune system function,
tumor biology and microenvironment. The exact
mechanisms of PD-L1 regulation and expression
need to be further examined to understand and pre-
dict the benefits of immune-checkpoint inhibition
for GBM patients.
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