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Abstract

Background: Prognostic factors in breast cancer are often measured on a continuous scale, but categorized for
clinical decision-making. The primary aim of this study was to evaluate if accounting for continuous non-linear
effects of the three factors age at diagnosis, tumor size, and number of positive lymph nodes improves
prognostication. These factors will most likely be included in the management of breast cancer patients also in the
future, after an expected implementation of gene expression profiling for adjuvant treatment decision-making.

Methods: Four thousand four hundred forty seven and 1132 women with primary breast cancer constituted the
derivation and validation set, respectively. Potential non-linear effects on the log hazard of distant recurrences of
the three factors were evaluated during 10 years of follow-up. Cox-models of successively increasing complexity:
dichotomized predictors, predictors categorized into three or four groups, and predictors transformed using
fractional polynomials (FPs) or restricted cubic splines (RCS), were used. Predictive performance was evaluated by
Harrell’s C-index.

Results: Using FP-transformations, non-linear effects were detected for tumor size and number of positive lymph
nodes in univariable analyses. For age, non-linear transformations did, however, not improve the model fit
significantly compared to the linear identity transformation. As expected, the C-index increased with increasing
model complexity for multivariable models including the three factors. By allowing more than one cut-point per
factor, the C-index increased from 0.628 to 0.674. The additional gain, as measured by the C-index, when using
FP- or RCS-transformations was modest (0.695 and 0.696, respectively). The corresponding C-indices for these four
models in the validation set, based on the same transformations and parameter estimates from the derivation set,
were 0.675, 0.700, 0.706, and 0.701.

Conclusions: Categorization of each factor into three to four groups was found to improve prognostication
compared to dichotomization. The additional gain by allowing continuous non-linear effects modeled by FPs or
RCS was modest. However, the continuous nature of these transformations has the advantage of making it possible
to form risk groups of any size.
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Background
Prognostic and treatment predictive factors in breast
cancer (e.g. number of positive lymph nodes, age at diag-
nosis, tumor size, estrogen receptor (ER) and progester-
one receptor (PgR), histological grade, and human
epidermal growth factor receptor type 2 (HER2)) can
predict clinical outcome and hence facilitate treatment
choice [1, 2]. These factors can either be used individu-
ally or combined in indices such as e.g. the Nottingham
Prognostic Index [3], CancerMath.net, Adjuvant! Online
(http://cancer.lifemath.net) [4] or the St Gallen subtypes
[5]. Prognostic factors are often continuous or measured
on an integer-valued scale, but categorized for clinical
decision-making. This application of prognostic factors
in breast cancer has a long history dating back to the in-
vention of the TNM classification system. Categorization
of prognostic factors is intuitively appealing, since the
clinically relevant question is often to select between a
limited number of treatment modalities, but
categorization of individual factors is not necessary for
construction of useful prediction models [6]. On the
contrary, numerous authors have discussed its negative
consequences [7–9]. Categorization will in general lead
to loss of information and hence lower power to detect
true associations to prognosis and/or treatment re-
sponse. To use dichotomized factors in prognostic
models corresponds to assuming threshold effects and
such effects are often biologically implausible. The use
of multiple cut-points per factor, like e.g. T0 to T3 for
tumor size in the TNM system is a step in the right dir-
ection, but how should cut-points be chosen for new
prognostic factors? Optimal cut-offs, maximizing the
prognostic value of a new factor in a specific dataset, will
in general lead to biased effect estimates, even though
methods have been designed to deal with this problem
[10]. To avoid bias, pre-defined percentile-based cut-offs
can be used, but different percentiles might be prognos-
tically useful for different factors.
In survival analysis, the most commonly used model

for analysis of multiple prognostic markers is the Cox
proportional hazards regression model. In its simplest
form, this model assumes constant, i.e. time independ-
ent, linear covariate effects on the log hazard scale or
equivalently multiplicative effects on the hazard scale
(proportional hazards). The log hazard is hence assumed
to increase or decrease with the same constant additive
factor for each step on the scale of the covariate, e.g. for
each year of age at diagnosis of breast cancer. One way
of relaxing this strong and often biologically unrealistic
assumption of linear covariate effects is to use fractional
polynomial (FP) transformations [11–14]. Transforma-
tions of this kind are useful when one wishes to preserve
the continuous nature of the covariates in a regression
model, but suspects that some of the effects may be

non-linear. By taking non-linearity into account, more
prognostic information will be extracted, which might
have important clinical implications. A limited number
of studies have addressed this question. Sauerbrei et al.
have evaluated the use of FP transformations in Cox
modelling of recurrence-free survival in a lymph
node-positive breast cancer data set from the German
Breast Cancer Study Group [15]. They conclude that
analysis using FP transformations can extract important
prognostic information which the traditional approaches
may miss. More recently, Ejlertsen and co-workers have
used FP transformations of age, tumor size, number of
positive lymph nodes, and percentage of ER-positive nu-
clei, when developing a model for prediction of excess
mortality after adjuvant endocrine therapy [16]. Com-
pared to models with categorized predictors, models
with FP transformations could better identify patients
without excess mortality compared to the general popu-
lation [16]. Another frequently used option is to model
potential non-linear covariate effects on outcome using
restricted cubic splines (RCS) [17, 18].
The primary aim of this study was proof of principle,

i.e. to evaluate if accounting for non-linear effects of the
three factors age at diagnosis, tumor size, and number of
positive lymph nodes improves prognostication; factors
which will be utilized also in the future after an expected
implementation of gene expression profiling in clinical
routine. Our hypothesis was that by keeping the predic-
tors continuous as long as possible during the modeling
process, prognostication would be improved.

Materials and methods
Derivation set
Included were 4568 women with primary breast cancer
originating from four multicenter randomized controlled
trials in stage II breast cancer (Patient materials I–IV;
see below) and two prospectively followed cohorts
(Patient materials V–VI; see below), more information in
Additional file 1: Table S1. Patients were excluded due
to missing information on follow-up, number of positive
lymph nodes, and/or tumor size (Fig. 1), rendering 4477
patients included in the present paper. The endpoint
was defined as distant recurrence-free interval (D-RFi)
according to the DATECAN initiative (Definition for the
Assessment of Time-to-event Endpoints in CANcer
trials) [19] and the follow-up was restricted to ten years
after diagnosis.

Patient material I
Patients were enrolled between 1978 and 1983 in a ran-
domized controlled trial from the South Swedish Breast
Cancer Group. The purpose of the trial was to evaluate
the effect of chemotherapy (cyclophosphamide) and
radiotherapy alone and in combination, in breast cancer
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women treated with modified radical mastectomy and
axillary clearance. The original trial included 387 pa-
tients [20].

Patient material II
Patients were enrolled between 1978 and 1985 in a clinical
study in the South Swedish Health Care Region, where
postmenopausal patients were randomized to evaluate the
effect of endocrine therapy (tamoxifen (TAM), one year)
and radiotherapy alone and in combination. The original
trial included 668 patients [21, 22].

Patient material III
Premenopausal patients were enrolled, between 1986
and 1991, in a randomized controlled trial with the aim
to compare the effect of two years of TAM treatment
versus no adjuvant systemic treatment (only eight pa-
tients received chemotherapy). The original trial

included 564 patients enrolled in the South and
South-East Swedish Health Care Regions [23].

Patient material IV
Postmenopausal patients were enrolled, between 1983 and
1991, in a randomized controlled trial launched by the
Swedish Breast Cancer group of two versus five years of
adjuvant TAM. The original trial included 1107 patients
from the South Swedish Health Care Region [24]. The in-
clusion continued after the original paper was published,
hence the greater number of 1553 patients included in the
present paper.

Patient material V
The original study enrolled a consecutive series of 841
patients with primary breast cancer referred to Odense
University Hospital, Denmark. Patients were enrolled be-
tween 1980 and 1990. The purpose was to investigate
the prognostic value of estimating angiogenesis by

Fig. 1 Flow diagram of the 4568 eligible patients, inclusion periods, patients excluded, and number of patients included for the different patient
materials that constituted the derivation set. Patients were excluded due to missing information on follow-up, number of positive lymph nodes,
and/or tumor size. One hundred and one patients were excluded and the final number of patients included was 4477
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Chalkley counting using a large population-based con-
firmatory study design [25].

Patient material VI
The original prospective observational study included
555 patients diagnosed with primary breast cancer from
three hospitals in the South Swedish Health Care Region
between 1999 and 2003. The purpose was to study the
prognostic value of the presence of cytokeratin positive
cells in bone marrow aspirates from the sternum [26].
The above patient materials (I–VI) constitute our der-

ivation set, which has a median follow-up for D-RFi of
9.1 years.

Validation set
Patient material VII
Between 1983 and 1999, a consecutive series of patients
diagnosed with primary breast cancer in the Kalmar
County, Sweden, were enrolled. The median follow-up
time for distant recurrence-free survivors was 8.4 years.

Statistical methods
The Kaplan-Meier method was used to estimate the pri-
mary endpoint, D-RFi [19], and the Cox proportional haz-
ards model, stratified for patient material, for estimation
of hazard ratios (HR) for groups formed by applying
well-accepted pre-defined as well as percentile-based
cut-offs. The relative effects of the factors in the Cox re-
gression model are assumed to be constant, i.e. independ-
ent of time, assumptions which must be tested.
Proportional hazards assumptions were checked graphic-
ally and by Schoenfeld’s test [27]. To avoid problems with
non-proportional hazards, especially for tumor size, the
follow-up was restricted to the first ten years of follow-up
after diagnosis. This restriction has the additional advan-
tage that the median follow-up in the included patient
materials will be about the same. The statistical analysis
software Stata 15.0, 2017 (StataCorp, College Station, TX,
USA) was used for statistical calculations. Whenever ap-
plicable, the REMARK recommendations for reporting of
tumor marker studies were followed [28, 29].
Continuously varying non-linear effects on the log

hazard were modeled using FP transformations [12, 13]
in Cox regression models. To avoid over-fitting, a func-
tion selection procedure based on a closed test proced-
ure was used which adds flexibility, i.e. extra polynomial
terms, only if the model fit improves significantly at the
chosen overall significance level after adjustment for
multiple testing [13]. The multivariable FP procedure
(MFP; default settings in Stata), which is an extension of
the function selection procedure based on FPs, was used
to derive an FP-based prognostic index based on the
three originally continuous or integer valued predictors
[13]. For simplicity, we will henceforth use the term

continuous for both types of scales – the truly continu-
ous used for age and tumor size and the integer valued
used for number of positive nodes. In this paper signifi-
cance testing was applied only during model selection
within the FP procedure and then the alpha level was set
at the default value 0.05.
Separate Cox-models were fitted for each of the three

covariates in the derivation set. For each model, the
MFP procedure was used to automatically select the best
fitting transformation(s). Thereafter, predicted relative
hazards were calculated for each factor and patient.
These predictions were plotted versus each factor to
graphically describe the functional form of the relation-
ships. The following reference values were chosen for
calculation of relative hazards: age 35 years, tumor size
20 mm, and 0 positive lymph nodes. 95% confidence in-
tervals (CI) for the relative hazards were calculated using
bootstrap resampling. Briefly, the model selection pro-
cedure and the corresponding calculation of relative haz-
ards was replicated for 1000 bootstrap samples and the
lower and upper limits were chosen as the 2.5 and 97.5%
percentiles, respectively, for each covariate and observed
value. The distribution of each factor is also shown in
these graphs, both as dots along a line and as a kernel
density estimate. The default options in Stata were used
for kernel density estimation.
Non-linear covariate effects were also modeled using

RCS. In brief, for each covariate, k so-called knots, was
chosen which uniquely define k-1 polynomial transfor-
mations of the covariate. The definition of these trans-
formations guarantees that any linear combination of
the k-1 spline variables will be linear before the first
knot, a piecewise cubic polynomial between adjacent
knots, and linear again after the last knot. To avoid
over-fitting, we decided to use five knots located at the
5th, 27.5th, 50th, 72.5th and 95th percentiles as recom-
mended by Harrell [17]. This definition was found to
work for age and tumor size. For number of positive
lymph nodes, a variable with almost 40% zeros, we chose
to place the five knots at 1, 2, 3, 4 and 10 positive nodes.
The statistical models developed in the derivation set

were tested in the validation set. Briefly, the transforma-
tions of the covariates, and the corresponding weights
from estimation in the derivation set, were applied to
calculate the value of a prognostic index for each patient
in the validation set. Patients were then divided into risk
groups based on this index to assess the discrimination
in the validation set. A proper validation should assess
both discrimination and calibration [30], but calibration
could not be reliably assessed in the present study due
to differences in the distribution of prognostic factors,
treatments, calendar periods and length of follow-up.
Different measures of predictive performance and

model fit for Cox proportional hazards model have been
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suggested in the literature [30]. In the present paper, we
have chosen Harrell’s Concordance index (C), which is a
generalization of the area under the receiver operating
characteristic curve (AUC) for survival data [31]. It is
defined as the fraction of all evaluable pairs of patients
for which the patient with the best observed survival
also has the lowest predicted hazard [32]. Hence, the
C-index will be 0.500 for a useless model and 1.000 for a
model with optimal fit to the data.

Results
Patient and tumor characteristics
During 10 years of follow-up, distant recurrences were re-
corded for 1315 of the 4477 patients (29%) in the deriv-
ation set. Median age was 60 years (range: 25–93), median
tumor size 22mm (range: 1–120mm), and 40% were
lymph node-negative. Endocrine treatment alone was given
to 59%, chemotherapy alone to 10%, and chemo-endocrine
therapy to 2% of the patients. Only five patients were given
anti-HER2 treatment. Clinical and histopathological char-
acteristics for the patients in the derivation set and in the
separate patient materials are shown in Table 1 and
Additional file 1: Table S1, respectively.

Univariable analyses
Dichotomized predictors
Age at diagnosis, when categorized into two groups
(< 35 vs. ≥35 years), was associated to D-RFi, HR =
1.49 (95% CI: 1.04–2.13, C-index: 0.502). The corre-
sponding HR for tumor size (> 20 vs. ≤20 mm) was
1.65 (95% CI: 1.47–1.86, C-index: 0.557), and for
positive vs. negative lymph nodes 2.40 (95% CI: 2.11–
2.73, C-index: 0.587). The respective Kaplan-Meier es-
timates of D-RFi are shown in Fig. 2 a-c.

Categorized predictors in three or four groups
Age was categorized in three groups (> 50, 35–50, and < 35
years at diagnosis), tumor size also in three groups (≤20
mm (T1), 21–50mm (T2), and > 50mm (T3)), and number
of positive lymph nodes in four groups (no positive nodes
(N0), 1–3 positive (N1–3), 4–9 positive (N4–9), and ≥ 10
positive lymph nodes (N ≥ 10)). The addition of an extra
cut-off at 50 years and 50 mm for age and tumor size,
respectively, lead to only minor increases in
C-indices, from 0.502 to 0.507 for age and from 0.557
to 0.561 for tumor size. For number of positive lymph
nodes, adding two additional cut-offs at 4 and 10
positive nodes lead to a more pronounced increase,
from 0.587 to 0.652. The associations between these
categorized variables and D-RFi are further illustrated
in Fig. 2 d, e and f and in Additional file 2: Table S2.

Continuous predictors
Initial FP-modeling revealed a non-monotonic relation-
ship between relative hazard of distant recurrences and
tumor size. However, a sensitivity analysis showed this
unexpected pattern to be caused by a small fraction
(12/4477; 0.3%) of very small tumors (≤2 mm) with
more distant recurrences than expected. After review-
ing the original pathology reports, the registered tumor
size for four of these patients was found to be wrong
and was therefore corrected to sizes ranging from 20 to
25 mm. All results presented in this paper correspond
to the corrected database.
In the final FP-analyses, non-linear effects were de-

tected for tumor size and number of positive lymph
nodes, but not for age, see Fig. 3a-c. The C-index for
age, for which the linear identity transformation was
chosen by the MFP procedure, was 0.513. A square root
transformation provided best fit for tumor size, C-index
0.594, whereas a linear combination of two polynomial
terms provided the best fit, according to the MFP

Table 1 Patient and tumor characteristics for the derivation and
validation sets

Factor Derivation set Validation set

No of patients 4477 1132

Distant recurrencesa 1315 (29)b 289 (26)

Age median, years 60 64

Age range, years 25–93 28–99

Age < 35 69 (2) 11 (1)

Age 35–50 1023 (23) 202 (18)

Age > 50 3385 (76) 919 (81)

Tumor size median, mm 22 20

Tumor size range, mm 1–120 1–160

T1 (≤20mm) 1942 (43) 590 (52)

T2 (21–50mm) 2460 (55) 506 (45)

T3 (> 50mm) 75 (2) 36 (3)

Lymph nodes median 1 0

Lymph nodes range 0–47 0–23

Negative 1783 (40) 659 (58)

1–3 positive 1781 (40) 305 (27)

4–9 positive 649 (14) 127 (11)

≥ 10 positive 264 (6) 41 (4)

Adjuvant medical treatment

Endocrine therapy 2662 (59) 673 (59)

Chemotherapy 460 (10) 52 (5)

Chemo-endocrine 74 (2) 38 (3)

None 1279 (29) 369 (33)

Missing 2 0
aFollow-up truncated at 10 years
bNumbers in parentheses are percentages
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a d

b c

c f

Fig. 2 Univariable analyses with the predictors dichotomized (< 35 vs. ≥35 years, > 20 vs. ≤20mm, and positive vs. negative lymph nodes; 2a–c)
and categorized accordingly: age at diagnosis in three categories (> 50, 35–50, and < 35 years at diagnosis), tumor size in three (T1, T2, and T3),
and lymph nodes in four categories (N0, N1–3, N4–9, and N ≥ 10; 2d–f)

a d

b e

c f

Fig. 3 Univariable analysis of non-linear effects for age, tumor size, and number of positive lymph nodes using MFP (3a–c) and RCS (3d–f). For
each factor X, an estimate of the relative hazard is shown as a function of X. The estimate is based on a Cox model with fractional polynomial
transformation of X. A reference value was chosen for each factor (35 for age, 20 for tumor size, and zero for number of positive lymph nodes).
The relative hazard for this value will be 1.00 per definition. For other values of each factor the relative hazard will be an estimate with a
corresponding 95% CI shown as a band around the point estimate. The shaded area in the background is a kernel density estimate of the
distribution of each factor and the dots represent the values observed
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procedure, for number of positive lymph nodes leading
to a C-index of 0.665. A sensitivity analysis excluding
the patient with the highest number of positive lymph
nodes (N = 47), did not lead to a final model with fewer
degrees of freedom.
Similar results were found with restricted cubic splines

(Fig. 3d-f ), except that the sensitivity to outliers was bet-
ter handled by the restriction to linearity outside the
most extreme knots. The corresponding C-indices were
0.516, 0.594, and 0.665 for age, tumor size and number
of positive lymph nodes, respectively.

Multivariable analyses
Model based on dichotomized predictors
The C-index for this model was 0.628, which should be
compared to the C-indices for the corresponding uni-
variable models, range 0.502–0.587. The estimated ad-
justed effects for the three factors were HR = 1.54 for
age at diagnosis (< 35 vs. 35 ≥ years), 95% CI: 1.07–2.21,
HR = 1.85 for tumor size (> 20 vs. ≤20mm), 95% CI:
1.65–2.08, and HR = 2.60 for positive vs. negative lymph
nodes, 95% CI: 2.28–2.96.

Model based on categorized predictors in three or four groups
Cox regression with age at diagnosis and tumor size in
three categories, and number of positive lymph nodes in
four categories further improved risk stratification, with a
corresponding C-index of 0.674. For comparison with
models based on FPs and RCS, see below. The predicted
relative hazards, with 31 distinct values corresponding to
the 31 actually observed of the 36 possible combinations
(3x3x4) of the three categorized factors, were divided into
four groups aiming at the 16th, 50th, and 84th percentile,
following the recommendation by Royston and Altman
[30]. The closest possible fit to this recommendation for
the present dataset resulted in the 15th, 44th, and 84th
percentiles with 10-year D-RFi (95% CI): 88% (86–91),
75% (72–77), 65% (62–67), and 36% (33–40), respectively.

Models based on continuous predictors
Multivariable FP (MFP) and RCS transformations im-
proved the C-index further, to 0.695 and 0.696, respect-
ively. Second degree FPs, i.e. linear combinations of two
polynomial transformations, were chosen by the MFP
procedure for both tumor size and number of positive
lymph nodes. However, a sensitivity analysis excluding
the patient with the highest number of positive lymph
nodes, (N = 47), revealed that the second polynomial
term for number of positive nodes in the multivariable
model was driven by this outlier. A single polynomial
term, a log-transformation, for this variable would have
been sufficient if this patient had been excluded. The
C-index for this less complex MFP-model was 0.692.

Furthermore, the predictions from these two models,
MFP and RCS, were divided into the four
percentile-based subgroups mentioned above. For MFP,
the 10-year D-RFi-Figures (95% CI) were 90% (87–92),
76% (74–78), 62% (59–65), and 36% (32–40), respect-
ively, and for RCS: 89% (86–91), 76% (74–79), 62% (59–
65), and 35% (32–39), respectively.

External validation
During 10 years of follow-up, distant recurrences were
recorded for 289 of the 1132 patients in the validation
set (Material VII). Median age was 64 years (range: 28–
99), median tumor size 20 mm (range: 1–160mm), and
58% were lymph node-negative. Endocrine treatment
only was given to the same fraction of patients as in the
derivation set, 59%, whereas chemotherapy only was less
frequently administered, just 5%. Chemo-endocrine
treatment was given to 3% of the patients (Table 1).
Four multivariable prediction models fitted in the deriv-

ation set were evaluated in the validation set (N = 1132);
the models with dichotomized and categorized predictors
(≥2 cut-offs), the MFP model and the RCS model. For
each model, the same predictor transformations were ap-
plied in the validation set as in the derivation set and the
weights estimated in the derivation set, i.e. the estimated
log relative hazards, were used to calculate the values for
the prognostic indices (PIs) for the patients in the valid-
ation set. These PIs rank the patients in the validation set
from lowest to highest risk based on external data. Hence,
unbiased C-indices could be calculated. The validation
C-index for the model with dichotomized predictors was
0.675. As expected, the discrimination in the validation set
turned out to be better for the model with categorized
predictors, C = 0.700, but the extra gain by allowing FP- or
RCS-transformations was almost negligible, C-indices
0.705 and 0.701, respectively.
For all the four models, the distribution of the PI was

found to be shifted to the left, i.e. towards lower risk, in
the validation set compared to the derivation set. This is
in agreement with the patient characteristics presented in
Table 1. Most notably, the fraction of lymph node-negative
patients is higher in the validation set (58% vs. 40%). As an
example, histograms of the PI-distributions in the deriv-
ation and validation datasets for the MFP-model are
shown in Fig. 4.
The prognostic discrimination in the derivation and

the validation set, respectively, of the models based on
FP- and RCS-transformed predictors was further ana-
lyzed by calculation of HR:s for the four risk groups; G1
(reference), G2, G3, and G4, defined by cut-offs at the
16th, 50th, and 84th percentiles of the PIs in the deriv-
ation set, see Table 2. The corresponding risk groups,
formed by applying the actual values of the PIs in the
derivation set as cut-offs for the PIs calculated in the
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validation set lead to risk groups of other relative sizes
in the validation set. Instead of 16/34/34/16 for G1/G2/
G3/G4, the percentages in the four risk groups turned
out to be 35/27/26/11 and 34/29/25/12 for MFP and
RCS, respectively, again reflecting a shift towards lower
risk in the validation set. The HR:s in the column ‘Valid-
ation’ of Table 2 reflect the discrimination of the prog-
nostic models in an independent patient material.
Briefly, the results from the FP- and RCS-modelling
were comparable and as expected, the relative effect

estimates were smaller, i.e. closer to 1.00, when the models
fitted in the derivation set were applied to the validation
set. The corresponding Kaplan-Meier estimates for the
MFP-based model, see Fig. 5, show that the discrimination
between G1 and G2 in the validation set is poor. However,
G3 and G4 are well separated in the validation set and
these risk groups are also well separated from G1 and G2.
Note also that the calibration of the high-risk group is
good, reflected by the almost completely overlapping sur-
vival estimates for the two data sets.

Discussion
Using a large cohort comprising 5609 patients with
D-RFi as primary endpoint, we detected non-linear rela-
tionships to the relative hazard of distant recurrences for
tumor size and number of positive lymph nodes, but not
for age at diagnosis. These findings were, however, found
to be of minor importance for prognostication of
10-years D-RFi in the multivariable modeling with FP
transformations, since, in contrast to what we expected,
only a modest increase in C-index was obtained for the
model based on continuous variables compared to the
model with categorized predictors. In the derivation set,
a model with age and tumor size in three categories and
number of positive lymph nodes in four categories, was
considerably better than the corresponding model apply-
ing dichotomized variables (C-index: 0.674 vs. 0.628).
These findings support the way tumor size and number

Fig. 4 Histograms showing the distributions of the prognostic indices (PI) corresponding to the final MFP model in the derivation set and the
validation set. The indices for both sets have been centered by subtracting the mean PI in the derivation set. The vertical lines represent the 16th,
50th, and 84th percentiles of the PI-distribution in the derivation set – cut-offs which identify groups of different relative sizes in the validation set

Table 2 Hazard ratios from analysis of D-RFi for Cox-models
with MFP- and RCStransformations of the predictors

Model Derivation Validation

MFP HR (95% CI) HR (95% CI)

G2 vs. G1 2.46 (1.89–3.20) 1.16 (0.78–1.72)

G3 vs. G1 4.28 (3.31–5.54) 3.36 (2.43–4.65)

G4 vs. G1 10.5 (8.13–13.7) 6.92 (4.85–9.86)

RCS

G2 vs. G1 2.36 (1.81–3.06) 1.46 (1.00–2.13)

G3 vs. G1 4.15 (3.23–5.34) 3.10 (2.20–4.35)

G4 vs. G1 10.4 (8.06–13.4) 7.97 (5.57–11.4)

For each method of covariate transformation, the prognostic index (PI) in the
derivation set was categorized at the 16th, the 50th, and the 84th percentiles
forming four risk groups named G1 to G4. The parameter estimates from the
derivation set for MFP and RCS were used to calculate the PIs for each patient
in the validation set. Each of these two indices was thereafter categorized into
four groups using the percentile based cut-off values from the derivation set
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of positive lymph nodes are used in the clinical
decision-making today. The putative non-linear effects
of these variables seem to be sufficiently captured by in-
creasing the number of cut-offs from one to two or
three. The drawback is information loss and that
categorization might lead to tied predictions for large
groups of patients, prohibiting the possibility to create
risk groups of any size desired. Similar results were ob-
tained in the validation set. Furthermore, the HR:s com-
paring the prognosis in the four groups, based on the
16th, 50th, and 84th percentile of the prognostic index
derived from the final MFP model were similar in the
derivation and validation sets. The relative effect esti-
mates were smaller when the models fitted in the deriv-
ation set were applied to the validation set. This could
be explained by over-fitting to the derivation set.
In contrast to previous studies, [33, 34] we found no ef-

fect of age on D-RFi. This could be explained by that 33%
(23/69) of the patients below the age of 35 have been
treated with adjuvant chemotherapy compared to only
12% (511/4406) of the patients above 35 years. The im-
portance of chemotherapy for the association between age
and prognosis has been demonstrated by others [33, 34].
Another possible explanation for the non-existing age
trend in the present study is that the fraction of patients
below 35 years is lower in this study than previously re-
ported for population based breast cancer series, diluting
the power to detect a trend.
In contrast to our results, Ejlertsen and co-workers

have shown that FP transformation outperformed the
predictions based on categorized variables [16]. This

may be explained by that they also included the percent-
age of ER-positive nuclei in their algorithm and further-
more used a population-based and more homogenous
derivation cohort of 6529 postmenopausal high-risk
patients, all receiving five years of adjuvant endocrine
therapy. Also, the study by Sauerbrei and colleagues
concluded that FP extracted more prognostic informa-
tion in a study only including patients with lymph
node-positive breast cancer (N = 686; [15]).
We have used both MFP- and RCS-transformations to

model potentially non-linear relationships to prognosis
for the factors age at diagnosis, tumor size and number
of positive lymph nodes. The results, as measured by the
C-indices and the functional form of the relationships,
were strikingly similar. These transformation methods
have advantages and disadvantages, as discussed by
Royston and Sauerbrei [13]. FPs are more sensitive to
outliers, but this can be handled for example by restrict-
ing the degrees of freedom for each factor. A single pa-
tient with 47 positive lymph nodes, which was the most
extreme value observed in the derivation set, altered the
shape of the estimated relationship. A sensitivity analysis
revealed that the final prognostic model suggested by
the MFP procedure had fewer degrees of freedom when
this patient was excluded. RCS, on the other hand can
lead to over-fitting [13] especially if many knots are
used. The integrated automatic selection of variables
and functional forms of these, implemented in the MFP
procedure, gives some protection against over-fit, but to
avoid capturing too much of nuances in the data set
used for estimation, incorporation of prior knowledge

Fig. 5 Kaplan-Meier estimates of distant recurrence-free interval (D-RFi) for risk groups G1 to G4 formed by categorization of the prognostic index (PI)
for the MFP model in the derivation set at the 16th, 50th and 84th percentiles. Solid lines were used for estimates in the derivation set and dashed lines
for the corresponding estimates in the validation set. Note that the actual values of the PI at the cutoffs in the derivation set were used as cutoffs for the
PI in the validation set, leading to different relative sizes of the four groups in the two datasets. Abbreviations: Der. = Derivation set, Val. = Validation set
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should also be considered during the statistical model-
ing. Another, alternative modeling strategy is artificial
neural networks (ANN), which was recently applied to a
dataset, which largely overlaps with the derivation set in
the present paper [35]. The performance of ANN and
Cox models were almost identical.
In an initial FP-modeling step, we revealed a non-mono-

tonic relationship between the relative hazard of distant
recurrences and tumor size. This was caused by incorrect
values of tumor size for four patients in the very small
subset of patients with tumors less or equal to 2mm. This
finding highlights the importance of the quality of the
data. We have not been able to perform a complete exam-
ination of all figures in the database, but the study of
Rydén et al., demonstrate good agreement for parts of the
patient material included in the present study [36].
One limitation with the present study is that only the

three factors age at diagnosis, tumor size, and number of
positive lymph nodes are included. A clinically applic-
able model should include all prognostic factors in use,
i.e. according to current guidelines also ER, PgR, HER2,
and histological grade [2, 37]. Unfortunately, we did not
have complete and standardized information for these
additional factors. However, in an expected future situ-
ation, when different gene profiles have replaced single
biomarker analyses, age, tumor size and number of posi-
tive lymph nodes will most likely still be included in
clinical routine management of breast cancer patients,
and therefore the results obtained with these three fac-
tors in the present work, should retain their value.
Another limitation is that the derivation dataset is not
population based, but rather consists of patients in-
cluded in randomized controlled trials and well-defined
cohorts from different geographical areas and time pe-
riods. A strength, on the other hand, is that the models
fitted in the derivation set were successfully validated in
an independent dataset, even though the validation set
had a higher proportion of N0 compared to the deriv-
ation set. This suggests that the results are generalizable
and robust. The discrimination was found to be better
for high-risk patients than for patients whose prognostic
factors indicated lower risk. Differences between the der-
ivation set and the validation set in this study can explain
the sub-optimal performance of the prediction models,
but perfectly matching dataset are hard to find and it is
desirable that the performance of prognostic models is
good also in datasets with slightly different characteristics.
Future studies aiming at clinically useful models, should
be thoroughly assessed for both discrimination and cali-
bration in external datasets, see [30] for details.
In conclusion, categorization of age at diagnosis,

tumor size, and number of positive lymph nodes into
three to four groups was found to improve prognostica-
tion compared to dichotomization. The additional gain

by allowing continuous non-linear effects modeled by
FPs or RCS was modest – a finding in line with the fam-
ous statistician John Tukey’s advice of parsimony [38].

Additional files
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