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Abstract

Background: Tamoxifen treatment of estrogen receptor (ER)-positive breast cancer reduces mortality by 31%. However,
over half of advanced ER-positive breast cancers are intrinsically resistant to tamoxifen and about 40% will acquire the
resistance during the treatment.

Methods: In order to explore mechanisms underlying endocrine therapy resistance in breast cancer and to identify new
therapeutic opportunities, we created tamoxifen-resistant breast cancer cell lines that represent the luminal A or the
luminal B. Gene expression patterns revealed by RNA-sequencing in seven tamoxifen-resistant variants were compared
with their isogenic parental cells. We further examined those transcriptomic alterations in a publicly available patient
cohort.

Results: We show that tamoxifen resistance cannot simply be explained by altered expression of individual genes,
common mechanism across all resistant variants, or the appearance of new fusion genes. Instead, the resistant cell lines
shared altered gene expression patterns associated with cell cycle, protein modification and metabolism, especially with
the cholesterol pathway. In the tamoxifen-resistant T-47D cell variants we observed a striking increase of neutral lipids in
lipid droplets as well as an accumulation of free cholesterol in the lysosomes. Tamoxifen-resistant cells were also less
prone to lysosomal membrane permeabilization (LMP) and not vulnerable to compounds targeting the lipid metabolism.
However, the cells were sensitive to disulfiram, LCS-1, and dasatinib.

Conclusion: Altogether, our findings highlight a major role of LMP prevention in tamoxifen resistance, and suggest novel
drug vulnerabilities associated with this phenotype.

Keywords: Tamoxifen resistance, Breast cancer, Lysosomal membrane permeabilization, RNA-sequencing, Drug sensitivity
and resistance testing

Background
Approximately two thirds of breast cancers are estrogen
receptor (ER) positive. As the receptor stimulates prolif-
eration of mammary epithelial cells, it is also an import-
ant target in anti-hormonal cancer therapy. One of the
most prescribed ER antagonists for first line therapy is
tamoxifen that has helped millions of women since its
discovery 50 years ago [1]. However, de novo or acquired
drug resistance towards tamoxifen is a notable problem
and the later affects approximately 40% of patients re-
ceiving tamoxifen [2]. Resistance mechanisms involve

alterations in the direct targets of tamoxifen [3–6], as
well as activation of alternative signaling pathways [7]
among others [2, 8].
In addition to its intended anti-cancer effects, tamoxifen

is known to have both direct and indirect effects on the
cellular lipid metabolism. It has been shown to reduce
blood cholesterol levels [9] and to be protective against
cardiovascular diseases [10]. However, approximately 43%
of the patients treated with tamoxifen develop hepatic
steatosis, including the accumulation of neutral lipids to
lipid droplets in hepatic cells [11]. Tamoxifen can regulate
the lipid balance e.g. by binding to the microsomal anties-
trogen binding sites (AEBS), which are associated with
cholesterol metabolism [12]. This mechanism has been
linked to control cell growth, differentiation and apoptosis
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in the presence of reactive oxygen species (ROS) and has
been established as another mode by which tamoxifen in-
duces cytotoxicity [13, 14].
On the other hand, reprogrammed metabolism is one

hallmark of cancer cells [15] and has recently been sug-
gested as a new mode of drug resistance in cancer therapy
[16, 17]. The metabolic intermediates can supply cancer
cells with membrane phospholipids, with energy through
the β-oxidation pathway or with pro-tumorigenic
lipid-signaling molecules such as lysophosphatidic acid
[18]. Some studies even suggested a role of cholesterol me-
tabolism in tamoxifen resistance [19] and Borgquist et al.
showed an improved clinical outcome for ER-positive
breast cancer patients receiving cholesterol-lowering medi-
cation during their adjuvant endocrine therapy [20].
In the present study, we have delineated mecha-

nisms underlying tamoxifen resistance by extending
our drug screening and exome sequencing analyses
on tamoxifen-resistant cell lines [21] by performing
RNA-sequencing on the tamoxifen-resistant and their
isogenic, tamoxifen-sensitive parental cell lines, and
searched for genes and pathways that may be involved
in the acquired resistance. Differential gene expression
and pathway analysis confirmed that endocrine resist-
ance is not triggered by one common mechanism but
involves several functional pathways, depending on
the cell type [21]. Through the integration with public
data [22], the usefulness of our breast cancer cell line
model was assessed and the relevance of the identi-
fied transcriptomic alterations verified in this patient
cohort. By focusing on the isogenic T-47D cell vari-
ants, we showed that genes in the cholesterol pathway
were differentially expressed between tamoxifen-sensitive
and tamoxifen-resistant cells. These results were supported
by a striking accumulation of lysosomal cholesterol upon
tamoxifen treatment, increased neutral lipid amounts after
the development of resistance. Markedly, tamoxifen treated
cells were also found to be less prone to lysosomal mem-
brane permeabilization, suggesting that altered lysosomal
integrity may confer resistance to tamoxifen. Finally, using
high-content phenotypic drug sensitivity profiling of 33
drugs targeting lipid metabolism as well as inducing lyso-
somal membrane leakage, we identified drug candidates
for overwriting the tamoxifen resistance and potentially be-
ing beneficial for breast cancer patients unresponsive to
tamoxifen.

Methods
Cell culture
The development, characterization and culturing of the
tamoxifen-resistant and their isogenic parental cell lines
has been published previously [21]. In brief, MCF-7 and
BT-474 were grown in DMEM with L-Glutamine (PAN
Biotech). ZR-75-1 and T-47D were cultured in RPMI-1640

with L-Glutamine (PAN Biotech). Culture media were sup-
plemented with 10% FCS (Gibco) and 1% penicillin/
streptomycin (Gibco) and in the case of T-47D, MCF-7
and BT-474 0.1% bovine insulin (Sigma) was added. If not
otherwise stated, the parental cell lines (luminal A: MCF-7,
T-47D, ZR-75-1, luminal B: BT-474) [23] were cultured
without tamoxifen and the tamoxifen-resistant cell lines,
marked with Tam throughout this study (MCF-7 Tam1,
T-47D Tam1 & Tam2, ZR-75-1 Tam1 & Tam2, BT-474
Tam1 & Tam2) were supplemented with 1 μM
4-OH-tamoxifen in ethanol (Sigma). Cells were incubated
at 37 °C with 5% CO2.

RNA-sequencing and data analysis of cell line data
RNA isolation, library preparation, sequencing, and
data-analysis were done as explained in Kumar A et al.
[24]. Briefly, total RNA was isolated using miRNeasy kit
(Qiagen) and its quality was controlled by using the Agi-
lent Bioanalyzer with the RNApico chip (Agilent). Qubit
RNA-kit (Life Technologies) was used to quantitate
RNA amount per sample. The strand-specific paired-end
RNA-sequencing library was prepared then with Script-
Seq™ Complete kit for human/mouse/rat (Illumina). The
library preparation included the ribodepletion of rRNA
from 1 μg of total RNA and generation of double
stranded cDNA by revers transcription with random
hexamers for generation of cDNA. SPRI beads (Agen-
court AMPure XP) were used to purify the libraries and
to remove fragments less than 200 bp in length. The
mean fragment size ranged from 300 to 400 nucleotides.
The library quality was evaluated on the High Sensitivity
chip by Agilent Bioanalyzer (Agilent). The paired-end
sequencing was performed using the Illumina HiSeq
2000 (Illumina) instrument according to the manufac-
turer’s instructions.
RNA-sequencing data analysis was performed as de-

scribed in detail in Kumar et al. [24] and included
pre-processing of read data, gap-aware alignment of the
read data to the human reference genome (Ensembl
GRCh38) with the guidance of the EnsEMBL reference
gene models (EnsEMBL v80), read summarization against
EnsEMBL v80 gene features, and identification of fusion
genes. Fusion genes were detected using FusionCatcher,
which was applied to raw, un-processed read files with de-
fault parameters [25]. The raw and processed sequencing
data have been deposited in the GEO database [GEO:
GSE111151].

Integration of public and cell-line transcriptomic data and
differential expression analysis
Public patient transcriptome data [22] was downloaded
from GEO database [26] and analyzed as cell line sequen-
cing data, but using the EnsEMBL v82 gene features in all
steps. Alignment files were combined with alignment files
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from the cell-line samples and count estimates were gen-
erated against EnsEMBL v82 gene features using subreadR
[27]. Count data was then assigned to EnsEMBL informa-
tion using biomaRt [28], normalized using the trimmed
mean of M-values (TMM) method [29], converted to
CPM (counts per million) estimates using edgeR [30], cor-
rected for the batch effect associated with the study origin
using limma [31], and filtered for lowly expressed features
showing log2 expression ≤1 in over half of samples. Default
parameters were used. In the lack of biological replicates,
differentially expressed genes were identified as those with
a log2 ratio of > = |1| and CPM difference of > = |10|
against its matched parental cell line. Further, we used En-
richer [32, 33] with the list of differentially expressed genes
to determine pathways that were involved in the develop-
ment of tamoxifen resistance for each parental vs. resistant
cell line comparison. Pathways with an adjusted p-value less
than 0.001 (1E-3) were accepted as significantly altered.
Log2 ratios of differentially expressed genes of the cell lines
were visualized using heat maps. In the heat map analysis,
genes and samples were ordered using unsupervised
complete linkage clustering with Euclidean distance meas-
ure [21]. Patient and cell line data was visualized using
principle component analysis and heat maps as described
above using biomaRt to extract cholesterol genes under the
reactome.ID R-HSA-191273.

Measurement of triglycerides and cholesterol esters
Parental and resistant T-47D cells were plated on 6-well
plates and grown in their default media +/− 1 μM
4-OH-tamoxifen for 72 h in triplicates. The cells were
scraped into 2% NaCl and the subsequent lipid extrac-
tion was based on the Bligh and Dyer method [34]. Cell
lysates were also examined for protein amount. Free
cholesterol, cholesterol esters and triglycerides were re-
solved on thin layer chromatography plates using hex-
ane/diethyl ether/acetic acid (80∶20∶1) as the mobile
phase prior to the visualization of lipids by charring. The
lipid bands were quantified by ImageJ [35] from scanned
plates and the lipid amounts were determined based on
the standard curves for triglycerides, cholesterol esters
and free cholesterol.

Immunofluorescence staining and western blotting
Parental and resistant T-47D cells were seeded on cover-
slips and grown in the default media +/− tamoxifen for
72 h. Cells were fixed with 4% paraformaldehyde for
20 min at room temperature, and permeabilized with
0.3% Triton X-100 for 5 min, followed by 30 min block-
ing with 3% BSA-PBS at 37 °C. The primary and second-
ary antibodies were diluted in 1% BSA-PBS and
consecutively incubated for 60 and 30 min at 37 °C. For
detection of free cholesterol, cells were stained with
0.05% filipin (Sigma) [36] in 10% FBS–PBS blocking

solution for 30 min at 37 °C. Antibodies were prepared in
5% FBS-PBS and incubated as described above. Nuclei
were stained with DRAQ5 (Biostatus). For detecting lipid
droplets, LipidTOXGreen neutral lipid stain (Thermo-
Fisher Scientific) [37, 38] was diluted 1:200 in PBS to stain
freshly fixed coverslips following the manufactures proto-
col and detecting the nuclei with Hoechst. Stained cover-
slips were mounted with Prolong Gold anti-fade reagent
(Invitrogen) and imaged with a Nikon 90i microscope
(Nikon). For Western blotting, cells were grown on 10 cm
dishes, and lysed in Laemmli buffer. Immunoblotting was
performed as previously described [39] using the Odyssey
Blocking Buffer (Licor) for blocking and the antibody dilu-
tions. Information about the antibodies and their dilution
used for immunofluorescence as well as Western blotting
is available at Additional file 1.

Lysosomal membrane permeabilization (LMP) assay
In order to measure the integrity of lysosomal mem-
branes, we performed the detection of damaged lysosomes
by galectin-1 and -3 translocation according to the previ-
ously published protocol [40]. We first established that
galectin-3 was in our cell lines a more reliable marker to
detect its translocalization to the lysosomes compared to
galectin-1. We then seeded 2000 cells/well of T-47D,
T-47D Tam1 and Tam2 on PE Cell-Carrier 384-well plate
+/− 1 μM 4-OH-tamoxifen. After 72 h incubation, 1 mM
LLMOe was added as LMP induction control and incu-
bated for 1 h. Cells were then fixed with 4% PFA and
stained with galectin-3 detected with Alexa 568 (461 nm),
ceruloplasmin as cell segmentation marker detected with
Alexa 488 (488 nm, Additional file 1) and Hoechst
(405 nm) for detection of the nuclei. Sixteen fields-of-view
were acquired with the two sCMOS cameras (2160 × 2160
pixels) containing Opera Phenix HCS system (PerkinEl-
mer) in a widefield mode with the 40× water immersion
objective (NA 1.1). Exposure time and laser power were
kept constant for each individual staining across different
cell lines and conditions. We utilized the Columbus Image
Data Storage and Analysis System (PerkinElmer) to
analyze the multi-channel images. First, the images were
preprocessed to correct non-uniform illumination. Next,
individual nuclei were segmented from the Hoechst chan-
nel. The minimum area of a nucleus was set to 30 μm2 to
remove the detection of debris in the image background.
Starting from the detected nuclei, the segmented regions
were propagated to cover cell cytoplasm stained with ce-
ruloplasmin. The cells that touched the image border were
discarded. Finally, spot detection was used to segment
galectin-3 stained spots. The maximum radius of the spots
was set to 1 μm. We defined cells with more than 1 spot
as galectin-3 positive to exclude false positive detection.
Further, we calculated the percentage of galectin-3 positive
cells and the average spots per cell.

Hultsch et al. BMC Cancer  (2018) 18:850 Page 3 of 14



Drug sensitivity and resistance testing (DSRT) and high-
content phenotypic drug profiling
Thirty-three compounds that target lipid and cholesterol
metabolism, or induce LMP, were selected for the DSRT
by literature and vendor research (Additional file 2). As
in the previous DSRT screens [21, 41], the dissolved
drugs were transferred in five different concentrations
covering a 10,000-fold concentration range into 384-well
plates in duplicates mirrored after column 12. One thou-
sand, five-hundred cells of T-47D parental, Tam1, and
Tam2 cells were then seeded into the wells in normal
growth media on columns 1–12 of each plate and in
media supplemented with 1 μM 4-OH-tamoxifen on col-
umns 13–24. The cells were then incubated for 72 h at
37 °C and cell viability was measured by CellTiter-Glo
(CTG) Cell Viability Assay (Promega) with the PHERAs-
tar plate reader. Data was normalized to negative (0.1%
DMSO only) as well as positive (100 μmol/l benzetho-
nium chloride) controls, logistic dose response curves
fitted using the Marquardt-Levenberg algorithm, and
Drug Sensitivity Score (DSS) calculated as described pre-
viously [42], and implemented in the in-house bioinfor-
matics analysis pipeline Breeze.
For the high-content phenotypic drug profiling, plates

were fixed with 4% PFA-PBS after incubation with drugs
for 72 h, and stained with LipidTOXGreen neutral lipid
stain (ThermoFisher Scientific) diluted 1:200 in PBS and
Hoechst for nuclei detection. Twenty-five fields-of-view
per well were acquired with the PE Opera Phenix HCS
system (PerkinElmer) in a confocal mode with the 40×
water immersion objective (NA 1.1). Exposure time and
laser power were kept constant for each individual stain-
ing across different cell lines and conditions. Images
were analyzed using a custom pipeline to measure Lipid-
TOXGreen signal and image-based DSS based on cell
counts. Images were preprocessed by applying flatfield
correction using CIDRE method [43], and then stitching
corrected 25 fields-of-view images to a single image of a
well for each channel. The stitching was done to en-
able the analysis of cells crossing internal borders of
images. The stitching produced images of approxi-
mately 104002 pixels in size which were resampled to
52002 pixels to reduce computational capacity needed
for image analysis. Images were analyzed with Cell-
Profiler 2.2.0 [44]. First, nuclei were segmented from
the Hoechst channel using Otsu thresholding followed
by separation of touching nuclei with watershed
transform on distance transformed image. LipidTOX-
Green channel was segmented using adaptive Otsu
thresholding and propagation outwards from individ-
ual nuclei. The LipidTOXGreen signal was measured
in segmented regions for each individual cell. Logistic
dose response curves were fitted to cell counts to cal-
culate image-based DSS in Breeze.

Statistical analysis
For all experiment that were at least done in triplicates
the values were expressed as mean ± SD. One way
ANOVA was performed on the mean of each measure-
ment followed by Tukey test to enable multiple compar-
isons between groups. Statistically significance was
accepted as p < 0.05. All comparisons of the measure-
ment of triglycerides, free cholesterol and cholesterol es-
ters, LMP assay, and LipidToxGreen staining can be
found in Additional file 3.

Results
Each tamoxifen-resistant cell line develops its individual
gene expression and fusion gene profile
RNA-sequencing was performed to detect differentially
expressed genes and pathways between parental and re-
sistant cell lines. Between 85 and 181 million filtered reads
were obtained per sample (Additional file 4), providing
means to obtain expression estimates between 33,600 and
37,000 genes per sample. We determined differential gene
expression as log2 change of >|1|, and the difference of
gene expression > |10| CPM between the resistant clone
and its isogenic parental cell line (see Methods). Using this
filtering, we identified > 1200 differentially expressed
genes in MCF-7- and T-47D-derived cells, and < 400
genes in BT-474- and ZR-75-1-derived cells. On average
59% of differentially expressed genes were upregulated in
the majority of resistant cell lines (Table 1). Interestingly,
only about 35% of altered genes in T-47D as well as
BT-474, and only 24% in ZR-75-1 were shared between
the resistant cells derived from the same parental cell line
(Additional file 5: Figure S1A). Additionally, no common
differentially expressed genes were identified, highlighting
that each of the cell lines had developed resistance
through a distinct molecular pattern (Fig. 1a and b).
Nevertheless, common genes (SERPINA1, PLXDC2,
NAV1, DOCK10 and LRP1) with altered expression were
detected in the luminal A cell lines (Additional file 5:
Figure S1B). No shared fusion genes across the cell lines
were detected apart from the read-through fusions ABC-
C11-ABCC12 and TRIM3-HPX (Additional file 6).

Tamoxifen-resistant cell lines resemble tamoxifen-treated
patient cases
To compare the tamoxifen-resistant cell line models
with breast cancer patient samples, we reanalyzed the
McBryan et al. RNA-sequencing data [22]. Following the
analysis with our RNA-sequencing pipeline and correc-
tion for batches (patient samples and cell lines), we de-
termined differentially expressed genes between primary
and metastatic tumors and integrated the data with the
transcriptome data from our cell lines. The results were
in line with McBryan’s et al., and indicated that only
about 2.5% of differentially expressed genes were shared
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between all the patients (Fig. 1c). Interestingly, we found
that patient-specific expression profiles clustered to-
gether with the expression of the luminal A cells
(Fig. 1d). Furthermore, SERPINA1, which was differen-
tially expressed in the tamoxifen-resistant luminal A cell
lines (being upregulated in MCF-7 Tam1 and downregu-
lated in T-47D Tam1, T-47D Tam2, ZR-75-1 Tam1 and
ZR-75-1 Tam2), also changed its expression in the

patient samples (being up-regulated in all three meta-
static tumors). CP (Ceruloplasmin), a gene that was
highly upregulated in the resistant T-47D cell lines
(240–290 fold-increase) as well as MCF-7 Tam1 (26
fold-increase), was also found to be overexpressed in all
the 3 metastatic patient samples ranging from 12-fold
increase (patient 2) to 50–57 fold increase (patient 1 and
3, respectively, Additional file 7).

Table 1 Differentially expressed genes

Number of T-47D Tam1 T-47D Tam2 BT-474 Tam1 BT-474 Tam2 MCF-7 Tam1 ZR-75-1 Tam1 ZR-75-1 Tam2

Differentially expressed genes 1425 1239 303 360 1424 193 158

Upregulated genes 941 823 195 183 640 104 68

Downregulated genes 484 416 108 177 784 89 90

A

B D

C

Fig. 1 Tamoxifen-resistant cell lines display distinct expression changes and share similarities with patient cases. a Hierarchical clustering and heat
map visualization of each parental/resistant cell line pair. Orange (negative log2-ratio) represents increase and blue (positive log2-ratio) decrease
in expression in the resistant cell lines. Only protein coding genes with log2 ratio > |1| and the difference of gene expression > |10| CPM in at
least one of the comparisons are displayed. Log2 ratios of > = |2| are displayed in the same color. Tamoxifen-resistant clones (b) and patient
samples (c) differ in their expression changes. Parental is compared with resistant cell line and primary tumor with metastatic tumor from the
same patient, respectively. Venn diagrams show overlap in numbers and percentage of genes that are differentially expressed. d PCA plot
indicates that patients share expression patterns with the luminal A cells
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Triglycerides and cholesterol esters are increased in the
resistant T-47D cell lines
To reveal pathways associated with tamoxifen resistance,
we analyzed the differentially expressed genes with
Enrichr [32, 33]. Based on Enrichr’s Reactome 2016 ana-
lysis with an adjusted p-value below 0.001, we observed
multiple enriched pathways in different resistant cell
lines (Table 2 and Additional file 8). The most striking
differences were found in the T-47D Tam1 and Tam2
cells, which displayed changes in metabolism associated
genes, especially those involved in cholesterol and re-
lated lipid metabolism (Table 2, Fig. 2a).
In addition, we observed an upregulation of genes in-

volved in cholesterol biosynthesis in all three metastatic
patient samples from McBryan et al. study (Fig. 2a).
Therefore, we focused our studies on these pathways
within the T-47D cell lines (Table 2 and Additional file 8).
To investigate whether deregulation of genes involved in
cholesterol biosynthesis could affect the cellular choles-
terol balance, we stained cellular free cholesterol with

filipin, a fluorescent cholesterol-binding compound. Not-
ably, we observed increased intracellular amounts of free
cholesterol in the resistant cells, displaying a cumulus
cloud-like staining pattern (Fig. 2b). To quantify the pres-
ence of major cellular lipid species e.g. cholesterol, choles-
terol esters, and triglycerides, their amounts were further
determined with thin layer chromatography. The total cel-
lular free cholesterol remained unchanged, suggesting that
only the distribution of free cholesterol was altered in the
resistant cells. However, we observed an increase in
neutral lipids (cholesterol esters and triglycerides) upon
tamoxifen treatment. The increase in triglycerides was sig-
nificantly high (4 to 7 fold-increase) in resistant cells com-
pared to parental cells (Fig. 2c). To visualize the changes
in neutral lipid amounts as well as their intracellular dis-
tribution, we stained the cells with LipidToxGreen, a
fluorescent dye binding specifically to neutral lipids. The
analysis indicated that most of the neutral lipids accumu-
lated in enlarged lipid droplets, which fill the cytoplasm
(Fig. 2d). Moreover, RNA sequencing results implicated

Table 2 TOP5 Pathways with adjusted p-value below 0,001 obtained from Enricher using the Reactome 2016 pathway. Resistant cell
lines are compared with the isogenic parental control cells

Cell line Term Adjusted p-value Overlap

T47D Tam1 Cholesterol biosynthesis 1,49E-04 11/23

Platelet activation, signaling and aggregation 1,49E-04 41/253

Platelet degranulation 1,49E-04 24/105

Activation of gene expression by SREBF (SREBP) 1,49E-04 14/42

Response to elevated platelet cytosolic Ca2+ 1,49E-04 24/110

T-47D Tam2 Cholesterol biosynthesis 1,28E-07 13/23

Metabolism of lipids and lipoproteins 1,27E-05 78/659

Activation of gene expression by SREBF (SREBP) 4,21E-05 14/42

Platelet activation, signaling and aggregation 2,06E-04 37/253

Regulation of cholesterol biosynthesis by SREBP (SREBF) 2,06E-05 15/55

MCF-7 Tam1 Cell Cycle 8,40E-13 96/566

M Phase 1,80E-12 59/268

Mitotic Cell Cycle 2,93E-12 82/462

RHO GTPase Effectors 7,30E-11 54/255

Signaling by Rho GTPases 1,27E-09 65/367

ZR-75-1 Tam1 MHC class II antigen presentation 3,45E-04 9/103

Mitotic Cell Cycle 6,60E-04 17/462

Resolution of Sister Chromatid Cohesion 8,75E-04 8/99

BT-474 Tam1 Axon guidance 7,60E-04 23/515

Non-integrin membrane-ECM interactions 7,60E-04 7/42

BT-474 Tam2 Diseases of glycosylation 3,54E-06 13/88

Diseases associated with O-glycosylation of proteins 3,68E-04 11/62

O-linked glycosylation 1,83E-05 13/110

Defective GALNT12 causes colorectal cancer 1 (CRCS1) 5,07E-05 6/18

Defective GALNT3 causes familial hyperphosphatemic tumoral calcinosis (HFTC) 5,07E-05 6/18
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Fig. 2 (See legend on next page.)
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that the expression of Peroxisome Proliferator-Activated
Receptor gamma (PPARG), which is known to regulate
several lipid droplet proteins, was upregulated in resistant
cells. In addition, the ATP Binding Cassette Subfamily A
Member 1 (ABCA1), which functions as a cholesterol ef-
flux pump was downregulated (Additional file 7).

Tamoxifen-resistant cells show altered morphology of
lysosomes, have altered processing of Cathepsin D, and
are less susceptible to lysosomal membrane
permeabilization
To localize the accumulated free cholesterol, we co-stained
free cholesterol (filipin) with antibodies detecting the
lysosomal-associated-membrane-proteins 1 and 2 (Lamp1
and Lamp2). Based on this analysis, we observed that most
of the free cholesterol accumulated into lysosomes. We
also discovered an increase in the amount and size of lyso-
somes as well as divergences in shape compared to
their typical round form seen in the parental cell lines
(Fig. 3a and b). As the tamoxifen-resistant cells dis-
played a prominent phenotype with free cholesterol
accumulation to structurally disturbed lysosomes, we
studied the amounts of cathepsin D and its lysosomal
maturation. Cathepsins are lysosomal proteins that
help to maintain the homeostasis of cell metabolism
and are involved in apoptotic signaling as well as in
lysosomal membrane permeabilization. Furthermore,
the expression of cathepsin D is known to be regulated by
estrogen [45]. As expected, we observed a decrease of ma-
ture cathepsin D (28 kDa) under tamoxifen treatment in
parental and resistant cell lines, suggesting that tamoxifen
can regulate the expression and/or processing of cathepsin
D [46]. Whilst addition of tamoxifen also caused an up-
regulation of the precursors of cathepsin D in the parental
cell line, such an increase was not obvious in the resistant
cell lines (Fig. 3e), suggesting that the maturation of ca-
thepsin D in the lysosomes may be affected.
As lysosomal integrity, with cholesterol content of lyso-

somal membranes and cathepsin D among its regulators,
plays an important role in the induction of cell death [47],
we monitored the translocation of galectin-3 to detect
LMP. Given that galectin-3 translocation to the lysosomes
was not detected in the parental cells when grown without
tamoxifen, and that only very few tamoxifen-treated cells

showed galectin-3 spots (Fig. 3c and d), lysosomes were
most likely undamaged and functional in all cells. Further,
by inducing LMP with 1 mM LLOMe we were able to ob-
serve that tamoxifen treated resistant cells were less sus-
ceptible to LMP compared to the parental cell line, having
only 51–53% of cells with galectin-3 spots under tamoxi-
fen treatment and significantly less galectin-3 spots per
cell (Fig. 3c and d). This suggests that circumvention of
LMP in the resistant cells leads not only to tamoxifen re-
sistance but may also decrease their sensitivity to other
drugs.

Drug testing of tamoxifen resistant cells reveals
sensitivity to dasatinib, disulfiram and LCS-1
Guided by our RNA-sequencing results we selected 33
drugs, known to affect the genes or pathways involved in
lysosomal alterations and lipid metabolism as well as some
drugs identified in our previous screen (Additional file 2,
[21]). As readouts for the DSRT, we applied both enzym-
atic cell viability measurement (CTG) as well as a pheno-
typic image-based analysis using LipidToxGreen to
observe neutral lipids in lipid droplets together with
Hoechst to detect nuclei.
The cell viability measurement revealed drugs that re-

duced ATP levels in tamoxifen-resistant cells similarly to
the control cells, independently of their lipid accumula-
tion phenotype (Fig. 4a, Additional file 9).
Dasatinib, a dual Abl/Src inhibitor was more effective in

killing the tamoxifen resistant cell lines compared with
the parental cells in agreement with our previous results
[21]. Tamoxifen-resistant cells were more sensitive to
microtubule depolymerizing drugs, such as vincristine and
vinorelbine, when measured by ATP amounts. Interest-
ingly, the T-47D Tam2 cells were especially sensitive to
vinorelbine induced cytotoxicity (Fig. 4a, Additional file 9).
The mitotic inhibitors paclitaxel and docetaxel (micro-
tubule stabilizers) were less effective in the T-47D Tam1
cells. (Fig. 4a, Additional file 9).
The most effective drug against all the T-47D clones was

disulfiram, a specific inhibitor of aldehyde-dehydrogenase
(ALDH1). All the clones responded to AZD8055, a dual
mTOR inhibitor, although T-47D Tam1 and Tam2 showed
reduced sensitivity. Atorvastatin, which inhibits HMGCoA
reductase, did not affect the CTG DSS levels (Fig. 4a) but

(See figure on previous page.)
Fig. 2 Genes of cholesterol pathway and related lipids are upregulated in the tamoxifen-resistant T-47D cell lines. a Hierarchical clustering and
heat map visualization of each parental/resistant cell line pair and patient primary/metastatic tumor. Orange (negative log2-ratio) represents
increase and blue (positive log2-ratio) decrease in expression in the resistant cell lines/metastatic tumor. Log2 ratios of > = |2| are displayed in the
same color. b Filipin staining reveals an increase in intracellular amounts of free cholesterol in tamoxifen-resistant T-47D cells +/− 1 μM 4-OH-
tamoxifen. c Quantification of lipid content in cells grown +/− 1 μM 4-OH-tamoxifen reveals an increase in cholesterol esters and triglycerides in
tamoxifen-resistant cells (depicted as colored bars). Only significant differences (p-value < 0.05) between the same clone as well as of the
comparison between resistant and tamoxifen-resistant cells in the same treatment conditions are indicated, all other comparisons can be found
in Additional file 3. d LipidToxGreen staining of neutral lipids (green) demonstrates that accumulation of neutral lipids into lipid droplets in
tamoxifen-resistant cells. The nuclei (blue) were stained with Hoechst
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was able to reduce the cell count in the parental and even
more in the T-47D Tam2 cells (Fig. 4b). The SOD-1 inhibi-
tor LCS-1 was effectively killing both parental and resistant
T-47D clones, and RSL-3, a ferroptosis activator due to in-
hibition of glutathione peroxidase 4, induced cell death in
all the cell lines, with somewhat reduced response in
T-47D Tam1 (Fig. 4b, Additional file 9).
To see whether any of the compounds are able to re-

vert the lipid phenotype prior to reducing the cell viabil-
ity (ATP-measurement) or induction of cell death (cell
count), we specifically monitored the changes in neutral
lipids by quantifying the average LipidToxGreen inten-
sity per well (Additional file 10). The measured significant
increase in the intensity was within the 2-fold range, and
we were able to confirm the trends from the biochemical
screen where we observed a neutral lipid accumulation
in the resistant cell lines (Figs. 2c, 4c). Whereas most of
the drugs had minor effects on the LipidToxGreen in-
tensity (Additional file 10), the LXR-agonist TO901317
increased the lipid phenotype most strikingly in the par-
ental cells, with less increase particularly in T-47D Tam1
cells (Fig. 4d). In addition, methyl-β-cyclodextrin, a
membrane cholesterol-depleting agent, caused a lipid
droplet accumulation phenotype, mostly in the parental
cell line prior to cell killing in the highest concentration
(Additional file 10).

Discussion
In this study, we utilized RNA-sequencing and pathway
analysis to understand the underlying tamoxifen resistance
and identify resistance-specific drug vulnerabilities. We
revealed the involvement of lipid metabolism in tamoxifen
resistance as well as pointed out potential therapeutic
ways to target these pathways.
Gene expression analysis on tamoxifen-resistant cells

reinforced our previous finding on breast cancer cells
using a variety of molecular pathways as they acquire
tamoxifen resistance [21]. The difference in gene expres-
sion was reflected in the scale and scope of differentially
expressed genes, and in the lack of shared genes across
all the cell lines (Fig. 1). In agreement with this finding,
the only study that has performed sequential tumor
transcriptome analysis on patients developing endocrine
resistance, also identified less than 3% of differentially

expressed genes across patients (Fig. 1c [22]). Despite the
overall transcriptome profiles being distinct across the re-
sistant cell lines, we were able to identify five genes that
were concordantly differentially expressed in the luminal
A subtype resistant cells (Additional file 5: Figure S1B). Of
these, SERPINA1, encoding for a serine protease inhibitor
primarily targeting elastase, is known to bind ER in a
17β-estradiol (E2) - independent manner, which leads to
an increase in its expression [48]. Therefore the observed
expression changes could be due to the down- and upreg-
ulation of ER in these cell lines [21]. Interestingly, in all
three metastatic samples from the McBryan et al. study,
we observed an increase in SERPINA1, which is acc-
ompanied by a slight increase of ESR1 transcription
(Additional file 7). Pathway analysis of the differentially
expressed genes identified several paths involved in ac-
quired tamoxifen resistance (Table 2, Fig. 2a).
In this study, we investigated the tamoxifen-induced

changes observed in lipid metabolism, which occurred in
the T-47D tamoxifen-resistant cell lines (Table 2, Fig. 2).
We also made the equivalent finding in a patient’s meta-
static tissue (Fig. 2a). As the metastasis was found in the
liver [22], the observed lipid metabolism pathway pro-
files have to be interpreted with caution. Nevertheless,
our findings suggest that the lipid phenotypes could
already develop in the breast cancer cells [49] and is not
solely induced by the liver environment.
Further, our studies with the T-47D tamoxifen-resistant

cell lines show an increase of free cholesterol into strik-
ingly enlarged lysosomes (Figs. 2b, 3a and b, [50]). It has
been shown that accumulation of cholesterol, an increase
in Lamp1 and Lamp2 as well as downregulation of ca-
thepsins prevents lysosomal membrane permeabilization
[51–54], a process which leads to different forms of cell
death such as apoptosis, necroptosis, necrosis and ferrop-
tosis [47]. Indeed, our data on the resistant cells shows an
increase in cholesterol, Lamp1 and Lamp2, as well as a de-
crease in cathepsin D (Figs. 2b, 3a, b and e [46]). A
short-term tamoxifen treatment diminished directly the
LLOMe-induced LMP. The T-47D Tam1 and Tam2 were
even more resistant towards LMP (Fig. 3c and d), showing
that tamoxifen can hinder it, and in acquired resistance,
this phenomenon is even more prominent. Thus, impeded
lysosomal membrane permeabilization may additionally

(See figure on previous page.)
Fig. 3 Free cholesterol accumulates in lysosomes in the resistant cells. Intracellular accumulation of free cholesterol (blue) accumulates in
lysosomes (orange) stained with two lysosomal markers, Lamp1 (a) and Lamp2 (b), detecting the lysosomal-associated-membrane-proteins 1 and
2 +/− 1 μM 4-OH-tamoxifen. Tamoxifen-resistant cells are less sensitive to lysosomal membrane permeabilization detected with galectin-3 (orange)
translocation (c, images were differently enhanced for visualization purposes) and measurement of galectin-3 positive cells (d upper graph) as well as
number of galectin-spots per cell (d lower image). Galectin-3 measurements were done on the raw image, n = 4 for each condition. Only significant
differences (p-value < 0.05) between the same clone as well as of the comparison between resistant and tamoxifen-resistant cells in the same
treatment conditions are indicated, all other comparisons can be found in Additional file 3. e Mature cathepsin D is downregulated in tamoxifen
resistant cells
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enhance the co-resistance to other cancer drugs during
acquired tamoxifen resistance.
Reducing the reactive oxygen species (ROS) is another

mechanism by which cells avoid lysosomal induced cell
death [53]. We speculate that resistant T-47D cells are
able to reduce oxidative stress by upregulation of SOD1
(Additional file 7) and may therefore be less sensitive to
lysosomal cell death. This hypothesis is further sup-
ported by the fact that the resistant cells were highly
sensitive to the SOD1 inhibitor LCS-1. The capability of
erastin to activate ferroptosis is instead inhibited by anti-
oxidants, and it was more effective in parental than in
resistant cells. The ferroptosis activator RSL-3, which in-
hibits the glutathione peroxidase 4, an enzyme that pro-
tects from oxygen damage, induced cell death in all the
cell lines (Fig. 4 and Additional file 9). This further sup-
ports the assumption that the T-47D cells are able to re-
duce oxidative stress and are therefore less sensitive to
lysosomal cell death.
Disulfiram, which targets ALDH1 to increase oxidative

stress, was highly effective in both parental and tamoxi-
fen-resistant T-47D cell clones (Fig. 4 and Additional
file 9). The effectiveness of disulfiram is currently in-
vestigated in metastatic breast cancer in a phase II
clinical trial [55]. ALDH2, another target of
disulfiram, is upregulated in T-47D Tam1 but not in
Tam2 (Additional file 7). High levels of ALDH1 have
been shown to predict resistance in women treated with
tamoxifen [56], but as ALDH1A1 is expressed at very low
levels in the T-47D cell lines (Additional file 7), we assume
that the sensitivity to disulfiram could be due to its capabil-
ity to disable antioxidation mechanisms of the cells [57].
A significant increase in triglycerides, stored in large

lipid droplets (LDs) was observed in tamoxifen-resistant
cells (Figs. 2c, d and 4c). Free fatty acids are enzymati-
cally converted to triacylglycerol, and then incorporated
into LDs. Packaging of excess lipids into LDs could be
seen as an adaptive response to fulfilling energy supply
without hindering mitochondrial or cellular redox status
and keeping the concentration of lipotoxic intermediates
low [58]. Accordingly, high LDs and stored cholesterol
esters in tumors are considered as hallmarks of aggres-
sive cancer [59]. LD-rich cancer cells have also been
shown to be more resistant to chemotherapy [60]. We
found over 3-fold upregulation of stearoyl-CoA desatur-
ase (SCD), encoding for a rate-limiting enzyme in the

biosynthesis of monounsaturated fatty acids, in the
tamoxifen-resistant T-47Ds (Additional file 7). Whether
it alone is able to induce the increase in TGs, remains to
be investigated. In line with this speculation, SCD over-
expression has been observed, in different cell types as
well as in tamoxifen-induced hepatocyte steatosis, to sig-
nificantly increase the rate of triglyceride synthesis [61].
The compounds directly affecting lipid metabolism, such
as C75, Bezafibrate, T 0070907, TO901317, and Orlistat,
had no or only little effect on cell viability or the lipid
phenotype (Fig. 4 and Additional files 9 and 10). This
suggests that the T-47D cells are able to compensate the
drug-induced lipid imbalance with several mechanisms,
which would be compelling to study in depth.

Conclusion
Taken together, our results highlight that tamoxifen re-
sistant cell lines can potentially be used as a representa-
tive model for studies of tamoxifen-resistant patients.
We propose that the breast cancer cells can acquire
tamoxifen resistance by dysregulation of different cellu-
lar pathways, dependent on their individual molecular
phenotypes. Here, we highlight the inhibition of lyso-
somal membrane permeabilization as one of the mecha-
nisms to avoid cell death, whereas an increase in neutral
lipids may enable the further survival of these cells. We
further propose that drugs targeting cellular antioxida-
tion machinery may be able to overcome tamoxifen re-
sistance. However, investigating the relevance of the
proposed mechanism of acquired resistance in patients
remains a challenge. Given the vulnerability of tamoxifen
resistant cells to approved drugs such as disulfiram and
dasatinib, it would be interesting to investigate whether
these compounds could also be effective in clinical trials
in tamoxifen-resistant breast cancer patients.

Additional files

Additional file 1: Antibodies used in this study. (XLSX 10 kb)

Additional file 2: Drugs used in this study. (XLSX 11 kb)

Additional file 3: Statistical analysis of triglycerides, free cholesterol and
cholesterol esters, LMP assay, and LipidToxGreen staining. (XLSX 38 kb)

Additional file 4: RNA-sequencing statistics. (XLSX 10 kb)

Additional file 5: Figure S1. Tamoxifen-resistant cell lines display distinct
expression changes. Tamoxifen-resistant clones derived from same parental
cells (A) and of the luminal A subtype (B) differ in their expression changes.

(See figure on previous page.)
Fig. 4 Drug sensitivity and resistance testing of tamoxifen resistant cells. DSS scores [42] of (a) CTG-measurement and (b) cell count are displayed
as heatmap with dark orange showing the most effective drugs. c Quantification of LipidToxGreen staining in cells grown +/− 1 μM 4-OH-
tamoxifen reveals an increase in the mean intensities of the staining in tamoxifen resistant cell lines. Only significant differences (p-value < 0.05)
between the same clone as well as of the comparison between resistant and tamoxifen-resistant cells in the same treatment conditions are
indicated all other comparisons can be found in Additional file 3. d TO901317 (concentration in nM) increases the LipidToxGreen staining mainly
in the parental cell lines
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