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Abstract

Background: Pulmonary imaging often identifies suspicious abnormalities resulting in supplementary diagnostic
procedures. This study aims to investigate whether the metabolic fingerprint of plasma allows to discriminate
between patients with lung inflammation and patients with lung cancer.

Methods: Metabolic profiles of plasma from 347 controls, 269 cancer patients and 108 patients with inflammation
were obtained by 'H-NMR spectroscopy. Models to discriminate between groups were trained by PLS-LDA. A test
set was used for independent validation. A ROC curve was built to evaluate the diagnostic performance of potential
biomarkers.

Results: Sensitivity, specificity, PPV and NPV of PET-CT to diagnose cancer are 96, 23, 76 and 71%. Metabolic profiles
differentiate between cancer and inflammation with a sensitivity of 89%, a specificity of 87% and a MCE of 12%. Removal
of the glutamate metabolite results in an increase of MCE (38%) and a decrease of both sensitivity and specificity (62%),
demonstrating the importance of glutamate for discrimination. At the cut-off point 031 on the ROC curve, the relative
glutamate concentration discriminates between cancer and inflammation with a sensitivity of 85%, a specificity of 81%,
and an AUC of 0.88. PPV and NPV are 92 and 69%. In PET-positive patients with a relative glutamate level <0.31 the
sensitivity to diagnose cancer reaches 100% with a PPV of 94%. In PET-negative patients, a relative glutamate level > 0.31
increases the specificity of PET from 23% to 58% and results in a high NPV of 100%. In case of discrepancy between
SUVinax @nd the glutamate concentration, lung cancer is missed in 19% of the cases.

Conclusion: This study indicates that the 'H-NMR-derived relative plasma concentration of glutamate allows
discrimination between lung cancer and lung inflammation. A glutamate level <0.31 in PET-positive patients
corresponds to the diagnosis of lung cancer with a higher specificity and PPV than PET-CT. Glutamate levels
>0.31 in patients with PET negative lung lesions is likely to correspond with inflammation. Caution is needed
for patients with conflicting SUV,.x values and glutamate concentrations. Confirmation is needed in a
prospective study with external validation and by another analytical technique such as HPLC-MS.

Keywords: Lung cancer, Lung inflammation, "H-NMR, Metabolic phenotype, Glutamate, ROC

* Correspondence: peter.adriaensens@uhasselt.be

’Applied and Analytical Chemistry, Institute for Materials Research, Hasselt
University, Agoralaan Building D, B-3590 Diepenbeek, Belgium

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-018-4755-1&domain=pdf
mailto:peter.adriaensens@uhasselt.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Vanhove et al. BMC Cancer (2018) 18:868

Background

Lung cancer is the leading cause of cancer death in men
and the second leading cause of cancer death in women
worldwide [1]. It was estimated that 1.8 million new lung
cancer cases and 1.6 million lung cancer death occurred
in 2012 worldwide, accounting for almost 19% of all
cancer deaths [2].

Most patients with lung cancer are diagnosed with ad-
vanced disease, resulting in a very low global 5-year survival
of only 18% [3]. Screening aims to detect lung cancer in an
early stage, before patients experience clinical symptoms,
and when treatment is the most effective. The principal
aim of screening for lung cancer by low-dose computed
tomography (CT) is to reduce lung cancer-specific death
[4, 5]. CT-imaging often identifies suspicious pulmonary
nodules or focal lung lesions, but cannot verify whether
these are the results of benign disease or a truly aggressive
malignancy, leading to supplementary imaging techniques
or additional CT scans with cumulative radiation levels or
invasive procedures, such as tissue biopsies [4, 6].

Due to limitations of radiological imaging techniques
in the differentiation between benign and malignant tis-
sue, positron emission tomography (PET) has become
an additional option for the evaluation of suspicious pul-
monary nodules and other focal lung lesions [7].

Unlike normal tissue, malignant tumors are characterized
by an increased glycolysis, which leads to an elevated glu-
cose uptake. "*F-fluorodeoxyglucose (**F-FDG) PET-CT
makes use of this characteristic in order to diagnose and
stage various human malignancies [8—10]. The standard-
ized uptake value (SUV) is a semi-quantitative measure-
ment of the tissue *F-FDG accumulation rate [10]. The
maximal standardized uptake value (SUV,,,,) is the voxel
with the highest "®F-FDG uptake value in the region of
interest.

However, regardless of its high accuracy and sensitivity,
high "®F-FDG uptake is not cancer-specific. High levels of
8E_FDG uptake can also be detected in benign lesions such
as inflammation, causing false-positive results and misinter-
pretation for diagnosis [11]. Tremendous efforts have been
reported in the literature to deal with this false-positive
issue using different tracers e.g. labeled amino acids [12].
However, these tracers have predominantly been used in
the research environment with limited clinical usage thus
far [13]. In parallel with the introduction of new tracers, re-
searchers also proposed different measuring protocols such
a as dual time point imaging procedure and dynamic PET
with tracer kinetic modeling [14, 15]. Usually, such model-
ing procedures are complex, requiring longer scanning ses-
sions, invasive arterial blood sampling, tracer analysis and
complex data processing, making the technique less appro-
priate in daily clinical practice.

Taking the above into account, there is an urgent need
to find complementary non-invasive, clinical biomarkers
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that are able to better discriminate between false positive
and true positive results.

In recent years, metabolomics or metabolite profiling/
phenotyping, has been used to investigate metabolic
changes in plasma associated with lung cancer [16-19].
Metabolomics is the study of substrates and products of
metabolism, which are influenced by both genetic and en-
vironmental factors. Metabolites and their concentrations
directly reflect the underlying biochemical activity of cells
and represent the phenotype. Currently, mass spectrometry
coupled to different chromatographic separation methods
and "H-NMR spectroscopy are the major tools to analyze a
large number of metabolites simultaneously. Several re-
search groups have developed a "H-NMR derived metabolic
signature of lung cancer in tissue or plasma [16, 17, 19-21].
However, the patient populations in these studies were ra-
ther limited.

Recently, our research group was able to detect lung
cancer in a population of 269 patients and 347 controls
with a sensitivity of 78% and a specificity of 92% by means
of the metabolic phenotype of blood plasma [16]. In gen-
eral, the principal metabolic alterations reported for lung
cancer include changes in amino acid metabolism, choline
phospholipid metabolism, glycolysis, one-carbon metabol-
ism and lipid metabolism.

Metabolic phenotyping by "H-NMR spectroscopy of pa-
tients with benign PET-positive lesions and of patients with
lung cancer might result in the discovery of new selective
biomarkers with diagnostic potential that can influence the
decision-making in case of positive screening results.

The present study is the first in the field of metabolo-
mics that aims to investigate whether the "H-NMR-der-
ived metabolic phenotype of blood plasma allows to
discriminate between patients with pulmonary inflamma-
tory disease and lung cancer, as well as between patients
with lung inflammation and controls.

Methods

Subjects

The presented study is a retrospective analysis of the
monocentral NCT02024113-trial [16]. The investigators
of the original study evaluated whether the metabolic pro-
file of blood plasma allows to detect lung cancer. Subjects
were assigned to three groups: patients with lung cancer,
patients with lung inflammation and a control group with
similar baseline clinical characteristics. The lung cancer
patients (N=269) were included in the Limburg PET
Center (Hasselt, Belgium) from March 2011 to June 2014.
The diagnosis was confirmed by a biopsy or by interpret-
ation of the images by a respiratory physician specialized
in the interpretation of clinical and radiological lung can-
cer data. The carcinomas were staged according to the 7th
edition of the tumor, node, metastasis criteria for lung
cancer established by the International Association for the
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Study of Lung Cancer (IASLC) in 2007 [22]. Patients with
initially suspicious CT findings that underwent PET-CT
were classified as inflammation after the exclusion of ma-
lignant disease by follow-up or a tissue biopsy (N = 108).
A check of the medical files was accomplished at the time
of statistical analysis to confirm the absence of cancer for
the 21 (19, 4%) cases of inflammation without a pathologic
confirmed diagnosis.

The controls (N = 347) were patients with non-cancerous
diseases who were referred to the department of Nuclear
Medicine (Ziekenhuis Oost-Limburg, Genk) for a stress
examination of the heart between March 2012 and June
2014. The absence of malignant disease was confirmed on
the basis of the hospital medical files.

The exclusion criteria for all patients (lung cancer —
lung inflammation) and controls were as follows: not
fasted for at least 6 h, fasting blood glucose >200 mg/dl,
medication intake on the morning of blood sampling
and a treatment or history of cancer in the past 5 years.
Characteristics of the subjects included in this study are
summarized in Table 1.

Blood sampling, sample preparation and NMR analysis

10 cc venous blood (10 cc), of fasting patients, was col-
lected in lithium-heparin tubes and stored within 5 min at
4 °C. Samples were centrifuged at 1600 g for 15 min,
within 8 h after collection. Plasma aliquots (500 pl) were
transferred into cryovals and stored at — 80 °C. After thaw-
ing, the aliquots were centrifuged at 13000 g for 4 min at
4 °C. Subsequently, 200 pl of the supernatant was diluted
with 600 pl deuterium oxide (D,O) that contained 0.3 pg/
ul trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP)
as chemical shift reference. Until "H-NMR analysis, the
prepared samples were placed on ice. Samples were mixed
and transferred into NMR sample tubes (5 mm) and were
acclimatized to 21.2 °C during 7 min. All "H-NMR spectra
were recorded with an Inova 400 MHz spectrometer (Agi-
lent Technologies Inc.) at 21.2 °C. A transverse relaxation
(T2-weighted) edited Carr-Purcell-Meiboom-Gill sequence
(total spin-echo time: 32 ms; interpulse delay: 0.1 ms) was
acquired. This was preceded by an initial preparation delay
of 0.5 s and 3 s presaturation for water suppression. Other
acquisition parameters were: spectral width 6000 Hz; acqui-
sition time 1.1 s, 13 k data points and 96 scans. Before
Fourier-transformation, each free induction decay
was zero-filled to 65 k points, multiplied by a line broad-
ening of 0.7 Hz, phased and, referenced to TSP. By spiking
the plasma of a healthy volunteer with known metabolites
(for each metabolite, a different sample with plasma from
the plasma pool), the NMR spectrum was segmented into
110 fixed integration regions (IRs) [23]. Water (4.7—
52 ppm) and TSP (- 0.3-0.3 ppm) resonances were ex-
cluded. These spiking experiments allowed us to identify
the metabolites of 87 IRs. The remaining 23 IRs originate
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Table 1 Clinical and pathological characteristics of the study

population
Lung cancer Inflammation Controls
Gender
Female 82 (30.5%) 35 (32.4%) 169 (48.6%)
Male 187 (69.5%) 73 (67.6%) 179 (51.4%)

Age (mean + SD) 68.1 +9.9 633+115 673+110
SUV (mean + SD) 121+76 43+28
Diabetes
No 222 (82.5%) 98 (90.7%) 280 (80.5%)
Yes 47 (17.5%) 10 (9.3%) 68 (19.5%)
Glycemia (mean + SD) 1055+21.3 101.7 £200

Smoking habits

Former 130 (48.3%) 47 (43.5%) 147 (42.2%)
Never 10 (3.7%) 15 (13.9%) 132 (38.0%)
Active 129 (48%) 41 (38%) 69 (19.8%)
Unknown 0 (0%) 5 (4.6%) 0 (0%)
TNM stage
IA 53 (19.7%)
1B 22 (82%)
1A 16 (5.9%)
1B 16 (5.9%)
A 63 (23.4%)
1153] 28 (10.5%)
v 71 (26.4%)
Histology
CARCINOMA

Adenocarcinoma 101 (37.5%)

Adenosguamous 5 (1.9%)
Squamous 71 (26.4%)
NOS 9 (3.3%)
Carcinoid 5 (1.9%)
SCLC 38 (14.1%)
No histology 35 (13%)
Other 5 (1.9%)
INFLAMMATION
Pneumonia 54 (50.0%)
Sarcoidosis 6 (5.6%)
Granuloma® 6 (5.6%)
Mycobacteria 5 (4.6%)
Antracosilicosis 9 (8.3%)
Unknown 21 (19.4%)
Miscellaneous 7 (6.5%)

NOS = not otherwise specified, SCLC small cell lung carcinoma, SD standard
deviation, TNM tumor-node-metastasis; ®other than sarcoidosis
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from non-identified substances and broad lipid signals.
Subsequently, the spectra were baseline corrected and in-
tegrated. The metabolic profile consists of 110 numerical
integration values, i.e. the area under the peaks of these
110 integration regions, representing the metabolite con-
centrations. By normalizing the integration values to the
total integrated area, except water and TSP, relative con-
centrations were obtained. These are the variables for the
statistical PLS-LDA multivariate analysis. The spiking
methodology was preferred above peak alignments based
on chemical shift values reported for different matrices
and even non-human species [24—26]. In addition, in con-
trast with binning, the spiking method avoids the splitting
of peaks into parts which may result in a loss of discrimin-
ating power. These issues were the rationale for using the
spiking method.

Positron emission tomography/computed tomography
(PET-CT)

Static PET-CT (GEMINI TF Big Bore, Philips) images were
acquired and assessed retrospectively with commercially
available software (Hermes Medical Solutions, Hermes Hy-
brid Viewer) to measure the SUV,,,.. PET-CT was per-
formed after at least 6 hours in the fasting state and 1 hour
after the administration of 3.75 MBq/kg '*F-FDG. Patients
with serum glucose levels >200 mg/dl were excluded. First,
the imaging field was determined by a scout scan. There-
after, a low dose CT of 30 s (mAs: 80—175; kV: 120; slice
thickness: 5 mm), which ranged from the mid thighs to the
base of the skull, was performed. The CT images were re-
constructed on a 512-512 matrix. Next, a PET-scan of 15—
20 min was performed. Depending on the body mass index
(BMI) of the patient, the emission time per bed position
ranged from 1 to 2 min.

Statistical analysis
Sensitivity, specificity, positive and negative predictive values
(PPV,NPV) and misclassification error (MCE) were calcu-
lated in all the patients that underwent PET-CT (N = 377).
In order to detect significant differences between the ex-
pression levels of metabolites in controls and patients with
lung inflammation, and between patients with lung inflam-
mation and lung cancer, a univariate t-test analysis with a
correction for multiple testing by Benjamini and Hochberg
was performed using the free R (2.15.0) software package
[27]. For all IRs, the results of the t-test (p-values) and the
magnitude of the differences between the two groups were
combined in a volcano plot to present a visual overview of
the most meaningful differences (Additional file 1: Figure
S1). To evaluate the potential diagnostic performance of
IR variables that were significantly different between the
groups, receiver operating characteristic curves (ROC)
were calculated. In addition, classification of the disease
status (cancer/inflammation and control/inflammation)
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was conducted using the partial least square-linear dis-
criminant analysis (PLS-LDA) method in which the least
absolute shrinkage and selection operator (LASSO) method
was used for top K feature selection (with K, the number of
IRs to be included in the classifier model). LASSO is a
method that is often used for modeling high dimensional
data when the number of possible predictors is relatively
high [28]. The LASSO procedure is used to select top K
variables in predictive models and has the advantage that it
penalizes for the number of predictors in the model, i.e. the
LASSO method selects the minimal set of predictors that
lead to the best prediction [29]. In this study, the LASSO
method was used as a variable selection method to select
the integration regions that best distinguish between can-
cer/inflammation, i.e. to select the top K best IRs for inclu-
sion in the classifier signature. After selecting the top-K list,
the PLS-LDA method was used for the classification using
a four-fold cross validation procedure. To evaluate the
multivariate approach, PLS-LDA classifier models with dif-
ferent top K signatures are constructed and compared with
respect to their diagnostic characteristics.

PLS is a latent variable regression method that maximizes
the covariance between the predictors X (metabolic data)
and the response Y (disease). A discriminant variant of PLS,
PLS-LDA, refers to a classification method in which each
observation is described by one out of two (or more)
categories [17, 30, 31]. In the unbalanced population of
29% (N =108) inflammation patients and 71% (N =269)
cancer patients, classification procedures will typically lead
to biased results as the procedures have the tendency to
classify inflammation as cancer. To overcome this problem,
we sampled 108 cancer patients ad random out of 269 lung
cancer patients and thus develop the classifier on a bal-
anced dataset. A similar approach was used between lung
inflammation and controls (random selection of 108 out of
347). This random selection of cancer patients is applied in
a loop of a 250 four-fold cross validation which implies that
the classifier is evaluated 1000 times for 250 random selec-
tions of 108 cancer patients. This step is needed since it is
unwanted that one specific random selection of 108 pa-
tients will determine the results. Once a subset of 108 can-
cer patients was randomly selected, the four-fold
cross-validation procedure was as follows: a training set (3/
4 of the subjects) was used for feature selection and classifi-
cation and a validation test set (1/4 of the subjects) was
used for independent internal validation [32]. The test-set
was used to validate the classification ability of the trained
models, generating a mean misclassification error (MCE)
and a mean sensitivity and specificity. The same approach
(Fig. 1) was used for feature selection and classification of
the inflammation-control ~ dataset and the lung
cancer-control dataset. In order to evaluate the perform-
ance of the classifier across the different cancer stages and
whether specific cancer stages have a tendency to be
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Fig. 1 Classification workflow to differentiate between lung inflammation and lung cancer. MCE = misclassification error

misclassified, a leave-one-out-cross-validation (LOOCYV)
was applied (see Additional file 2 for a description of the
LOOCYV method).

In addition to classification models based solely on the
metabolite NMR data, models including in addition the
SUVax parameter obtained from metabolic PET-CT
imaging are evaluated as well.

Results

Diagnostic characteristics of PET-CT

Sensitivity, specificity, PPV and NPV of PET-CT for diagno-
sis of lung cancer (based on a widely accepted clinical value
of SUV ax = 2.5) were 96, 23, 76 and 71%, respectively.

"H-NMR signature of lung inflammation versus lung
cancer
In a '"H-NMR spectrum, hydrogen atoms with different
chemical environments give rise to signals at different po-
sitions (i.e. at different chemical shifts, expressed in ppm)
in the spectrum. Since most metabolites have hydrogen
atoms with different chemical environments in their
chemical structure, they will give rise to more than one
signal in the "H-NMR spectrum (Additional file 3: Figure
S2). This explains why i) the NMR spectra are segmented
in 110 regions on the basis of published results describing
the spiking of a reference plasma pool with known metab-
olites and ii) these 110 regions represent less than 110 me-
tabolites [23]. It further explains why some regions in the
spectrum do represent a single metabolite, while other re-
gions consist of overlapping signals of several metabolites.
These 110 regions are integrated (the area under the peaks
is a measure for the concentration of the constituent me-
tabolites) and normalized relative to the total integrated
area (except this of water and TSP), resulting in 110 numer-
ical values that represent the relative metabolite concentra-
tions and form the metabolic signature, and which are
referred to as variables IR1,...IR110 in the statistics.
Univariate statistical analysis indicates that IRs 15,
89 and 96 are the most significant variables in the

differentiation between lung cancer patients and pa-
tients with lung inflammation (Additional file 1: Fig-
ure S1). These IRs reflect the relative plasma
concentrations of respectively tyrosine (IR15), glutam-
ate and methionine (IR89) and of a group consisting
of alanine, isoleucine and lysine (IR96). Plotting the
value of IR89 reveals a clear and significant difference
between lung cancer patients and patients with lung
inflammation (Fig. 2). In addition, IR89 was selected
in all the cross-validation runs of the multivariate
PLS-LDA statistics by the LASSO top K feature selec-
tion procedure. As the main goal of this study concerns
the discrimination between patients with lung cancer and
lung inflammation, the whole signature might be of inter-
est, but to avoid overfitting of the current data matrix, a
LASSO approach was introduced to select the top K most
important (differentiating) variables. From the Additional
file 4: Table S1, it can be seen that the MCE, sensitivity
and specificity of the PLS-LDA model do not further im-
prove if the signature size exceeds the top 16 IRs. The
classification model constructed with the top 16 variables
results in an average MCE of 12% (Fig. 3, top), a sensitivity
of 89% and a specificity of 87%. The performance of
models using a smaller top K feature selection is also dem-
onstrated in Additional file 4: Table S1 and shows that, for
the current data matrix, the model performance becomes
worse if less than the top 16 variables are used. The in-
crease of MCE and decrease of the sensitivity and specifi-
city in models using less top K features indicate that a
minimal set of variables remains essential for an optimal
differentiation. As IR89 was selected in all the LASSO se-
lections, its importance was further examined by its re-
moval from the data, resulting in an increase of the MCE
from 12% to 38% (Fig. 3, bottom) and a drop in sensitivity
and specificity from 89% to 62% and from 87% to 62%, re-
spectively. This large increase in MCE demonstrates that
IR89 strongly drives the classification. IR89 is assigned to
the most downfield part of the multiplet of the -CH, pro-
tons of glutamate, situated between 2.197 and 2.218 ppm,
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Fig. 2 Box-plots of IR15, IR89 and IR96 reveal significant differences between patients with lung inflammation and lung cancer patients. Despite
the relatively small fold change of IR89 (Additional file 1: Figure S1), the integration value (and so relative glutamate concentration) is significantly
higher in the inflammation group. IR = integration region. IR89 represents glutamate and methionine, IR15 represent tyrosine and IR96 contains
signals from alanine, isoleucine and lysine. IR = integration region

as proven by spiking experiments [23]. It was further dem-
onstrated that this region might only contain additional sig-
nals of the -CH, protons of methionine (Additional file 5:
Figure S3). The presence of signals of other metabolites can
be excluded via spiking with other metabolites, including
all amino acids. However, the spiking experiments also have
shown that IR72 only comprises the triplet signal of the
y-CH, protons of methionine between 2.63 and 2.66 ppm.
Since this IR72 is not increased in case of inflammation, we
assign the increase of IR89 in case of inflammation to an
increase in glutamate. Mean relative serum levels of glu-
tamate are 0.159 (SD 0.156) in cancer; 0.485 (SD 0.237) in
inflammation and 0.152 (SD 0.113) in controls.
Incorporation of the SUV,,  value, obtained by
PET-CT, as an additional variable in the PLS-LDA model
results in only modest improvements, a MCE of 10% and
a sensitivity and specificity of 89% and 91%, respectively.
To examine the potential role of the relative glu-
tamate concentration as a single diagnostic marker to
differentiate between lung cancer and lung inflamma-
tion, we constructed a receiver operating characteris-
tic (ROC) curve. As demonstrated in Fig. 4, multiple
cut points are possible to classify the patient within
the lung inflammation or lung cancer group. Taken
that the test is considered positive for cancer in case
of low glutamate concentrations, the optimal cut-off
point (highest sensitivity and 1-specificity) for cancer
diagnosis corresponds to a relative glutamate level of
<0.31 (AUC of 0.88). The combination of the highest

sensitivity and 1-specificity was obtained at the
cut-off point of a relative glutamate concentration of
0.31. This cut-off value corresponds to a sensitivity of
85%, a specificity of 81%, and an AUC of 0.88 (p
value <0.0001). The PPV and NPV are 92 and 69%,
respectively. Assuming that PET-positive lesions have an
SUVax 2 2.5, a low relative glutamate concentration results
in the diagnosis of lung cancer with a sensitivity of 100%
and with a very high PPV of 94%. In PET-negative patients,
a high relative glutamate concentration excludes lung can-
cer in all patients (NPV 100%). In cases of contradictory re-
sults i.e. SUV . = 2.5 and relative glutamate level > 0.31 or
SUV ax < 2.5 and relative glutamate level < 0.31, 19% of the
cancer diagnoses are missed. In order to investigate the per-
formance of the classifier across cancer stages and whether
specific cancer stages have a tendency to be misclassified,
an additional analyses was conducted in which the MCE
per cancer stage was calculated. The classification was done
using the leave-one-out-cross-validation (LOOCV) method
of which an elaborate explanation can be found in the Add-
itional file 2 of the paper. The table in the Additional file 2
shows the results obtained for the overall MCE, sensitivity
and specificity. As shown in the boxplots of Fig. 5 and
Table 2, the MCE per cancer stage indicates that the per-
formance of the classifier is similar across stages. Relative
glutamate levels do not significantly differ between lung can-
cer stages (p value =0.3): stage I 0.161 (SD 0.159), stage 1I
0.115 (SD 0.112), stage III 0.177 (SD 0.165) and stage IV
0.155 (SD 0.156).
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Fig. 3 MCE as a function of top K feature selection for the full data set (top) and after withdrawal of IR89 from the data set (bottom) reveals a
strong increase in MCE between patients with lung inflammation and lung cancer upon removal of IR89. IR = integration region,
MCE = misclassification error

"H-NMR signature of lung inflammation versus control
Also here, univariate analysis indicates glutamate as the
most significant variable to differentiate between patients
with lung inflammation and controls. Relative glutamate
concentrations are significantly higher in patients with in-
flammation than in controls (p value <0.0001): 0.485 (SD
0.237) versus 0.152 (SD 0.113).

In addition, glutamate is selected in the top 16 of all
cross-validation runs by the LASSO feature selection
method. The PLS-LDA classification models result in an
average MCE of 7%, a sensitivity of 92% and a specificity of

94%. Classification after removing IR89 from the top 16 se-
lection list resulted in much weaker PLS-LDA models
showing an increase of the average MCE from 7% to 29%
and a decrease in sensitivity and specificity from 92% to
75% and 94% to 75%, respectively.

"H-NMR signature of lung cancer versus control

Here, glutamate clearly becomes less important as it was
selected in only 58% of the 1000 cross-validation runs by
the LASSO feature selection method. The PLS-LDA
model results in a MCE of 25%, a sensitivity of 68% and a
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Fig. 4 ROC curve for glutamate. A low glutamate concentration is
considered as diagnostic for cancer. The cut-off point with the
highest sensitivity and lowest 100-specificity is 0, 31. p value < 0,001,
area under the curve (AUC) 0,875

specificity of 82%. A substantial number of constructed
classification models (42%) did not include glutamate, in-
dicating that it is not very important in the differentiation
between lung cancer patients and controls. The relative
concentration of glutamate did not significantly differ be-
tween lung cancer patients and controls (p value = 1): 0.159
(SD 0.156) versus 0.152 (SD 0.113).
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Discussion

In the United States, regular low-dose CT screening has
been recommended for smokers and ex-smokers at high
risk of developing lung cancer [5]. However, the main chal-
lenge for lung cancer screening by CT remains the high
prevalence of pulmonary nodules and/or lymph nodes, and
a relatively low incidence of lung cancer in the screened
population [4, 33, 34]. This results in a low PPV after exclu-
sion of lung cancer by additional imaging and potential
harmful procedures, such as tissue biopsies. The aim of this
study is to search for metabolites that discriminate between
lung cancer patients and patients with lung inflammation
by means of the plasma metabolic fingerprint. The meta-
bolic phenotype or fingerprint consists of a large number of
variables, each of them representing a single or several me-
tabolite concentrations. To the best of our knowledge, this
study is the first in the field of metabolomics that investi-
gates the metabolic differences in blood plasma of patients
with lung inflammation and lung cancer.

This study indicates that the metabolic phenotype of
blood plasma, and particularly the region representing glu-
tamate, allows to discriminate between patients with lung
inflammation and with lung cancer, as well as between pa-
tients with lung inflammation and controls. These results
strongly suggest the role of glutamate as a selective inflam-
matory marker in lung diseases. Ideally, after detection of a
suspicious lesion on chest-CT, differences in the plasma
metabolic profile in combination with PET findings may
add valuable information about the underlying disease, i.e.
cancer versus inflammation. This approach may reduce the
need of invasive diagnostic procedures when the lesion has
inflammatory characteristics.
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Fig. 5 Boxplots of MCE for different cancer stages reveal that stage does not influence classification
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Table 2 MCE (%) results of the leave-one-out-cross-validation (LOOCV) for different top K signature sizes per cancer stage

Top K Overall stage (%) Stage | (%) Stage Il (%) Stage Il (%) Stage IV (%)
12 " 1 10 1 9

16 10 10 10 10 10

20 10 Il 10 10 9

LOOCV leave-one-out cross validation, MCE misclassification error

Analytical approaches, such as "H-NMR spectroscopy,
generate a large number of variables per sample, resulting
in models with a risk of overfitting. A careful selection of
the appropriate statistical method is necessary as each of
the techniques has advantages and disadvantages. The
choice of method is dependent on the type of data: miss-
ing values, influence of outliers, predictive power, etc. [30].
In the field of metabolomics, there is an increasing interest
in PLS-LDA since it reduces the dimensionality of the
spectroscopic data and can handle the noisy and collinear
data from the experiment. Moreover, it is available in most
of the statistical software packages.

Glutamate may have a key role in the differentiation be-
tween lung inflammation and lung cancer. Univariate t-test
analysis with correction for multiple testing, shows that the
glutamate concentration, represented by IR89, is the most
significant variable with the smallest p-value and a signal
intensity which is significantly higher for lung inflammation
as compared to cancer (Fig. 2 and Additional file 3: Figure
S2). The differentiating power of this variable is stressed by
multivariate PLS-LDA statistics showing an increase of the
MCE with 26% (from 12% to 38%) after removing it from
the dataset.

Addition of the SUV,,,, parameter, obtained by PET-CT,
to the dataset has only a modest influence on the classifica-
tion (e.g. a decrease of the MCE from 12% to 10%), indicat-
ing that the SUV,. has no significant power to
differentiate between lung inflammation and lung cancer.
This is supported by the limited specificity of PET-CT in
excluding malignancy on the basis of the SUV,,,,, value and
the consensus that a metabolically active lesion requires
histological assessment [7].

MCE, sensitivities and specificities have the tendency to
stabilize when the metabolic signature contains 16 vari-
ables. This means that despite the importance of glutamate,
other IRs may have additional value in the classification
process. Glutamate, however, was selected in all the LASSO
models and was the most significant variable in the univari-
ate analyses. Therefore, the diagnostic potential of glutam-
ate as a single marker was further evaluated by a ROC
curve.

To diagnose lung cancer, and in comparison with
PET-CT itself, a relative glutamate level <0.31 has a lower
sensitivity (85% versus 96%), a significant higher specificity
(81% versus 23%), a higher PPV (92% versus 76%) and a
comparable NPV (69% versus 71%). Due to this lower

sensitivity (i.e. more false negative results) and the resulting
NPV, glutamate as a single marker is insufficient to exclude
lung cancer. To overcome these limitations, we propose to
measure plasma glutamate in complement to PET-CT. In
patients with both PET-positive lesions and low relative glu-
tamate levels (suggestive for cancer), this procedure leads to
a sensitivity and PPV to diagnose lung cancer of 100% (no
false negatives) and 96% (higher true positive results than
for PET/CT alone), respectively. In this patient group, a tis-
sue biopsy or resection is indispensable to obtain the hist-
ology and to guide further therapy. A negative PET-CT and
a high relative glutamate concentration (suggestive for in-
flammation) excludes lung cancer with a NPV of 100%.
Here, further follow-up with CT but without invasive pro-
cedures seems to be justified. Caution is needed in patients
with conflictive results, i.e. PET-positive patients with a
high glutamate concentration or PET-negative patients with
a low relative glutamate concentration. In these patients a
tissue biopsy or more intensive follow-up is needed to ex-
clude or confirm the presence of lung cancer since 19% of
lung cancers remain undetected in this group.

As undetermined imaging results are less frequent in
more advanced disease stages than in early stages, we com-
pared the mean relative glutamate concentration in differ-
ent stages by the leave-one-out-cross-validation (LOOCV)
method. No significant differences were found between the
glutamate levels of early (I and II), locally advanced (III)
and advanced stages (IV), as demonstrated in Fig. 5 and
Additional file 2.

To confirm the potential value of glutamate as a marker
for lung inflammation, a PLS-LDA analysis was performed
to discriminate between patients with lung inflammation
and controls. The resulting model has a very small MCE of
7% and a high sensitivity and specificity. Relative glutamate
concentrations were significantly higher in patients with
lung inflammation compared to controls, supporting the
importance of glutamate as an inflammatory biomarker.
Building a ROC curve to determine an optimal cut-off in a
diagnostic test for lung inflammation seems less relevant as
common markers as C-reactive protein, sedimentation rate
and leukocytosis are robust biomarkers.

Unfortunately, due to the retrospective nature of this
study, these parameters were not available at the moment
of the 'H-NMR analysis, preventing to look for possible
correlations between the glutamate concentration and these
markers.
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Glutamate is a non-essential amino acid that accounts
for 15% of the total amino acids in dietary proteins.
Since the blood samples in this study were taken after
an overnight fast and glutamate concentrations are nor-
malized within 105 min after ingestion, the influence of
glutamate intake should be negligible [35]. Dysregulation
of the glutamine-glutamate metabolism is reported for
cancer cells [36]. Cancer cells use glutamine as a source
of carbon for further anabolic pathways (oxidation) and
glutamine is hereto transported into the cells by the
alanine-serine-cysteine-transporter-2. As a nitrogen donor
for the synthesis of DNA and RNA building blocks, glu-
tamine is converted into glutamate [37, 38]. However, glu-
tamine can also be exported out of the cell by antiporters
in exchange for other non-essential amino acids through
the L-type amino-acid transporter [39]. Glutamine-derived
glutamate also fulfills the role of a primary nitrogen donor
for the synthesis of non-essential amino acids and is a pre-
cursor of the major cellular antioxidant glutathione (GSH)
[40, 41]. Increased GSH synthesis has been demonstrated
in lung cancer tissue by Blair et al. [42]. Higher levels of
GSH have been related to apoptosis resistance [43]. Glu-
tamate that is not incorporated into GSH or involved in the
synthesis of amino acids is converted to a-ketoglutarate
(a-KG) through oxidative deamination. By this reaction, the
glutamine-derived a-KG is utilized to replenish synthetic
intermediates of the Krebs cycle, a phenomenon known as
anaplerosis. Instead of the complete oxidation of glutamine
to ATD, the mitochondria of cancer cells shunt glutamine
into citrate for the production of NADPH and lipid synthe-
sis, and into malate which can be converted into pyruvate
and NADPH [36]. The need of glutamate in the syn-
thesis of GSH and macromolecules such as lipids
and polynucleotides, may explain the lower levels of
glutamate in the plasma of cancer patients compared to
patients with lung inflammation. During inflammation the
increase of vascular permeability facilitates the uptake of
glutamate in the inflamed tissues. As part of the immune
response generated by inflammation, cytotoxic T-cells are
able to induce apoptosis in the inflamed tissue, thereby re-
leasing intracellular glutamate. This process may explain
the higher glutamate plasma concentration in patients
with lung inflammation.

Regarding the role of glutamate in discriminating
lung cancer patients from controls, the relative glu-
tamate concentrations are not significantly different.
As a marker of lung inflammation, glutamate is not
able to distinguish between cancer patients and con-
trols. Recently, our research group has demonstrated
that the metabolic phenotype of blood plasma en-
ables to distinguish lung cancer patients from con-
trols [16]. The fact that glutamate did not appear in
the list of discriminating variables confirms our re-
sults and interpretation.

Page 10 of 12

The generalizability of the results is subject to certain
limitations. First, due to the retrospective nature of the
study, other markers for inflammation such as C-reactive
protein, sedimentation rate and leukocytosis were not
available at the time of inclusion. Additionally, uncon-
trolled factors such as co-morbidities and their treatments
might be possible confounders. It goes without saying that
the role of glutamate as a potential marker of lung inflam-
mation needs further evaluation in a prospective study
with external validation and attention for possible con-
founders. Also the potential role of glutamate as a single
biomarker for lung inflammation in a targeted approach
needs to be further explored by another analytical
technique such as HPLC-MS. And finally, the correl-
ation with other markers for inflammation needs
further investigation.

Conclusion

The aim of this study is to investigate whether the
'"H-NMR-derived metabolic phenotype of blood
plasma allows to discriminate between patients with
lung inflammation and lung cancer. To the best of
our knowledge, the presented study is the first to
investigate differences in the metabolic composition
of blood plasma between patients with lung inflam-
mation and lung cancer. The glutamate concentra-
tion is found to be the most important metabolite in
the discrimination. Using a relative glutamate level <
0.31 as a single criterion results in a lower sensitivity
than PET-CT itself but also in a higher specificity of
81%. Using the combination of two criteria, ie. a
SUVax 2 2.5 and a relative glutamate level <0.31 is
likely to correspond with the diagnosis of lung can-
cer and immediate referral to a respiratory physician
is mandatory. In contrast, a SUV ., < 2.5 and a relative
glutamate level > 0.31 is rather suggestive for lung inflam-
mation and a wait-and-see attitude seems justified. Cau-
tion is needed for patients with conflicting results between
the SUV ., value and the relative glutamate concentra-
tion. In these patients a tissue biopsy or more intensive
follow-up is needed to exclude or confirm the presence of
lung cancer since 19% of the lung cancers remain un-
detected in this group. Although lung cancer screening
studies are compromised by a low PPV, a subsequent
combination of PET-positive lesions and low glutamate
concentration has a PPV of 94%, implicating that less pa-
tients with a positive PET-CT may be exposed to unneces-
sary invasive diagnostic procedures. However, before
possible clinical implementation, a larger prospective
study with external validation is obligatory and the
potential of glutamate as a single biomarker for lung
inflammation needs to be confirmed by another ana-
lytical technique such as HPLC-MS.
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Additional files

Additional file 1: Figure S1. Volcano plot presenting an overview of
the most meaningful differences between the metabolic fingerprints of
lung cancer and lung inflammation. The plot displays fold change (X-axis)
versus the absolute value of the log p-value (Y-axis). The blue dots
represent variables with significant p-values. The green dots represent
variables with a high fold change, but non-significant p-value. The red
dots represent variables with a negligible fold change and non-significant
p-value. IR = integration region. (PDF 525 kb)

Additional file 2: Elaborate explanation of the Leave-One-Out-Cross-
Validation (COOCV) method and evaluation of the classifier across
cancer stages. (DOCX 22 kb)

Additional file 3: Figure S2. Focus on the 'H-NMR regions IR89, IR90
and IR91. The B-CH, protons of glutamate are diastereotopic since they
are located on a carbon atom next to an asymmetric carbon atom. This
results in a complex multiplet of several peaks situated between 2.03 and
222 ppm, and appearing in the following three integration regions:
IR89 = glutamate and methionine; IR90 = glutamate, glutamine, proline
and methionine; and IR91 = CH,-C=0 or CH,-CH=CH- of fatty acids,
glutamate, isoleucine, methionine and proline. A: '"H-NMR spectrum
of a lung cancer patient. B: '"H-NMR spectrum of a patient with lung
inflammation. (PDF 512 kb)

Additional file 4: Table S1. Performance (mean) of the PLS-LDA
classification for different top K signature sizes, full data. (DOCX 14 kb)

Additional file 5: Figure S3. Spiking experiments glutamate and
methionine. These experiments demonstrate that the proton signal of
IR89 is assigned to the most downfield part (left side) of the multiplet of
the B-CH, protons of glutamate. However, this region might also contain
signals of the B-CH, protons of methionine (right side). A: NMR spectrum
of the plasma of a healthy person after spiking with Glu (left) and Met
(right). B: NMR spectrum of a healthy person. (PDF 540 kb)
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