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Abstract

Background: The Ki67 Index has been extensively studied as a prognostic biomarker in breast cancer. However, its
clinical adoption is largely hampered by the lack of a standardized method to assess Ki67 that limits inter-laboratory
reproducibility. It is important to standardize the computation of the Ki67 Index before it can be effectively used in
clincial practice.

Method: In this study, we develop a systematic approach towards standardization of the Ki67 Index. We first create
the ground truth consisting of tumor positive and tumor negative nuclei by registering adjacent breast tissue
sections stained with Ki67 and H&E. The registration is followed by segmentation of positive and negative nuclei
within tumor regions from Ki67 images. The true Ki67 Index is then approximated with a linear model of the area
of positive to the total area of tumor nuclei.

Results: When tested on 75 images of Ki67 stained breast cancer biopsies, the proposed method resulted in an
average root mean square error of 3.34. In comparison, an expert pathologist resulted in an average root mean
square error of 9.98 and an existing automated approach produced an average root mean square error of 5.64.

Conclusions: We show that it is possible to approximate the true Ki67 Index accurately without detecting
individual nuclei and also statically demonstrate the weaknesses of commonly adopted approaches that use both
tumor and non-tumor regions together while compensating for the latter with higher order approximations.
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Background
Cell proliferation is the increase in the number of tumor
cells due to an imbalance between cell division and cell
death or cell differentiation. Cell proliferation is often
quantified through Ki67; a nuclear protein that is
expressed exclusively during the active cell cycle phases,
but not in resting cells in G0 [1–3]. Ki67 is widely used
in pathology to assess cell proliferation within multiple
different neoplasms [1, 4–7]. In breast cancer, Ki67 has
shown promise as an independent prognostic marker
and as a predictive marker of responsiveness or resist-
ance to chemotherapy or endocrine therapy [8]. The
prognostic utility has been also explored in numerous
tumor types, most notably in the brain, neuroendocrine,

and lymphoid neoplasms, where the Ki-67 proliferation
is frequently employed in tumor grading [3].
Controversies exist regarding the prognostic and pre-

dictive role of Ki67 mainly due to lack of standardized
methods to quantify Ki67 expression [9] and preanalyti-
cal methods used during the tissues fixation and slide
preparation period. According to the Breast Cancer
Working Group, cell proliferation needs to be reported
as a Ki67 Index that is defined as the percentage of posi-
tively stained cells within the total number of malignant
cells scored [10]. The recommendations include count-
ing at least 500 and preferably 1000 cells in three ran-
domly selected high-power fields (40×). However, some
pathologists consider this method impractical, if not
impossible, particularly for small specimens [11]. As an
alternative, pathologists often rely on estimating (i.e. eye-
balling without formally counting) to approximate the
Ki67 Index. Although this technique is less burdensome
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than formal counting, it often results in significant inter-
and intra-reader variability [3].
A working group was assembled from European and

North American cancer treatment institutions to devise
a strategy to increase the Ki67 Index concordance [12].
In this group, a total of eight laboratories independently
computed Ki67 Index for 100 breast cancer cases. Each
laboratory director had a track record of publishing one
or more peer reviewed articles on the clinical utility of
the Ki67 Index. Six out of the eight laboratories used
their local protocols to stain one section from a 50 case
tumor microarray block using their own standard Ki67
indexing method. The arithmetic average of the Ki67
Index ranged from 15.6% to 31.1, which indicated sub-
stantial differences in quantifying this Index across la-
boratories. Therefore, Ki67 Index calculation achieved
only moderate reproducibility across the laboratories
among the world’s leading experts. In a follow-up study,
16 laboratories from eight countries calibrated to a par-
ticular Ki67 Indexing method and then scored 50 centrally
MIB-1 stained tissue microarray cases [13]. The laborator-
ies scored 18 ‘training’ and ‘test’ MIB-1 stained images
through a web-based interface for calibration purposes.
The laboratory performance showed non-significant but
promising trends of improvement through the calibration
exercise, underlying the need to standardize the Ki67
Index before its widespread clinical utilization.
In the past 10 years, several automated image analysis

techniques have emerged for quantification of the Ki67
Index. In [14, 15], ImmunoRatio, a free cross-platform
application for computing Ki67 Index was introduced.
ImmunoRatio uses a series of image analysis operations
(background correction, color deconvolution, threshold-
ing, segmentation and identification of individual nuclei,
and computation of Ki67 positive and negative areas) to
approximate Ki67 Index estimation. This estimate is re-
fined by applying a third degree polynomial to map it to
the Ki67 Index. However, our analysis shows that fitting
a third-degree polynomial does not compensate for the
inclusion of non-tumor nuclei in calculations.
Other commercial solutions exist. For example, in

[16], Ki67 Index was obtained by counting positive and
negative tumor nuclei using a stereology grid. Nuclei de-
tection was accomplished through Aperio Genie/Nuclear
algorithms (Leica Biosystems, Buffalo Grove, IL). How-
ever, sampling of heterogeneous breast tissue samples
using a stereological method is highly prone to under-
and over-estimation of Ki67 Index. In [17], Ki67 Index
was calculated through a commercially available soft-
ware: Tissuemorph Digital Pathology (Tissuemorph DP:
Visiopharm, Hoersholm, Denmark). The authors sug-
gested that a pathologist should verify the results and
make the final decision when computing Ki67 Index
using Tissuemorph Digital Pathology. Both Genie and

TissueMorph solutions rely on individual cell detection,
a process that has a high computational cost considering
the size of slides. As a result, Ki67 Index computation
takes far longer than how long a pathologist would take
to estimate the Ki67 Index.
In this study, we corrected and validated a strategy

that does not need the detection of individual nuclei to
estimate Ki67 Index accurately. We also statistically
demonstrate that Breast Cancer Working Group guide-
lines can be accurately approximated by computing the
area of positive tumor nuclei. Unlike ImmunoRatio
based approaches [14, 15] of higher-order polynomials,
we determine a linear relationship between the original
Ki67 ratio (ground truth) and its approximation by our
method. We further show that the error between the ap-
proximated Ki67 indices and the ground truth remains
relatively unchanged with increasing Ki67 ratios when
tested over a reasonable size breast cancer dataset. As a
result, the accurate Ki67 Index can be calculated without
detecting individual nuclei from Ki67 stained breast can-
cer images, a process that is computationally expensive
and often imprecise.

Methods
We acquired a dataset of 50 adjacently-cut pairs of Ki67
and H&E whole slide images from 50 different breast
cancer patients for this study. Ki67 immunohistochemis-
try was performed using MIB-1 mouse monoclonal anti-
body from Dako (Santa Clara, CA) on the Leica Bond III
system, 1:400 dilution using high pH retrieval (ER2) for
20 min and the Leica Polymer Refine detection kit. The
samples are not publically available and can be made
available on request. This study is IRB approved by the
Ohio State University, Cancer Institutional Review
Board, with Waiver of Consent Process, and Full of Waiver
of HIPAA Research Authorization. Furthermore, all sam-
ples were fully anonymized by the rules set by the Ohio
State University, Cancer Institutional Review Board. All
images were acquired at 40× magnification using ScanSco-
peTM (Aperio, Vista CA) scanner. Following a common
practice in pathology, tumor regions were identified on
H&E-stained slides and the tumor boundaries were
mapped to the corresponding tumor region in the adjacent
Ki67-stained slides. First, a board-certified pathologist
manually drew tumor boundaries on H&E images which
were later transferred over to adjacent Ki67 images. Tumor
regions, identified in this manner may still contain some
non-tumor regions (stroma and stromal cells, lymphocytes),
and there may be non-linear variations due to harsh immu-
nohistochemical staining process. Therefore, a second re-
view was conducted by a pathologist to manually exclude
such non-tumor regions from Ki67 images. Figure 1 (b)
shows an example image where non-tumor regions were
manually removed by an expert pathologist.
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The role and the detection of Ki67 could vary accord-
ing to the breast cancer histology [18]. For this reason,
we used three histologic types of breast cancers. We
used a total of 50 cases in our experiments. Four of
these cases belong to invasive lobular carcinomas, one
was invasive tubular carcinoma and 45 were invasive
ductal carcinomas. Out of these, 10 were classified as
grade I, 22 were identified as grade II, while 18 belonged
to grade 3. We selected 75 regions of interest (ROI) im-
ages within tumor regions from these 50 Ki67 slides.
Each ROI has a size of 1200 × 2300 pixels, approximat-
ing a high-power field. The ROIs were selected to repre-
sent different concentrations of Ki67 positive nuclei. For
the ground truth generation, all nuclei were manually
annotated for Ki67 positive and negative. Figure 1 shows
an example image where Ki67 positive nuclei are marked
with red dots while negative tumor nuclei are annotated
in green within tumor regions.
Ki-67 positive nuclei manifest themselves as brown

hue in images of breast tissues. The large variations in
specimen preparation, staining, imaging as well as true
biological heterogeneity of breast tissue often results in
variable brown intensities in Ki-67 stained images [3].
These variations affect the accuracy of Ki-67 nuclei seg-
mentation algorithms.
We performed nuclei segmentation on Ki-67 stained

breast tissue images using an enhanced version of the
method we developed in our previous study [3]. Briefly,
this method exploits the intrinsic properties of CIE
L∗a∗b∗ color space to translate this complex problem
into an automatic entropy based thresholding problem.
The method in [3] consists of three main components:
1) clustering of RGB color pixels into three clusters
based on cluster centroids, 2) color space transformation
in the CIE L∗a∗b∗ color space, and 3) entropy threshold-
ing to segment the Ki-67 positive nuclei. The method
was designed with an assumption that each image has

some Ki-67 positive nuclei. However, there exist situa-
tions where Ki-67 positive nuclei are completely absent
from an image when the method erroneously starts
treating negative nuclei as Ki-67 positive nuclei. To re-
duce the number of false positives, we modified our pre-
vious method to produce correct results for any amount
of Ki67 staining. The enhanced version consists of two
main steps: 1) an initial segmentation to check if the
image contains any Ki67 positive nuclei, and 2) proceed
to the methods in [3] if the initial segmentation results
in any number of Ki67 pixels. The details of this new
method can be found in (M. Khalid Khan Niazi, Y Lin,
F. Liu, A. Ashok, M. W. Marcellin, G. Tozbikian, M. N.
Gurcan, A. Bilgin: Pathological Image Compression for
Big Data Image Analysis: Application to Hotspot Detec-
tion in Breast Cancer, submitted). For the sake of com-
pleteness, we provide a brief detail about the two main
steps in (M. Khalid Khan Niazi, Y Lin, F. Liu, A. Ashok,
M. W. Marcellin, G. Tozbikian, M. N. Gurcan, A. Bilgin:
Pathological Image Compression for Big Data Image
Analysis: Application to Hotspot Detection in Breast
Cancer, submitted). During the first step, the method in
(M. Khalid Khan Niazi, Y Lin, F. Liu, A. Ashok, M. W.
Marcellin, G. Tozbikian, M. N. Gurcan, A. Bilgin: Patho-
logical Image Compression for Big Data Image Analysis:
Application to Hotspot Detection in Breast Cancer, sub-
mitted) uses two precomputed matrices to assess if an
image contains any Ki67 positive nuclei. One of these
matrices corresponds to the cluster centroids while the
other represents the color transformation matrix. The
detail of both these matrices can be found in [3]. The
method in [3] is susceptible to false segmentation if an
image does not contain any Ki67 positive nuclei. By
using precomputed matrices, we are ensuring that we
are selecting an image for parameter estimation which
contains some Ki67 positive nuclei. These precomputed
matrices were computed from an independent dataset of

a b
Fig. 1 An example image with ground truth overlaid. a The tumor positive nuclei are marked with red dots while negatives are marked in green.
The non-tumor nuclei were left unmarked. b The non-tumor regions are shown in black. These regions were not considered for further analysis.
The inclusion of such regions will incorrectly decrease the Ki67 Index because negative nuclei within these regions are abundant
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breast cancer consisting of 25 whole slide images. The
second step of (M. Khalid Khan Niazi, Y Lin, F. Liu, A.
Ashok, M. W. Marcellin, G. Tozbikian, M. N. Gurcan,
A. Bilgin: Pathological Image Compression for Big Data
Image Analysis: Application to Hotspot Detection in
Breast Cancer, submitted) is to take the image which
contains at least a few Ki67 positive nuclei and then
process it using [3] to compute the actual cluster cen-
troids matrix and color transformation matrix. These
new matrices were then used for segmentation of the
whole slide images. Figure 2 shows the segmentation re-
sults along with the ground truth prepared by an expert
pathologist.
Agreement between the proposed area based approxi-

mation method and the ground truth was measured
using Lin’s concordance correlation coeffficient (CCC)
[19] and visualized using Bland-Altman plots [20]. Lin-
ear regression was used to estimate the relationship be-
tween the proposed method and the ground truth.
Statistical analyses were performed using STATA IC 14.2
(StataCorp LLC, College Station, TX).

Results
True Ki67 vs. the proposed method
The true Ki67 Index of 75 ROI was computed from
the manual annotations of Ki67 positive and nega-
tive nuclei. Figure 3 plots the true Ki67 Index ver-
sus its approximation through area of positive and
negative tumor nuclei. The true Ki67 Index is or-
dered from the smallest to the highest values, to
show the wide range of values between 0 and 80%.
Because most of the data is above the 45-degree

line, the area based method needs to be adjusted to
match the true Ki67 Index.
Figure 4 shows the linear regression model T ˇ;which

maps the Ki67 Index area based approximation (A) to
true Ki67 Index, T:

T � T ̌ Að ÞÞ ¼ c1 � Aþ c2
� ð1Þ

where the parameter estimates and 95% confidence intervals
are as follows: c1 = 1.00 (0.96,1.04), and c2 = − 2.48 (−3.93,
−1.02). The R-square value for the model is 97.46% which
shows that the data fits almost perfectly to the model, i.e. to
the regression line. The adjusted R-square value for our
model is 97.42% with the root mean square error of 3.34.

True Ki67 index vs. expert pathologist
Figure 5 shows the expert pathologist’s approximation of
Ki67 (represented by P) Index for our dataset. It also
shows a linear model to map P to T. The R-square value
for the model is 77.30% (the adjusted R-square value is
77.00%, root mean square error of 11.21), which is con-
siderably lower than the area based approximation of T.

Ki67 index from the whole slide vs Ki67 index within tumor
We also investigated the effect of carrying out the calcula-
tions within tumor regions versus the whole slide. As
Table 1 shows a linear regression model only explains 89%
of the variability when calculations were performed using
the whole slide. According to [14, 15], a third-degree poly-
nomial provides a good approximation to the true Ki67
Index when applied to the whole image (see Fig. 6). Our

Fig. 2 Segmentation results. a ROI image containing both tumor and non-tumor nuclei. b ROI image after the removal of non-tumor nuclei. c
Manual annotation of tumor positive and tumor negative nuclei in red and green, respectively. d Automatic segmentation of tumor-positive and
tumor negative nuclei. The negative tumor nuclei are outlined in red while positive tumor nuclei are outlined in green
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analysis suggests that a linear approximation of Ki67
Index within tumor region results in a relatively high
adjusted R-square value of 97.42%. On the other hand, the
cubic model, when applied to the whole image to approxi-
mate Ki67 Index, results in a lower adjusted R-square
value of 92.65%.

Statistical analysis
Figure 7 contains the results of Bland-Altman analysis
comparing the different approximation methods to the

ground truth. Prior to applying the linear model (1), the
within tumor approximations exhibited small positive
bias (mean = 2.45) and there was no systematic trend in
bias with value of the Ki67 index. The limits of agree-
ment of the within tumor approximations were also rela-
tively narrow: (− 4.05, 8.95). After applying model (1),
the bias in the within tumor approximations was
removed and the limits of agreement remained narrow
(− 6.50, 6.50). In contrast, the expert pathologist and
whole image approximations were considerably biased
(mean = − 4.88 and − 10.83, respectively). Applying a
linear and cubic model to these data removed the
biases but still resulted in limits of agreement that
were much wider than the within tumor approxima-
tions: (− 19.44, 19.44) for the pathologist approxima-
tions after applying a linear model and (− 10.83,
10.83) for the whole slide approximations after apply-
ing a cubic model.
Table 2 contains CCC’s quantifying agreement between

each approximation method and the ground truth. The
raw Ki67 index values of the area based approximation
method exhibited near perfect agreement with the ground
truth (CCC = 0.980) and agreement improved slightly after
applying Model (1) to account for the small positive bias
in the estimates (CCC = 0.987). The approximations made
by the expert pathologist exhibited worse agreement with
the ground truth (CCC = 0.852) even after correcting for
bias using linear regression (CCC = 0.872). The agreement
between the whole image approximation method and the
ground truth (CCC = 0.798) improved substantially after
applying the cubic model (CCC = 0.963), though the level
of agreement was slightly worse than what we observed
for the within tumor approximations after applying the
linear model.

Fig. 4 Linear model to map the approximation of Ki67 Index to true
Ki67 Index. The model resulted in a root mean square error of 3.339

Fig. 5 An expert pathologist’s approximation of Ki67 Index vs true
Ki67 Index

Fig. 3 Comparative analysis of True Ki67 Index verses Ki67 Index
approximated through area of positive and negative nuclei
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Discussion
The Ki-67 Index has strong potential to be a significant
factor for treatment decision making in breast cancer
patients, but it is also one of the hardest to compute
[21]. A literature review reveals that many cancer treat-
ment centers across the United States compute Ki-67
Index in a large proportion of tumors from patients with
primary breast cancer [22]. This suggests that Ki67
Index is widely used in routine clinical practice although
not recommended in national guidelines. Our long-term
objective is to standardize the computation of Ki67
Index and systematically review its clinical utility to
bring standardization of results among laboratories. The
focus of our study was to standardize the computation
of Ki67 Index.
In the past few decades, many efforts have been de-

voted to automating the nuclei detection algorithms in
digital pathology [23–31]. However, ever increasing
interest in the development of nuclei detection algo-
rithms indicate 1) the complexity of the problem and 2)
the inability of current nuclei detection algorithms to
provide fast and reproducible results [32]. Moreover, the
computational complexity associated with nuclei detec-
tion algorithms in histopathology often requires grid
computing [33–35] and computationally scalable algo-
rithms [36, 37] to achieve high-throughput image ana-
lysis on large size pathology images. Even with these

advanced computational methods, the nuclei detection
algorithms take far longer than a pathologist’s time to
estimate the Ki67 Index. On the other hand, the current
method, which only detects positively stained areas with-
out trying to identify individual nuclei, can be combined
with grid computing and computationally scalable algo-
rithms, resulting in real-time implementations.
Unlike former studies [14, 15], which established cubic

relationships between positively stained areas and the
true Ki67 index, our results suggest that there is a linear
relationship between the true Ki67 Index and the area
ratio of positive nuclei to total nuclei as long as the
computation is limited to tumor regions. The value of
coefficient c1 (i.e. c1 = 1) in Eq. 1 indicates that the area
based approximation and the true Ki67 Index only differ by
a constant c2 (c2 = − 2.48). However, when non-tumor nu-
clei are included in computing the Ki67 Index, the true
index is harder to predict with simple polynomial models
and the estimation error increases. A breast cancer image
usually contains subsets of non-tumor nuclei. Although the
nuclei sizes might be similar within a subset, they might be
completely different across subsets. Apart from the size,
these non-tumor nuclei might appear as positive or nega-
tive. The amount of non-tumor nuclei may result in an
over (or under) estimation of Ki67 Index when the number
of positive non-tumor nuclei is higher (or lower) than the
negative non-tumor nuclei. Therefore, non-tumor regions
need to be excluded from an image before computing the
Ki67 Index.
Instead of excluding non-tumor nuclei, the authors in

studies [14, 15] suggested using a third degree polyno-
mial to compensate for over- and under-estimation of
Ki67 Index. Our study demonstrates (e.g. Table 1) that
the amount of non-tumor nuclei, either positive or nega-
tive and their variation in sizes are not necessarily
governed by a third-degree polynomial. Instead, there is
a linear relationship (Eq. 1) to estimate Ki67 Index, with
a constant offset of c2. While we can assume that the
size distribution of the positive (and negative) tumor nu-
clei across different patients is nearly identical to each
other, the average sizes of positive nuclei seem to be
slightly larger (hence a small c2 value), than those of
negative tumor nuclei. Because there is no biological
reason for these two different cell groups to have differ-
ing average sizes, this small difference can also be ex-
plained by the segmentation algorithm. Although it is

Table 1 Statistical summary of different models. Here RMSE stands for root mean square error

Ki67 area based Approximation R-square Adjusted R-square RMSE

Within Tumor (Linear Model) 0.9746 0.9742 3.339

Whole Image (Linear Model) [14, 15] 0.8946 0.8932 6.799

Whole Image (Quadratic Model) [14, 15] 0.9263 0.9243 5.725

Whole Image (Cubic Model) [14, 15] 0.9295 0.9265 5.640

Fig. 6 Cubic model’s approximation of Ki67 Index vs true Ki67 Index
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possible to reduce this difference, hence make c2 close to
zero by adjusting the segmentation algorithm, for prac-
tical purposes, it will not result in any changes to the
Ki67 Index calculation.
The authors of the studies in [14, 15] reported that a

third degree polynomial is necessary to map their Ki67
Index with that of the ground truth. Unfortunately, their
results were not subjected to a comprehensive statistical
evaluation. Moreover, the estimation error after fitting
the third-degree polynomial is considerably larger than
the estimation error associated with the linear model ap-
plied to the area based approximations. While their
method is designed to identify individual tumor nuclei,
it approximates the pixel area instead of the number of
tumor nuclei to estimate Ki67 Index. Our results suggest
that, if the tumor nuclei were correctly identified in
[14, 15], it should result in a linear relationship between
approximated Ki67 Index and the true Ki67 Index.
The comparison of the proposed method with an ex-

pert pathologist shows the importance of using image
analysis over visual estimation when computing Ki67

Index. Pathologists exhibit considerable differences be-
tween visual estimation and true Ki67 Index, suggesting
the limitations of the human visual system and resulting
perceptual and cognitive challenges they face. Because
computers are not affected by these challenges, Ki67
Index computation could be an area where computers
can assist pathologists in making accurate decisions.
Throughout the analysis, we relied on an expert pa-

thologist’s annotations for identification of tumor re-
gions. However, a pathologist’s assessment is clearly not
without certain limitations. The lack of an automatic
method for tumor identification might be a limiting fac-
tor in our study.

Conclusions
This study statistically demonstrates that the Ki67 Index
can be approximated reliably by the area ratio of positive
tumor nuclei to total tumor nuclei. The linear relation-
ship between the true Ki67 Index and its area based
approximation, make it possible to estimate the Ki-67 Index
accurately only by calculating the area of stain-positive and
negative nuclei within tumor regions. This finding is
significant with practical implications because it elimi-
nates the need to detect or count nuclei before com-
puting the Ki67 Index. Our study also demonstrates
that the amount of non-tumor nuclei, either positive
or negative and their variation in sizes are not neces-
sarily governed by a third-degree polynomial.
In the future, we are planning to systematically review

the level of evidence for the Ki-67 Index as a prognostic
marker of response to chemo- and hormonotherapy in
patients within ER+ tumor to identify patients who are

Fig. 7 Bland-Altman Analysis Comparing Approximations of the Ki67 Index to Ground Truth. Dashed horizontal lines are the average bias
(approximation – ground truth) and the shaded regions are the 95% limits of agreement. Values on the x-axis are the average of the true Ki 67
Index and the approximation

Table 2 Concordance Correlation Coefficients (CCC) measuring
agreement with ground truth

Ki67 area based Approximation CCC 95% Confidence Interval

Expert Pathologist (Raw Values) 0.852 (0.780, 0.902)

Expert Pathologist (Linear Model) 0.872 (0.807, 0.916)

Within Tumor (Raw Values) 0.980 (0.969, 0.987)

Within Tumor (Linear Model) 0.987 (0.980, 0.992)

Whole Image (Raw Values) [14, 15] 0.798 (0.726, 0.853)

Whole Image (Cubic Model) [14, 15] 0.963 (0.943, 0.977)
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most likely to benefit from chemotherapy. From an
image analysis perspective, we are planning to automate
the tumor detection process, so that this analysis can be
carried out on a whole slide image without any human
intervention. ‘In the current study, we have suggested
that the Ki67 Index, which is the ratio of positive tumor
nuclei to total tumor nuclei, can be approximated
through the area ratio of positive to total tumor nuclei.
However, in the future we are planning on presenting a
method to approximate the number of tumor positive
and tumor negative nuclei from the area based Ki67
Index. It is well-known that different institutions pro-
duce different staining characteristics, which is one of
the reasons, Ki67 calculations cannot be reliably applied
across different institutions. As part of our future stud-
ies, we will validate our findings on a larger dataset col-
lected from different institutions (to account for slide
preparation differences) and validate its generalizability.
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