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Abstract

Background: High triglycerides and low levels of high density lipoprotein (HDL)-cholesterol are observed to
promote tumor growth. However, whether breast cancer heterogeneity may explain the contradictory influence of
triglycerides and cholesterol observed on breast cancer prognosis remains unclear.

Methods: A population-based survival study among 464 breast cancer cases identified within the Tromsø study was
conducted. Pre-diagnostic triglycerides, total-cholesterol and HDL-cholesterol were measured, and detailed clinical and
histopathological data were obtained. Using tissue microarray, all breast cancer cases were reclassified into the
following subtypes: Luminal A, Luminal B, HER2-enriched, and triple negative breast cancer (TNBC). Multivariable Cox
proportional hazards regression models were used to study the associations between pre-diagnostic lipids and breast
cancer recurrence, mortality, and survival.

Results: A total of 464 breast cancer patients, with mean age at diagnosis of 57.9 years, were followed for a mean
8.4 years. TNBC patients in the highest tertile of triglycerides (≥ 1.23 mmol/l) had 3 times higher overall mortality
compared to TNBC patients in the lowest tertile (≤ 0.82 mmol/l) (HR 2.99, 95% CI 1.17–7.63), and the 5-year overall
survival was 19% lower for TNBC patients in the highest vs. lowest tertile of triglycerides (65% vs. 84%). TNBC patients in
the highest tertile of the HDL-cholesterol/total-cholesterol ratio (≥0.35), compared to those in the lowest tertile (≤0.27),
had a 67% reduced overall mortality risk (HR 0.33, 95% CI 0.12–0.89). No associations were observed between lipids and
prognostic outcome among breast cancer patients overall, or among patients with luminal A and luminal B subtypes.
Among HER2-enriched patients, pre-diagnostic triglyceride level was inversely associated with overall mortality.

Conclusion: Our study suggests that pre-diagnostic triglycerides and the HDL-cholesterol/total-cholesterol ratio may
independently provide unique information regarding prognostic outcome among triple negative breast cancer
patients. However, a small sample size underlines the need for additional studies.
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Background
Studies investigating the influence of metabolic differences
on breast cancer prognosis often show contradictory re-
sults, and information on breast cancer heterogeneity/sub-
types is not included [1–4]. The identification of distinct
breast cancer molecular subtypes has warranted more tai-
lored treatment regimes, and a prolonged survival has
been observed for the majority of breast cancer patients,
but not for all [5]. Importantly, triple negative breast can-
cer (TNBC), defined by lack of estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth
factor receptor-2 (HER2) expression [6], remains associ-
ated with shorter disease-free interval and higher mortal-
ity rate [7]. Furthermore, prognostic diversity often exists
within each molecular subtype [8], and metabolic hetero-
geneity is likely to be present in all cancers, including
breast cancer [9]. Identifying biologic markers associated
with metabolic heterogeneity, breast cancer subtype and
prognosis is of importance in order to discover potential
targets for treatment and optimize breast cancer
outcomes.
Dyslipidemia has been independently linked with breast

cancer development [10], but studies are conflicting [11].
Moreover, dyslipidemia is strongly associated with obesity.
Recently, patients` body mass index (BMI) at diagnosis was
observed to be differently distributed across breast cancer
molecular subtypes, and obese women were more likely to
have TNBC [12], also supported by others [13, 14]. Of note,
obesity has been linked to increased risk of recurrence and
breast cancer specific mortality [15, 16]. However, a survival
study newly demonstrated an association between
pre-diagnostic obesity and worse outcome only among pa-
tients with Luminal A disease [17]. Moreover, previous
studies have shown inconsistent results on pre-diagnostic
obesity and TNBC prognosis [18, 19], suggesting there may
be other metabolic mechanisms driving the carcinogenesis
in more aggressive tumors. Triglycerides serve as an inde-
pendent source for fatty acid oxidation [20], an important
process promoting cell proliferation and tumor growth
[21], proposing a carcinogenic potential of triglycerides.
However, the relationship between pre-diagnostic triglycer-
ides and breast cancer development by molecular subtype
remains unclear [22]. Moreover, cholesterol has been sug-
gested to play a role in breast cancer progression [23]. Con-
versely, high density lipoprotein (HDL)-cholesterol
possesses anti-inflammatory properties [24], and has been
inversely associated with breast cancer risk [25], and sug-
gestively breast cancer survival [22]. We have previously
observed that low HDL-cholesterol may be associated with
higher estrogen levels and absolute mammographic density
[26–28]. In addition, different lipoprotein subfractions vary
by progesterone receptor expression [29], suggesting the in-
fluence of HDL-cholesterol on breast cancer prognosis may
differ by breast cancer phenotype [30].

Thus, the main aim of the present study was to inves-
tigate whether variations in pre-diagnostic lipid levels in
a population-based breast cancer cohort independently
affect breast cancer recurrence and mortality by molecu-
lar subtypes.

Material and method
Study design, settings and participants
The present study includes 464 women diagnosed with
primary invasive histological verified breast cancer in the
period 1980–2014, who participated in the Tromsø
Study during 1979–2008 (Tromsø surveys 2–6) [31].
The Tromsø Study is a population-based prospective
study aiming to explore risk factors for chronic diseases.
Age-eligible women, including total birth cohorts and
random samples of the Tromsø population were re-
cruited: A total of 19,947 women participated (77.0% of
invited women).

Assessment of weight, height and serum lipids
Height and weight were measured upon enrollment
in the Tromsø Study (study entry = pre-diagnostic),
and BMI (kg/m2) was calculated. All attendees had
non-fasting blood samples drawn at each study
entry. The samples were analyzed at the Department
of Laboratory Medicine, University Hospital North
Norway, Tromsø (ISO-standard accredited labora-
tory). Serum triglycerides, total-cholesterol, and
HDL-cholesterol were analyzed within 10 h by en-
zymatic, colorimetric methods and commercially
available kits (CHOD-PAP for cholesterol, and
GPO-PAP for triglycerides; Boehringer Mannheim).
Coefficient of variation (CV) 3.3%. [32]. However, in
the Tromsø survey 4 (1994–95), HDL-cholesterol
was measured after the precipitation of LDL with
heparin and manganese chloride (CV 4.2%) [31, 32].

Case identification and breast tumor characteristics
Participants were linked to the Cancer Registry of
Norway using the unique national 11-digit identification
number (Statistics Norway), and 656 women in the co-
hort were identified and diagnosed with primary invasive
breast cancer from 1979 through December 31st 2014.
To account for the possibility that undiagnosed cancer
could influence our results, we excluded those in whom
breast cancer developed during the first year after they
entered the cohort (ncases = 12). We also excluded those
being < 20 years of age at study entry (ncases = 3), and
those with missing information on tumor cell prolifera-
tion marker, Ki67 hotspot index (ncases = 123), ER, PR, or
HER2 status (ncases = 54). Hence, a total of 464 women
with histologically verified invasive primary breast can-
cer were included.
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All tumor samples were fixed in 4% buffered formalde-
hyde before processing and embedding in paraffin. In
order to obtain comparable results due to changes in
identifying tumor characteristics over time (1980–2012),
and to obtain complete information on tumor character-
istics, a majority (ncases = 375) of the tissue samples were
analyzed on tissue microarrays (TMA) (Centre for Can-
cer Biomarkers CCBIO, Section for Pathology, Univer-
sity of Bergen). Immunohistochemistry (IHC) and HER2
Silver in Situ Hybridization (SISH) were employed in
TMA, to obtain Ki67 and HER2 status, respectively.
HER2-SISH was performed on IHC 2+ cases, and con-
sidered positive if HER2/Chr17 ratio by SISH was > 2.0.
Tumors were stained for ER and PR, and considered
positive if ≥10% of tumor nuclei stained positive [33].
Breast tumors diagnosed after 2012 (ncases = 89) were an-
alyzed using immunohistochemistry for hormone recep-
tor status and Ki67, and immunohistochemistry and
fluorescence in situ hybridization for HER2.
We classified the breast tumors into molecular sub-

types (13th St Gallen International Breast Cancer Expert
Panel) [34] as follows: Luminal A - ER positive, PR posi-
tive, HER2 negative, and Ki-67 < 20%; Luminal B - ER
positive and/or PR positive, HER2 positive (or HER2
negative and Ki-67 ≥ 20% or PR negative);
HER2-enriched - ER negative, PR negative, and HER2
positive; and TNBC - ER negative, PR negative and
HER2 negative.

Outcomes: Mortality and recurrence
Person-time of follow-up was calculated from the date
of breast cancer diagnosis until date of recurrence,
death, time of emigration, or end of follow-up (Decem-
ber 31st, 2014), whichever event occurred first. We ob-
tained information on death and emigration through
linkage to the Norwegian Cause of Death Registry and
Statistics Norway. The mean interval between the
pre-diagnostic measurements and diagnosis was
18.6 years (standard deviation (SD) 9.23, range 1.01–
35.2 years).
We used the following outcomes: 1) overall mortality

and overall survival: death of any cause, and the time
interval from date of diagnosis to death of any cause, re-
spectively (all breast cancer stages included, stages 1–4);
2) breast cancer-free interval: the time interval from date
of diagnosis to breast cancer recurrence or breast cancer
mortality (stages 1–3 breast cancer at diagnosis).

Treatment data
Each patient’s medical chart was reviewed. Details of all
treatment regimens were obtained, including type of sur-
gery, chemotherapy, radiotherapy, and endocrine treat-
ment. Date and site of recurrence was collected, and

recurrence was defined by local, regional, and/or visceral
relapse.

Statistical methods
We used multivariable Cox proportional hazards regres-
sion models to study the association of pre-diagnostic
lipid levels on overall mortality and breast cancer-free
interval by molecular subtypes. In order to study the as-
sociation between lipids and outcomes (overall mortality
and breast cancer-free interval) among patients with
HER2 positive (+) breast cancer, we combined the pa-
tients with HER2+ expression from Luminal B subtype
and the patients from HER2-enriched subtype.
We categorized lipids into the following groups by ter-

tiles: triglycerides (≤0.82, 0.83–1.22, and ≥ 1.23 mmol/l),
total-cholesterol (≤5.14, 5.15–6.25, and ≥ 6.26 mmol/l),
and HDL-cholesterol/total-cholesterol ratio (≤0.27,
0.28–0.34, and ≥ 0.35). The triglyceride/HDL-cholesterol
ratio (tertile splits: ≤0.47, 0.48–0.75, and ≥ 0.76) was used
as a surrogate marker for insulin resistance [35].
Based on our previous results [36], and in order to

evaluate our present findings, a total of 57 breast cancer
cases were checked for agreement between molecular
subtyping based on immunohistochemistry and TMA.
We observed an agreement between these two methods
in 73% of the breast cancer cases (kappa value 0.63).
Based on suggested biological mechanisms influencing

serum lipid levels, breast cancer recurrence and overall
and breast cancer specific mortality, several variables were
included in the Cox proportional hazard model as poten-
tial confounders. Age (continuous), BMI (continuous),
and smoking habits (categorical) at blood sampling, age at
diagnosis (continuous) and disease stage (categorical) were
included as covariates in the final models. To account for
secular trends in treatment [http://www.nbcg.no], we ad-
justed for year of diagnosis, chemotherapy (yes/no) and
endocrine treatment (yes/no), but our observations were
not significantly influenced. In addition, in order to ac-
count for comorbid disease confounding, we adjusted for
alcohol habits, physical activity, blood glucose, blood pres-
sure, and time since last meal. Moreover, we excluded
women who died within the first and third year after being
diagnosed breast cancer to account for serious comorbid-
ity at diagnosis. However, none of these adjustments influ-
enced our results, and they were not included in the final
models. In our study including 464 breast cancer patients
with129 events we have 80% power to detect a hazard ra-
tio of 1.28 per standard deviation increase in a continuous
variable, and 80% power to detect a hazard ratio of 1.63
for an equally distributed binary variable. Consequently,
including 40 events, the respective hazard ratios are 1.56
and 2.43.
To test for interaction between lipids and breast cancer

molecular subtypes, two-way cross product terms were
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added to logistic regression and cox regression models. In
both logistic and cox regression models, we observed sta-
tistically significant interaction between triglycerides and
TNBC (p = 0.042 and p = 0.025, respectively), and between
the HDL-cholesterol/total-cholesterol ratio and TNBC
(p = 0.033 and p = 0.065, respectively) (data not shown in
table). The proportional hazards assumption was assessed
by visual inspection of log-log survival functions of levels
of pre-diagnostic lipids. Among TNBC, log rank-tests
were performed to compare differences in survival curves
between the tertiles of triglycerides (p < 0.001). All statis-
tical tests were two-sided using a significance level of p <
0.05, and analysis was conducted using SPSS version 21.0.
In order to increase the sample size to ncases = 641, we

used multiple imputation and imputed values in 20 data-
sets on the following variables: Ki-67, ER-, PR-, and
HER2 status, age, disease stage, current smoking, BMI,
triglycerides, HDL/total-cholesterol ratio, and
total-cholesterol. Separate Cox regression analyses
showed results that were not substantially different from
what we observed in our complete case analyses, and
these data are not presented in the text (TNBC patients
presented in Additional file 1: Table S1).

Results
Characteristics of the study population
Of the 464 women diagnosed with invasive histologically
verified breast cancer (mean age at diagnosis of
57.9 years), a total of 129 died during a mean follow-up
of 8.4 years: 51.9% were attributable to breast cancer,
7.9% to other cancers, 7.1% to cardiovascular disease,
16.4% to other causes, and 16.7% to unregistered cause
of death. Molecular subtypes were distributed as follows:
Luminal A (49.1%), Luminal B (21.3%), HER2-enriched
(9.3%) and TNBC (20.3%). Patients diagnosed with the
most common subtype, Luminal A, in comparison to pa-
tients diagnosed with TNBC, were older at diagnosis
(58.8 years vs. 55.9 years, p = 0.035), had smaller tumors
(21.6 mm vs. 29.2 mm, p = 0.001), lower Ki-67 (8.43% vs.
30.5%, p < 0.001), and lower overall mortality (19.7% vs.
40.4%, p < 0.001) (Table 1). Characteristics of the 123
women excluded due to missing information on Ki-67
did not substantially differ from the final study popula-
tion (data not shown).

5-year overall survival and 5-year breast cancer-free
interval by molecular subtypes
The 5-year overall survival for the entire cohort was 83%
(data not shown in tables or figures). When stratified by
tumor subtypes, women with Luminal A breast cancer
had a 5-year overall survival of 89%, and a 5-year breast
cancer-free interval of 92%. Those with HER2-enriched
and TNBC subtypes had 5-year overall survival of 73
and 75%, respectively, and 5-year breast cancer-free

interval of 74 and 84%, respectively (Additional file 2:
Figure S1 and Additional file 3: Figure S2).

Pre-diagnostic lipids and total mortality
Table 2 presents the multivariable adjusted hazard ratios
(HRs) for all-cause mortality in relation to pre-diagnostic
lipids and breast cancer molecular subtypes. No association
was observed between triglycerides, total-cholesterol, the
HDL-cholesterol/total-cholesterol ratio, and the triglycer-
ide/HDL-cholesterol ratio and overall mortality among all
breast cancer patients combined, or among Luminal A and
B subtypes.
Compared to patients with TNBC in the lowest tertile of

triglycerides, those in the highest tertile (≥ 1.23 mmol/l)
had a 3 times higher overall mortality (HR 2.99, 95% CI
1.17–7.63) (Table 2) and 19% lower 5-year overall survival
(65% vs. 84%) (Fig. 1). TNBC patients in the highest
(≥0.35) vs. lowest (0.27) tertile of the HDL/total-choles-
terol ratio, had a 67% reduced overall mortality risk (HR
0.33, 95% CI 0.12–0.89) (Table 2).
Among women with HER2+ breast cancer, those in

the highest vs. lowest tertile of triglycerides had an 86%
reduced overall mortality risk (HR 0.14, 95% CI 0.03–
0.60, p-trend 0.038) (Additional file 4: Table S2).
The triglyceride/HDL-cholesterol ratio was positively

associated with overall mortality among TNBC patients
(Additional file 5: Table S3).

Pre-diagnostic lipids and breast cancer-free interval
Table 3 presents the multivariable HRs for breast
cancer-free interval by pre-diagnostic lipids and molecu-
lar subtypes. We observed no association between lipid
levels and breast cancer-free interval among all breast
cancer patients combined, or among Luminal A, Lu-
minal B, or HER2-enriched molecular subtypes.
Among TNBC, women in the highest (≥1.23 mmol/l)

vs. lowest (≤0.82 mmol/l) tertile of triglycerides had 5.6
times higher risk for recurrence or death from breast
cancer (HR 5.63, 95% CI 1.64–19.3) (Table 3), and the
5-year breast cancer-free interval was 24% lower for
women in the highest vs. lowest tertile of triglycerides
(69% vs. 93%) (Fig. 2).
No associations were observed between triglycerides

and breast cancer-free interval among HER2+ patients
(Additional file 5: Table S3), or between total-cholesterol
and breast cancer-free interval overall or by molecular
subtypes (data not presented in table).

Discussion
We observed strong associations between pre-diagnostic
triglycerides and overall mortality and breast cancer-free
interval among TNBC patients, and the 5-year overall
survival was 19% lower for patients in the highest tertile
of triglycerides compared to those in the lowest tertile of
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Table 1 Descriptive characteristics among breast cancer patients by molecular subtypes

Molecular subtypes All cases (N = 464)a Luminal A (N = 228)a Luminal B (N = 99)a HER-2 enriched (N = 43)a TNBC (N = 94)a

Mean (SD) / % Mean (SD) / % Mean (SD) / % Mean (SD) / % Mean (SD) / %

Characteristics at study entry

Age at blood sampling, years 39.5 (14.5) 40.3 (15.2) 36.5 (10.7) 41.2 (15.1) 39.9 (14.7)

Age at diagnosis, years 57.9 (12.6) 58.8 (12.8) 57.0 (10.3) 59.0 (13.3) 55.9 (13.8)

Follow-up after diagnosis, years 8.43 (6.93) 9.35 (6.78) 6.43 (5.59) 7.27 (6.83) 8.72 (8.23)

Clinical variablesb

SBP, mmHg 125 (19.4) 125 (19.5) 123 (15.9) 129 (24.5) 126 (20.3)

Waist-hip ratio 0.83 (0.07) 0.84 (0.08) 0.81 (0.06) 0.82 (0.05) 0.84 (0.07)

BMI, kg/m2 23.4 (3.68) 23.3 (3.26) 23.3 (3.50) 23.3 (3.86) 24.1 (4.80)

Reproductive factorsb

Number of children, number 1.93 (1.39) 1.88 (1.33) 1.63 (1.11) 2.40 (1.96) 2.26 (1.53)

Age at menarche, years 13.3 (1.39) 13.2 (1.50) 13.4 (1.28) 13.2 (1.09) 13.4 (1.30)

HRT use, % 30.5 31.5 28.7 28.6 30.5

Serum samplesb

Total cholesterol, mmol/l 5.82 (1.30) 5.76 (1.22) 5.77 (1.30) 6.03 (1.32) 5.95 (1.46)

HDL-cholesterol, mmol/l 1.75 (0.40) 1.76 (0.40) 1.72 (0.32) 1.67 (0.38) 1.78 (0.45)

Triglycerides, mmol/l 1.16 (0.76) 1.11 (0.59) 1.12 (0.53) 1.35 (1.23) 1.28 (1.14)

Lifestyle factorsb

Moderate physical activity, % 72.5 72.8 75.3 72.7 68.2

Current smokers, % 40.4 40.4 38.1 48.5 40.0

Tumor characteristics

Tumor size, mm 24.6 (19.5) 21.6 (18.6) 26.1 (17.8) 30.3 (19.1) 29.2 (23.0)

Number of metastatic lymph nodes 2.03 (3.92) 1.46 (3.23) 3.04 (4.66) 2.00 (2.97) 2.43 (4.67)

Stage, % 1.77 (0.81) 1.59 (0.68) 1.92 (0.80) 2.12 (0.96) 1.95 (0.93)

1 41.7 51.3 31.6 27.9 35.5

2 39.6 38.9 49.0 30.2 35.5

3 15.7 8.80 15.3 37.2 22.9

4 3.00 0.90 4.10 4.70 6.50

Histologic grading, % 1.92 (0.73) 1.55 (0.57) 2.13 (0.68) 2.54 (0.51) 2.49 (0.65)

1 30.1 48.6 17.8 2.60 8.60

2 45.8 47.6 53.3 42.1 34.6

3 24.1 3.80 28.9 55.3 56.8

Estrogen positive, % 64.2 91.2 88.7 0 0

Progesterone positive, % 47.9 71.6 61.3 0 0

HER2 positive, % 16.0 0 34.0 100 0

Ki-67% 18.9 (17.3) 8.43 (4.98) 30.4 (16.1) 27.9 (17.1) 30.5 (22.0)

Treatment

Type of surgery

Breast conserving surgery 45.6 54.5 45.1 33.0 27.0

Mastectomy 52.5 44.6 51.6 66.7 70.3

Othersc 1.90 0.90 3.30 0.30 2.70

Chemotherapy, % 38.2 25.9 52.6 51.5 49.4

Radiation therapy, % 48.6 66.8 67.0 39.4 54.1

Endocrine therapy, % 50.3 55.7 70.1 21.2 24.7
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triglycerides (65% vs. 84%). Women with TNBC and in the
highest tertile of triglycerides had 24% lower 5-year breast
cancer-free interval (69% vs. 93%) compared to those in
the lowest tertile. Conversely, among patients with HER2+
disease, a high serum level of triglycerides was inversely
associated with overall mortality. Additionally, the
HDL-cholesterol/total-cholesterol ratio was inversely asso-
ciated with overall mortality among TNBC patients.

Observations in the present study extend previous ob-
servations linking variation in pre-diagnostic serum
lipids, and in particular triglycerides, to breast cancer
prognosis by molecular subtypes. Recently, a Chinese
retrospective case series including 221 lean (BMI <
25 kg/m2) TNBC patients observed that high triglycer-
ide/HDL-cholesterol ratio, but not triglyceride, was asso-
ciated with poor overall survival [37]. In another case

Table 1 Descriptive characteristics among breast cancer patients by molecular subtypes (Continued)

Molecular subtypes All cases (N = 464)a Luminal A (N = 228)a Luminal B (N = 99)a HER-2 enriched (N = 43)a TNBC (N = 94)a

Mean (SD) / % Mean (SD) / % Mean (SD) / % Mean (SD) / % Mean (SD) / %

Outcome

Recurrence, % 17.0 13.2 17.2 30.2 21.0

Overall mortality, % 27.8 19.7 29.3 39.5 40.4

Breast cancer mortality, % 14.4 5.27 20.2 27.9 24.5
aNumbers may vary due to missing information
bClinical variables, reproductive factors, serum samples, and lifestyle factors at study entry
cOther types of surgery include primary reconstruction and oncoplastic surgery
Abbreviations: BMI body mass index, HDL high density lipoprotein, HRT hormone replacement therapy, IDC invasive ductal carcinoma, ILC invasive lobular
carcinoma, n number of cases, SPB systolic blood pressure

Table 2 Multivariable adjusted hazard ratios for overall mortality by pre-diagnostic lipids and breast cancer molecular subtypes

All cases (eventsa=129) Luminal A (eventsa=45) Luminal B (eventsa=29) HER2-enriched (eventsa=17) TNBC (eventsa=38)

n HR (95% CI) n HR (95% CI) n HR (95% CI) n HR (95% CI) n HR (95% CI)

Triglycerides

Continuous, mmol/l 464 1.01 (0.88–1.22) 228 0.99 (0.56–1.75) 99 1.64 (0.78–3.46) 43 0.06 (0.01–0.77) 94 1.02 (0.83–1.24)

Tertiles

≤ 0.82 mmol/l 153 1.00 77 1.00 33 1.00 14 1.00 29 1.00

0.83–1.22 mmol/l 158 0.69 (0.42–1.11) 78 1.19 (0.53–2.66) 33 0.50 (0.17–1.46) 14 0.13 (0.03–0.64) 33 0.96 (0.35–2.62)

≥ 1.23 mmol/l 153 1.24 (0.78–1.99) 73 1.26 (0.57–2.78) 33 1.01 (0.36–2.78) 15 0.06 (0.01–0.55) 32 2.99 (1.17–7.63)

p-trend 0.351 0.838 0.179 0.001 0.011

Total-cholesterol

Continuous, mmol/l 464 1.03 (0.90–1.19) 228 1.06 (0.83–1.36) 99 1.00 (0.66–1.51) 43 1.05 (0.70–1.57) 94 1.05 (0.77–1.44)

Tertiles

≤ 5.14 mmol/l 155 1.00 77 1.00 37 1.00 11 1.00 30 1.00

5.15–6.25 mmol/l 156 1.33 (0.80–2.22) 82 1.66 (0.70–3.95) 27 0.85 (0.29–2.50) 16 1.28 (0.18–7.93) 31 1.01 (0.39–2.67)

≥ 6.26 mmol/l 153 1.46 (0.87–2.44) 69 1.48 (0.61–3.60) 35 1.20 (0.38–3.72) 16 2.04 (0.34–12.3) 33 1.41 (0.49–4.06)

p-trend 0.354 0.512 0.830 0.533 0.731

HDL-cholesterol/total-cholesterol ratio

Continuous, 464 0.89 (0.58–1.36) 228 0.68 (0.02–25.0) 99 0.23 (0.01–54.2) 43 693 (0.06–747) 94 0.02 (0.00–1.39)

Tertiles

≤ 0.27 154 1.00 76 1.00 32 1.00 21 1.00 25 1.00

0.28–0.34 154 0.84 (0.65–1.29) 67 0.81 (0.37–1.79) 37 1.48 (0.57–3.87) 14 1.53 (0.45–5.23) 36 0.53 (0.24–1.19)

≥ 0.35 156 0.82 (0.51–1.33) 85 1.05 (0.43–2.00) 30 0.96 (0.33–2.74) 8 5.61 (0.62–21.0) 33 0.33 (0.12–0.89)

p-trend 0.385 0.819 0.986 0.176 0.026

Multivariable Cox proportional hazard regression models
aNumber of deaths
Adjusted for age (continuous), Body mass index (continuous), and current smoking (categorical) at blood sampling, age at diagnosis (continuous), and disease
stage (categorical)
Abbreviations: HDL high density lipoprotein, HR hazard ratio; n number of cases, t Total, TNBC triple negative breast cancer
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Fig. 1 Overall survival among triple negative breast cancer (TNBC) patients by tertiles of triglycerides. ammol/l, bNumber of cases at diagnosis,
cNumber of cases in follow-up after 5 years, dNumber of cases in follow-up after 10 years, eNumber of cases in follow-up after 15 years.
Abbreviations: N, number of cases; TGA, triglycerides

Table 3 Multivariable adjusted hazard ratios for breast cancer-free intervala by pre-diagnostic lipids and molecular subtypes

All cases (eventsb=91) Luminal A (eventsb=31) Luminal B (eventsb=21) HER2-enriched (eventsb=15) TNBC (eventsb=24)

N HR (95% CI) n HR (95% CI) n HR (95% CI) n HR (95% CI) n HR (95% CI)

Triglycerides

Continuous, mmol/l 446 1.01 (0.88–1.22) 224 0.88 (0.40–1.92) 94 0.76 (0.23–2.46) 41 1.01 (0.71–1.47) 87 1.12 (0.73–1.64)

Tertiles

≤ 0.82 mmol/l 148 1.00 76 1.00 33 1.00 13 1.00 26 1.00

0.83–1.22 mmol/l 152 0.81 (0.47–1.40) 77 1.26 (0.51–3.11) 31 0.24 (0.06–0.89) 13 0.27 (0.04–1.91) 31 1.37 (0.37–4.98)

≥ 1.23 mmol/l 146 1.23 (0.71–2.13) 71 1.02 (0.38–2.68) 30 0.42 (0.12–1.52) 15 0.26 (0.03–2.54) 30 5.63 (1.64–19.3)

p-trend 0.308 0.854 0.081 0.422 0.004

HDL-cholesterol/total-cholesterol ratio

Continuous 446 1.18 (0.09–15.7) 224 16.4 (0.18–1.4e4) 94 15.0 (0.04–6.2e4) 41 116 (0.00–4.3e6) 87 0.03 (0.00–6.86)

Tertiles

≤ 0.27 147 1.00 74 1.00 29 1.00 21 1.00 23 1.00

0.28–0.34 149 1.16 (0.70–1.93) 66 1.52 (0.58–4.02) 36 5.13 (0.98–20.7) 13 1.27 (0.31–5.21) 34 0.58 (0.22–1.56)

≥ 0.35 150 1.02 (0.58–1.78) 84 1.87 (0.69–5.07) 29 2.06 (0.55–7.75) 7 2.99 (0.43–20.8) 30 0.32 (0.10–1.06)

p-trend 0.808 0.219 0.344 0.310 0.060

Multivariable Cox proportional hazard regression models
aBreast cancer-free interval among women staged 1–3 at diagnosis
bNumber of breast cancer patients with recurrence or death from breast cancer
Adjusted for age (continuous), Body mass index (continuous), and current smoking (categorical) at blood sampling, age at diagnosis (continuous), and disease
stage (categorical)
Abbreviations: HDL high density lipoprotein, HR hazard ratio, n number of cases, TNBC triple negative breast cancer
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series, an inverse association was observed between
HDL-cholesterol at diagnosis of breast cancer and recur-
rence and overall mortality among 394 TNBC patients, but
there was no association between triglycerides and breast
cancer outcomes [30]. Another Chinese study including
1044 breast cancer patients, unclassified by molecular sub-
type, observed that preoperative lower triglycerides and
HDL-cholesterol were associated with shorter disease-free
and worse overall survival, respectively [22]. In contrast to
our study, triglycerides and HDL-cholesterol were mea-
sured at diagnosis in these studies, and one may argue that
lipid metabolism could have been altered by metabolic
changes due to the breast cancer disease [38].
In the present study, we observed a protective effect of

the HDL-cholesterol/total-cholesterol ratio on overall
mortality only among the TNBC patients. We have re-
cently observed that low HDL-cholesterol is associated
with more aggressive tumor characteristics [29]. A low
level of HDL-cholesterol has been inversely associated
with the activity of the pro-inflammatory cytokine inter-
leukin (IL)-6 [39]. Moreover, IL-6 and IL-8 may promote
tumor progression in TNBC cells [40]. Interestingly, it
has been proposed that HDL-cholesterol possess
anti-tumorigenic properties through regulation of angio-
genesis, involving lowered expression of vascular endo-
thelial growth factor (VEGF) [41]. Studies show that
high expression of VEGF correlates with metastatic

potential of TNBC [42], suggesting a potential biological
link between low HDL-cholesterol and tumor progres-
sion among these patients. There are plausible biologic
mechanisms supporting a role of triglycerides in tumor
proliferation, growth and metastasis among patients with
TNBC: Triglycerides play a role in energy storage, and
they serve as a source for fatty acid oxidation (FAO), an
important energy source for cell proliferation and migra-
tion. Overexpressed FAO is associated with more aggres-
sive tumors [43], and studies show that metastatic
TNBC cell lines maintain high levels of ATP through
up-regulated fatty acid oxidation [44]. Triglyceride/HDL
ratio may serve as a surrogate marker of insulin resist-
ance [35], and insulin resistance further stimulates trigly-
ceride production through lipolysis, and de novo fatty
acid synthesis in the liver [45]. Both insulin resistance and
triglycerides correlate with presence of white adipose tis-
sue (WAT) inflammation in the breast, a proposed link
between chronic subclinical inflammation, breast cancer
aggressiveness and worse breast cancer prognosis [46].
This correlation remains independent of patients` BMI
[47], suggesting WAT inflammation and associated meta-
bolic obesity, including high triglycerides, is a stronger
driver of breast cancer progression than obesity alone.
We observed an inverse association between triglycer-

ides and overall mortality among patients overexpressing
HER2. This observation is in contrast to some previous

Fig. 2 Breast cancer-free interval among triple negative breast cancer (TNBC) patients by tertiles of triglycerides. ammol/l, bNumber of cases at
diagnosis, cNumber of breast cancer-free cases in follow-up after 5 years, dNumber of breast cancer-free cases in follow-up after 10 years,
eNumber of breast cancer-free cases in follow-up after 15 years. Abbreviations: N, number of cases; TGA, triglycerides
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observations on HER2+ tumors which suggest a reduced
tumor proliferation from the inhibitory effect of polyunsat-
urated fatty acids on fatty acid synthase [48, 49]. While be-
ing inversely associated to serum levels of polyunsaturated
fatty acids, triglyceride levels correspond to serum levels
of the saturated fatty acid, palmitate [50], and studies show
that endogeneous palmitate may be toxic to HER2+ cells
[51]. Therefore, a deeper understanding of the biologic
mechanisms underlying these results are needed.
Our study has several strengths. Although we can not

fully exclude selection and diagnostic bias, the high at-
tendance rate (77%) in the population-based Tromsø
study and completeness of identification of breast cancer
cases due to mandatory registration of all new cases
through the Cancer Registry of Norway (historically 98.8%
complete) [52], indicate that the results are highly repre-
sentative of the source population. Additionally, continu-
ous registration of death (Norwegian Cause of Death
Registry) and emigration (Statistics of Norway) limits loss
to follow-up and missing endpoint data. Moreover, all
medical charts were systematically reviewed with tumor
and treatment characteristics abstracted. A majority of the
tumors’ histopathology was reanalyzed by tissue microar-
rays [36], enabling complete tumor characteristics and
comparison between invasive breast cancer cases and mo-
lecular subtypes diagnosed at various time points. We ob-
served agreement between molecular subtyping based on
immunohistochemistry and tissue microarrays, supporting
our tissue microarrays reanalyzing. Moreover, our long
follow-up (mean 8.4 years) increases the chance of regis-
tering late recurrences.
A limitation of our study is the small number of pa-

tients in each molecular subclass, and the study may be
underpowered to detect the hypothesized differences in
all the distinct subclasses, which underlines the need for
additional studies. Furthermore, as a result of limited
number of events and in accordance with other studies
[53, 54], we used breast cancer-free interval instead of
breast cancer specific mortality as one of our endpoints.
In order to classify all cases into molecular subclasses, a
total of 123 women were excluded due to missing infor-
mation on Ki67. However, characteristics of these
women did not substantially differ from the study popu-
lation. Furthermore, patients were diagnosed during a
wide time period (1980–2014) with possible secular
treatment effect, but reanalyzing histological classifica-
tions and adjusting for year of diagnosis and adjuvant
systemic treatment according to national uniform guide-
lines by the Norwegian Breast Cancer Group [http://
www.nbcg.no], did not influence our main results. Co-
morbidity may be a potential confounder when studying
breast cancer survival, and missing information on co-
morbid disease can be a concern. We used s-glucose,
blood pressure, BMI, physical activity, alcohol and

smoking habits as markers of comorbid disease. However,
additional data on comorbidity may potentially add valu-
able information to our results [55]. Blood samples were
not collected in a fasting state, which can affect lipid levels,
but we adjusted for time since last meal in our analyses.
Although we adjusted for BMI, we could not adjust for
other variables that affect lipid levels such as diet, genetics
or familial predisposition, as the data were not available.

Conclusions
Our study supports an association between pre-diagnostic
triglycerides and the HDL-cholesterol/total-cholesterol ra-
tio with survival for TNBC breast cancer patients. High
triglycerides may be a negative prognostic marker, while
pre-diagnostic high HDL-cholesterol/total-cholesterol ra-
tio suggests improved prognosis. These findings are sup-
ported by plausible biological mechanisms linking
triglycerides and the HDL-cholesterol/total-cholesterol ra-
tio to breast cancer growth and progression. TNBC is as-
sociated with poor prognosis, and identifying and
incorporating clinically available biomarkers is of great im-
portance in order to improve the outcomes for this sub-
group of breast cancer patients. Additional and larger
studies including molecular subtyping, as well as more de-
tailed information on comorbidity, are needed to define
the clinical implications of these findings. Our findings
may encourage closer follow-up of women at risk and fu-
ture clinical trials to test effects of lipid-altering medica-
tions on breast cancer prognosis.
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