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S100A4 suppresses cancer stem cell
proliferation via interaction with the
IKK/NF-κB signaling pathway
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Abstract

Background: Bladder cancer often recurs due to incomplete elimination of the cancer stem cells (CSCs). Therefore,
new strategies targeting bladder CSCs are needed and the aim of this study was to investigate the effect of S100A4
on the proliferation capacity of MB49 bladder cancer stem cells (MCSCs).

Methods: MCSCs were established and validated. The expression level of S100A4 in MCSCs and MB49 cells was
evaluated using Western blotting and quantitative polymerase chain reaction (QPCR). S100A4 was overexpressed or
knocked-down by transfection of pCMV6-XL5-S100A4 plasmid or RNA interference (RNAi) respectively. Proliferation
capacity of MCSC was evaluated by cell proliferation assay and in vivo tumorigenicity study. Transcriptional activity
of nuclear factor kappa B (NF-κB) was analyzed using luciferase reporter assay, and the level of interleukin (IL)-2 as
well as tumor necrosis factor (TNF) was quantified by QPCR. Protein-protein interaction of S100A4 and inhibitor of
nuclear factor kappa B NF-κB kinase (IKK) was analyzed by immunoprecipitation.

Results: S100A4 was significantly up-regulated in MCSCs, which positively associated with the proliferation capacity,
as well as the level of NF-κB, IKK, IL-2 and TNF in MCSCs. Knock-down of S100A4 could reverse such effects. Using
immunoprecipitation assay, an interaction between S100A4 and IKK could be observed.

Conclusions: S100A4 is upregulated in MCSCs and possibly enhance the proliferation ability of MCSCs by way of
activating the IKK/NF-κB signaling pathway, and S100A4 maybe a hopeful therapeutic target for MCSCs.
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Background
Bladder cancer is a most common urological cancer in
China, and the rest of the world [1]. Radical cystectomy
with pelvic lymphadenectomy is the standard treatment
for bladder cancer. However, bladder cancer may recur
due to the incomplete elimination of cancer stem cells
(CSCs). Therefore, new strategies targeting bladder CSCs
are urgently needed.
S100A4, also known as metastasin/FSP1/pEL98/mts-1,

is a gene encoding a small calcium binding protein that

interacts with other proteins to enhance apoptosis, cell
motility, and tumorigenesis [2]. S100A4 is overexpressed
in most cancers, including breast cancer, gastric cancer,
and non-small cell lung cancer (NSCLC) [3]. In addition,
S100A4 expression is correlated with patients’ outcome
and cancer metastasis [4]. It has been recently reported
that S100A4 is a novel marker and a critical regulator of
glioma stem cells, with the enhanced S100A4 expression
contributing to the presentation of a metastatic pheno-
type [5]. These findings indicate that S100A4 may be a
promising therapeutic target for bladder CSCs. Through
bioinformatics analysis in preliminary experiments, we
found that there was a close relationship between
S100A4 protein and the nuclear factor kappa B (NF-κB)
signaling pathway.
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In the present study, we demonstrate that S100A4 is
up-regulated in MB49 bladder cancer stem cells
(MCSCs). Additionally, overexpression of S100A4 en-
hances the proliferation capacity of MCSCs in vitro, and
also upregulates inhibitor of nuclear factor kappa B
NF-κB kinase (IKK) and activates the NF-κBsignaling
pathway, whereas knockdown of S100A4 resulted in the
opposite effects. The findings of this study suggest that
S100A4 may promote the proliferation capacity and up-
regulate IKK in MCSCs by activating the NF-κB signal-
ing pathway. Therefore, S100A4 may have the potential
to be a therapeutic target in MCSCs.

Methods
Establishment and characterizations of MCSCs
MCSCs were obtained from MB49 bladder cancer cells,
which was a mouse cell line, using limited dilution and
serum-free culture medium method described previously
[6]. The serum-free culture medium was consisted of
RPMI1640 supplemented with leukemia inhibitory factor
(20 ng/ml, eBioscience, San Diego, CA), basic fibroblast
growth factor (20 ng/ml, Peprotech, Rocky Hill, NJ), epi-
dermal growth factor (20 ng/ml, Peprotech), bovine
serum albumin (4 μg/ml, Thermo Scientific HyClone,
Logan, UT), and B-27 serum-free supplement (20 μl/ml,
Invitrogen, Grand Island, NY).
The validation of MCSCs was performed as previously

reported [6]. Cancer stem cell markers CD133 and
CD44 was detected by flow cytometry analysis, Western
blotting, and quantitative polymerase chain reaction
(QPCR). The proliferative ability and susceptibility to
chemotherapy were examined by Cell Counting Kit-8 re-
agent assay. Cell migration ability was examined with
the transwell assay. The tumorigenic ability was verified
using nude mice.

Western blot analysis
The MB49 cells and MCSCs were respectively harvested.
Equal amount proteins were extracted from cells, and
separated by 10% sodium dodecyl sulfate -polyacryl-
amide gel electrophoresis followed by transferring to

polyvinylidene difluoride membranes (Millipore, Biller-
ica, MA). The membranes were blocked with 5% skim
milk in PBS, and incubated overnight at 4 °C with the
primary antibodies including anti-S100A4 (Abcam,
Cambridge, MA), anti- IKK (Abcam) and anti-β-actin
antibody (Abcam) followed by secondary antibodies
(Abcam). Bands were visualized using Fluor Chem FC2
(Alpha Innotech, San Leandro, CA).

Quantitative polymerase chain reaction
Total RNA was extracted using the Arcturus PicoPure
RNA isolation kit (Applied Biosciences, Carlsbad, NM).
RNA quality was tested using the Bioanalyzer RNA Pico
Chip (Agilent Technologies, Santa Clara, CA). Total
RNA were transcribed reversely with Superscript III
(Invitrogen), followed by synthesizing the first-strand
cDNA which was amplified using a SYBR green PCR
master mix (Bio-Rad, Hercules, CA) performed on a 7500
real-time PCR system (AB Applied Biosystems,
Singapore). The cycling systems were denaturation (95 °C
for 10 s), annealing and extension (60 °C for 60 s). The
primers were designed using Primer Express version 2.0
(Applied Biosystems, Foster City, CA), and are shown
in Table 1. The relative expression level were analyzed
using the ΔΔCt method. GAPDH was used as the in-
ternal control.

Plasmid construction, and RNA interference and
transfection
Full length of S100A4 gene were inserted into a vector
plasmid pCMV6-XL5 (OriGene Technologies). MCSC
cells were transfected with pCMV6-XL5-S100A4 plas-
mid (pCMV-S100A4) performing in Lipofectamine™
2000 (Invitrogen) following the manufacturer’s instruc-
tions, which were referred to as MCSCs/S100A4-vector.
The expression of S100A4 was detected at 48 and 72 h
after transfection on transcription and translation level
respectively.
S100A4 was knockdown by S100A4-siRNA transfec-

tion. Double-stranded siRNAs specific to S100A4 were
bought from Shanghai GenePharma Co., Ltd. (Shanghai,

Table 1 Primers of selected genes

Gene name Primers (forward/reverse) Base pairs of product

S100A4 F: 5’- CCCTGGATGTGATGGTGT-3’ 615 bp

R: 5’- GTTGTCCCTGTTGCTGTC-3’

Interleukin (IL)-2 F: 5’- GAATGGAATTAATAATTACAAGAA-3’ 401 bp

R; 5’-TGTTTCAGATCCCTTTAGTTCCAG-3’

Tumor necrosis factor (TNF) F: 5’- CCAGGCAGTCAGATCATCTTCTC-3’ 179 bp

R: 5’- AGCTGGTTATCTCTCAGCTCCAC-3’

GAPDH F: 5’-CCATGGAGAAGGCTGGGG-3’ 198 bp

R: 5’-CAAAGTTGTCATCCATGAC-3’
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China). The S100A4 siRNA sequences were 5’-TGTA
ACGAATTCTTTGAAG-3′, and 5’-ACGAATTCT
TTGAAGGCTT-3′. The non-coding (NC) siRNAs se-
quence was 5’-UUCUCCGAACGUGUCACGUTT-3′.
MCSCs were transfected with a final concentration of
20 nM of siRNA performing in Lipofectamine™ 2000,
which were referred to as MCSCs/S100A4-siRNA or
MCSCs/NC-siRNA cells, respectively.

Cell counting Kit-8 (CCK-8) assay
Cells were plated at a density of 1 × 103 cells per well in
a 96-well plate, followed by incubating for 72 h. After in-
cubation, cell counting kit-8 reagent (CCK-8, Dojindo
Molecular Technologies, Kumamoto, Japan) was added
to each well with 10 μl at a time periods of 24, 48, and
72 h. Incubated for 4 h, the absorbance value was read
at 450 nm performing in EnSpire 2300 multilabel reader
(PerkinElmer, Singapore).

In vivo tumorigenicity study
All animal experiments were obeyed the Chinese animal
protection laws and guidelines, and approved by the
Ethics Committee of Southern Medical University
(Contract 1,116,904).
Four-week-old immune deficient nude mice were pur-

chased from Experimental Animals Center (Southern
Medical University, Guangzhou, China), and fed under
specific, pathogen-free conditions. Cells (1 × 104) were
injected into mice subcutaneously. Tumor xenograft
formation was recorded at 10, 20, 30, and 45 days,
calculated the tumor volume according to the formula
d2 × D/2, where D and d were the longest and the short-
est diameters, respectively. Then mice were sacrificed
after CO2 anesthesia.

Luciferase reporter assay
NF-κB transcriptional activity was examined using the
pNF-κB-luciferase reporter and control plasmids
(Clontech, Mountain View, CA). The cells were plated
at a sub confluent density, followed by co-transfecting
with 0.5 μg of NF-κB luciferase reporter plasmid or
negative plasmid, and 0.02 μg of Renilla luciferase
pRL-TK plasmid (Promega, Madison, WI) performing in
Lipofectamine 2000 reagent (Invitrogen). Cell lysates
were prepared 24 h after transfection, and the reporter
activity was measured using the Dual-luciferase reporter
assay system (Promega).

Immunoprecipitation
Cells were washed with ice-cold PBS, followed by
lysing in Tris-buffered saline (pH 7.4), containing
150 mM NaCl, 50 mM Tris, 0.1% Nonidet P-40,
1 mM EDTA, 1 mM Na3VO4, 10 mM NaF, 2.5 mg/
ml aprotinin and leupeptin, 1 mM β-glycerophosphate

and 4-(2-aminoethyl) benzenesulfonyl fluoride hydro-
chloride, and 10 mM iodoacetate. After incubation,
cellular debris and nuclei were removed by centrifu-
gation. Cell lysates were incubated with specific anti-
body overnight, and then with Protein A-Sepharose
(Amersham Biosciences, Piscataway, NJ) beads for an-
other 4 h. The immunoprecipitates were washed in
Tris-buffered saline four times and boiled in Laemmli
buffer included of 0.02% blue bromophenol and 2%
bmercaptoethanol.

Statistical analysis
SPSS19.0 software was used for all statistical analyses.
Numeric data were described as the mean value ± stand-
ard deviation. Comparisons were performed by Students
t-test. A value of P < 0.05 was considered to indicate stat-
istical significance.

Results
Expression of S100A4 in MCSC MB49 cells
S100A4 level in MCSCs was increased as detected by
Western blotting (Fig. 1a), and S100A4 mRNA expres-
sion level in MCSCs was also significantly increased as
detected by QPCR (Fig. 1b).

Fig. 1 S100A4 was upregulated in MCSCs. a Western blotting
analysis of S100A4 protein expression in MCSCs and MB49 cells;
β-actin was used as a loading control. b Quantitative PCR of S100A4
mRNA expression in MCSCs and MB49 cells. Transcript levels were
normalized to GAPDH, and expressed relative to MB49 cells. Data is
mean ± SD of three independent experiments. *P < 0.05
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Effects of transfection on MCSCs
MCSCs were transfected with S100A4-vector or
S100A4-siRNA, and the transfection efficiency was ex-
amined in vitro. As shown in Fig. 2a, protein level of
S100A4 was increased in S100A4-vector group, while
which was inhibited in S100A4-siRNA group. S100A4
mRNA expression was increased by transfecting
S100A4-vector (Fig. 2b, P < 0.05), while suppressed by
S100A4-siRNA transfection (Fig. 2c, P < 0.05).

Effects of S100A4 on MCSC proliferation
The proliferation capacity of transfected MCSCs was
evaluated by Cell Counting Kit-8 and tumorigenicity
assay. The cell proliferation curve was increased by
S100A4 overexpression (Fig. 3a), while was decreased by
S100A4 suppression (Fig. 3b)., Tumor volume was in-
creased by S100A4 overexpression, while was decreased
by S100A4 suppression (Fig. 3c and d, respectively).

S100A4 promotes the activity of NF-κB and the
transcription of its target genes
Overexpression of S100A4 enhanced the transcriptional
activity of a NF-κB reporter gene (Fig. 4a), which was
suppressed when knockdown of S100A4 (Fig. 4b).
Western blotting indicated that overexpression of
S100A4 increased the level of IKK (Fig. 4c). In addition,

several NF-κB target genes, including IL-2 and TNF,
were up-regulated in S100A4-overexpressing cells
(Fig. 4d), and downregulated in S100A4-silenced
MCSCs (Fig. 4e). Taken together, these results indi-
cated that the NF-κB pathway may participate in the
proliferation effect of S100A4 in MCSCs.

S100A4 regulates NF-κB activation through IKK
We hypothesized that S100A4 may regulate NF-κB sig-
naling pathway through a direct interaction with IKK.
To verify this hypothesis, interaction between S100A4
and IKK were analyzed using immunoprecipitation as-
says. As shown in Fig. 5, S100A4 physically interacted
with IKK.

Discussion
S100A4 has been reported to be an important regulator
for modulating the cell cycle, proliferation, apoptosis,
and migration in different kinds of cells through various
mechanisms [7]. In adult animals, S100A4 expression is
restricted to very few kinds of normal tissue or cells,
whereas it is usually overexpressed in cancerous tissues
[2]. However, little is known about the function of
S100A4 on bladder CSCs. In this research, we demon-
strate firstly that S100A4 is able to enhance the prolifer-
ation capacity of mouse bladder MCSCs. Another study

Fig. 2 Effects of transfection on MCSCs. a S100A4 protein level of was detected by Western blotting. b The mRNA expression of S100A4 in MCSCs
transfected with S100A4 vector was determined by quantitative PCR. c The mRNA expression of S100A4 in MCSCs transfected with S100A4-siRNA
was determined by quantitative PCR. Data is mean ± SD of three independent experiments. *P < 0.05
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has indicated that S100A4 could be a novel marker and
regulator of glioma stem cells in human and murine ma-
lignant gliomas [5]. Different expression levels of
S100A4 lead to different stem cell characteristics: it pro-
motes self-renewal at a lower level, while promotes qui-
escence through asymmetric stem progenitor divisions
at a higher level [5]. Several works have also demon-
strated that S100A4 may have oncogenic effects in a
multitude of tumor types [8]. However, further re-
searches are needed to manifest the exact function of
S100A4 in various cancer stem cells.
In the present research, we found that cell prolifera-

tion was significantly prompted by S100A4 overexpres-
sion, while was inhibited by S100A4 suppression.
Luciferase reporter assays manifested that the transcrip-
tional activity of NF-κB was enhanced significantly by
overexpression of S100A4, implying NF-κB may play an
crucial part in the S100A4-induced proliferation capacity
of MCSCs.
NF-κB is the collective name of a family of transcrip-

tion factors consisting of seven proteins, encoded by five
genes: c-Rel, RelA, RelB, p100/p52 and p105/p50 [9].
NF-κB has been widely known for its regulatory effects

on immunological and inflammatory processes, like a
serious of other pathological and physiological responses
containing of the development and progression of can-
cer. NF-κB activation is mediated frequently by plenty of
chemotherapeutic agents, which generally means indu-
cing a strong anti-apoptotic response which limits the
efficacy of treatments [10]. As shown in this research,
activation of NF-κB signaling is regulated by IKK in a
negative way. The IκB family of inhibitory proteins gen-
erally holds the NF-κB pathway in an inactive status by
sequestering NF-κB in the cytoplasm. Many extracellular
stimuli could result in the activation of IKK [11]. Follow-
ing stimulation, IKK is recruited to the combined signal-
ing complex of late around membrane receptors, which
affording a platform in phosphorylation and activation
subsequently [12]. As many works have reported, the ac-
curate regulation of IKK activity is an important proced-
ure in activating NF-κB pathway [13]. Accordingly, the
regulation of IKK recruitment is crucial in activating
NF-κB induced by an extracellular stimulation.
Consistent with those previous works, our research

also demonstrated that overexpression of S100A4 upreg-
ulated the level of IKK, followed by raising the activation

Fig. 3 S100A4 enhanced the proliferation ability of MCSCs. a The cell proliferation growth curve using the Cell Counting Kit (CCK)-8 assay showed
that MCSCs transfected with S100A4-vector exhibit a higher absorbance value. b The CCK-8 assay showed that MCSCs transfected with S100A4-
siRNA exhibited a lower absorbance value. c MCSCs transfected with S100A4-vector caused an increased tumor volume. d MCSCs transfected
with S100A4-siRNA caused a decreased tumor volume. Data is mean ± SD of three independent experiments. *P < 0.05
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of NF-κB ultimately. In addition, overexpression of
S100A4 upregulated some genes, IL-2 and TNF,
which downstream of the NF-κB signaling pathway.
IL-2 has been demonstrate to play an crucial role in
tumor proliferation [14]. TNF-α takes a paramount
role in proliferation during the development and pro-
gression in different kinds of cancer [15]. Accordingly,
it would be attractive to detect whether IL-2 or TNF
act a part in proliferation and disease progression in
MCSCs.
There are some limitations to this study that needed

to be taken into account. The IKK complex is formed by
three subunits: IKKα, IKKβ, and IKKγ [16], and it would
be better to test the individual subunits separately rather
than IKK alone. In addition, our study did not test
whether S100A4 enhanced the stemness of MB49 cells
or not, and it would be better to overexpressed or
knocked-down S100A4 not only in MCSCs but also in
MB49 cells.

Fig. 4 S100A4 promoted NF-κB transcriptional activity. a Luciferase reporter assay of NF-κB transcriptional activity showed that MCSCs transfected with
S100A4-vector exhibited enhanced transcriptional activity of a NF-κB reporter gene. b Luciferase reporter assay showed that MCSCs transfected with
S100A4-siRNA exhibited decreased NF-κB transcriptional activity. c Western blotting analysis of the expression of IKK; β-actin was used as a negative
control. d Quantitative PCR analysis showed that the expression of IL-2 and TNF were up-regulated in MCSCs transfected with S100A4-vector.
e Quantitative PCR analysis showed that the expression of IL-2 and TNF were down-regulated in MCSCs transfected with S100A4-siRNA.
Data is mean ± SD of three independent experiments. * P < 0.05

Fig. 5 S100A4 interacted with IKK. MCSCs extracts were
immunoprecipitated with mouse IgM or anti-S100A4 antibody, and
then subjected to immunoblot analysis of the IKK protein
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Conclusion
In summary, the present work showed that S100A4 is up-
regulated in MCSCs and possibly enhance the prolifera-
tion ability of MCSCs by way of activating the IKK/NF-κB
signaling pathway. These results may offer a mechanisms
for regulation of proliferation in MCSCs, and S100A4
maybe a hopeful therapeutic target for MCSCs.
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