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A case-control study of exposure to
organophosphate flame retardants and risk
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Abstract

Background: Growing evidence demonstrates that exposure to organophosphate flame retardants (PFRs) is
widespread and that these chemicals can alter thyroid hormone regulation and function. We investigated the
relationship between PFR exposure and thyroid cancer and whether individual or temporal factors predict PFR
exposure.

Methods: We analyzed interview data and spot urine samples collected in 2010–2013 from 100 incident female,
papillary thyroid cancer cases and 100 female controls of a Connecticut-based thyroid cancer case-control study.
We measured urinary concentrations of six PFR metabolites with mass spectrometry. We estimated odds ratios (OR)
and 95% confidence intervals (95% CI) for continuous and categories (low, medium, high) of concentrations of
individual and summed metabolites, adjusting for potential confounders. We examined relationships between
concentrations of PFR metabolites and individual characteristics (age, smoking status, alcohol consumption, body
mass index [BMI], income, education) and temporal factors (season, year) using multiple linear regression analysis.

Results: No PFRs were significantly associated with papillary thyroid cancer risk. Results remained null when
stratified by microcarcinomas (tumor diameter ≤ 1 cm) and larger tumor sizes (> 1 cm). We observed higher urinary
PFR concentrations with increasing BMI and in the summer season.

Conclusions: Urinary PFR concentrations, measured at time of diagnosis, are not linked to increased risk of thyroid
cancer. Investigations in a larger population or with repeated pre-diagnosis urinary biomarker measurements would
provide additional insights into the relationship between PFR exposure and thyroid cancer risk.

Keywords: Thyroid cancer, Flame retardants, Endocrine disruptor, Women’s health, Environmental exposures,
Biomarkers

Background
Thyroid cancer is the most common endocrine malig-
nancy worldwide and is three times more common in
women compared to men [1, 2]. The age-adjusted an-
nual incidence rate for thyroid cancer in women in the
United States (U.S.) nearly tripled over the previous
twenty years, from 7.7/105 in 1991 to 22.2/105 in 2014
in women [1]. Papillary thyroid carcinoma accounts for
approximately 90% of all thyroid cancer cases in the
United States [1].

Though the prognosis for thyroid cancer is quite good
(> 90% survival after 20 years) [1], the costs for diagno-
sis, treatment, and continued surveillance are significant,
estimated at $1.6 billion for all U.S. patients diagnosed
after 1985 [3]. With the incidence rate climbing rapidly,
projected societal costs for 2030 exceed $3.5 billion. Fur-
thermore, thyroid cancer is associated with an increased
risk of developing a second primary cancer, potentially
attributable to radiation-based treatments such as radio-
iodine or directed beam radiation therapy [4, 5]. The
quality of life of thyroid cancer survivors may be im-
paired due to co-morbidities and dependence on
long-term treatment [6].* Correspondence: nicole.deziel@yale.edu
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The etiology of thyroid cancer is largely unknown. The
major established causal factor is exposure to ionizing
radiation during childhood [7, 8]; other risk factors in-
clude family history of thyroid cancer, personal history
of benign thyroid diseases [9], and greater body weight
and height [10, 11]. These known and suspected risk fac-
tors explain only a small portion of thyroid cancer cases.
Changes in diagnostic procedures and increased medical
attention to thyroid nodules explain part of the rise dur-
ing the past two decades [12–14]. However, reported in-
cidence rates have increased across all tumor sizes [15,
16], in younger age groups that are less likely to receive
imaging exams [17, 18], and for follicular thyroid cancer,
which is less easily detected by newer diagnostic tech-
nologies [19]. Taken together, this supports the role of
other factors in addition to increased detection [20]. En-
vironmental and occupational exposures to chemicals
have been proposed as potentially important contribu-
tors to the increasing trend [21–24].
Organophosphate flame retardants have been com-

monly used in the 1990s and 2000s, and their use has
been increasing due to the phase out of the polybromi-
nated diphenyl ether (PBDE) flame retardants [25–27].
Firemaster 550®, a mixture of phosphorous-containing
compounds including triphenyl phosphate (TPHP), has
gained popularity as an additive to polyurethane foam
[26, 28, 29]. Tris (1,3-dichloro-isopropyl) phosphate
(TDCPP), previously restricted from use in children’s pa-
jamas in the 1970s due to concerns of carcinogenicity
(linked to tumor formation in liver, kidney, and testes of
rodents), also has been commonly used in polyurethane
foam and has increasingly been used as a replacement
for PBDEs [30]. These organophosphate esters have also
been used as plasticizers and lubricants in various con-
sumer products [27, 31, 32].
Little is known about exposures to these organophos-

phate esters. Emerging studies of exposure to TDCPP and
Firemaster 550® have observed widespread concentrations
in house dust samples worldwide [27, 28]; concentrations
tend to vary by home and by geographic region [28, 33].
Recent biomonitoring studies have demonstrated that ex-
posures are ubiquitous among U.S. adults [34–36]. Indi-
vidual characteristics predictive of higher exposures to
PFRs are not well-established, and the previous biomoni-
toring studies have focused primarily on pregnant women
and mother-child pairs [35, 37–40]. Further elucidation of
determinants of increased exposures to PFRs and the
mechanisms underlying observed variability across indi-
viduals are important for potential exposure mitigation ef-
forts and for interpreting biological monitoring data in
epidemiologic studies.
PFRs have been associated with perturbations in thyroid

hormone concentrations in preliminary experimental
studies, with some sex-specific and compound-specific

differences in the direction of the effect. Toxicological re-
sults with zebrafish and chicken embryos suggests TDCPP
and TPHP have the potential to alter thyroid hormone
regulation and synthesis [41–44]. Xu et al. observed a sig-
nificant reduction in plasma thyroxine (T4) and triiodo-
thyronine (T3) with TDCPP exposure in female, but not
male zebrafish [45, 46]. Liu et al. reported long-term ex-
posure to TPHP increased T3 and T4 in zebrafish [47]. A
recent in vitro study observed influences on thyroid hor-
mone transport through enhanced binding of T4 to the
transport protein transthyretin in response to exposure to
6 PFRs [48]. Human studies evaluating the role of these
PFR and thyroid function is quite limited with differing re-
sults. A study of U.S. men recruited from an infertility
clinic observed that higher concentrations of TDCPP in
house dust were linked to lower levels of T4 (n = 50) [49];
this association was not confirmed in an exploratory study
with biological monitoring of urinary PFR metabolites in a
subset of this population (n = 33) [50]. Preston et al. ob-
served an association between urinary concentrations of
TPHP metabolites and increased levels of T4, particularly
in women (n = 52 U.S. men and women) [51]. Although
there is a lack of direct evidence linking PFRs to thyroid
cancer risk, altered thyroid hormone and thyroid stimulat-
ing hormone (TSH) levels have been associated with the
risk of thyroid cancer. Epidemiologic evidence suggests
that T3 and T4 exhibit tumor-promoting effects for other
hormonally related cancers, such as ovarian, prostate, pan-
creatic cancers [52]. Epidemiologic studies have also ob-
served associations between TSH and risk of thyroid
cancer; a recent nested case-control study documented
sex-specific differences in this relationship and the poten-
tial for increased risk of papillary thyroid cancer among
individuals with TSH hormones outside of the normal
range on either the low or high end [53, 54]. In studies of
laboratory animals, TSH and thyroid hormones have also
been related to tumor growth [52], and high TSH levels
were linked to papillary thyroid cancer initiation in a
mouse model [55]. There is an urgent need to better
understand whether exposure to these chemicals leads to
increased thyroid dysregulation and increased cancer risk.
The objectives of this study were to advance under-

standing of the human exposures and health endpoints
of PFRs by (1) investigating the relationship between
PFR exposure and thyroid cancer in women and (2)
evaluating sociodemographic and temporal predictors of
PFR exposure.

Methods
Study population
The current, exploratory study included a subset of 200
female, Caucasian participants from a population-based
case-control study in Connecticut. The parent study has
been described previously [23, 56, 57]. Cases were
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individuals newly diagnosed with thyroid cancer from
2010 to 2011 in Connecticut, identified through the Yale
Cancer Center’s Rapid Case Ascertainment Shared Re-
source, the agent of Connecticut Tumor Registry. Eligi-
bility criteria included being aged 21 to 84 years at
diagnosis and having no previous diagnosis of cancer
(except for non-melanoma skin cancer). Tumor subtypes
were histologically confirmed (papillary, follicular, me-
dullary, and anaplastic). A total of 462 cases participated
(65.9% participation rate). Population-based controls
with Connecticut addresses were recruited using a ran-
dom digit dialing method. Controls were
frequency-matched to cases by age (+/− 5 years); their
participation rate was 61.5%. For the current analysis,
100 female papillary thyroid cancer cases were randomly
selected and 100 population-based controls were
matched to these cases by gender and age (5-year age
groups). We focused on women due to their higher thy-
roid cancer incidence compared to men and on papillary
thyroid tumors because they are the most prevalent. Be-
cause the parent study population was predominantly
Caucasian (90%), we restricted the analysis to white
women to reduce sources of heterogeneity in our ana-
lysis of 200 women. All study procedures were approved
by the Human Investigations Committee at Yale (HIC #
0911005954) and the Connecticut Department of Public
Health.

Data and sample collection
After obtaining participants’ written consent, a trained
interviewer administered a standardized, structured
questionnaire about demographic factors, lifestyle infor-
mation, medical conditions and medication use, family
medical history, occupation, and diet. After the inter-
view, spot urine samples were collected in polypropylene
collection cups and stored frozen at − 80 °C in 5-ml ali-
quots. Interviews and urine collections were conducted
from 2010 to 2013 and were scheduled at various times
of day, based on participants’ availability.

Laboratory analysis of PFR metabolites
For each participant, a 5-ml aliquot was analyzed for 6
PFR metabolites of the commonly used parent com-
pounds tris(1,3-dichloro-isopropyl) phosphate and triphe-
nyl phosphate: 1-hydroxy-2-propyl bis(1-chloro-2-propyl)
phosphate (BCIPHIPP), bis(1-chloro-2-propyl) phosphate
(BCIPP), diphenyl phosphate (DPHP), bis(1,3-dichloro-2--
propyl) phosphate (BDCIPP), isopropyl-phenyl phenyl
phosphate (ip-PPP), and tert-butyl phenyl phenyl phos-
phate (tb-PPP). Samples were analyzed using solid phase
extraction (SPE) and enzyme deconjugation followed by li-
quid chromatography-tandem mass spectrometry, follow-
ing a previously described, validated protocol [34, 35]. In
brief, samples were spiked with an internal standard

mixture (10 ng of d10-BDCIPP, 8.8 ng of d10-DPHP,
25 ng of d12-TCEP) and vortexed. Sodium acetate
(1.75 ml of 1 M sodium acetate) was added to adjust the
pH to 5. An enzyme solution was added (250 μl of
1000 units/ml μ-glucuronidase, 33 units/ml sulfatase in
0.2 M sodium acetate buffer), and samples were vortexed
and incubated overnight in a 37 °C water bath. Samples
were extracted and cleaned using SPE with a StrataX-AW
(60 mg, 3 ml) column, and were reconstituted in 500 μl of
1:1 water:methanol. Internal standard recovery was quan-
tified by spiking with 13C2-DPHP. Prior to analysis, the
specific gravity of the samples was measured to correct for
urinary dilution using a digital handheld refractometer
(Atago). The extracts were analyzed using electrospray
ionization (ESI) LC-MS/MS with a Phenomenex Luna
C18 column on an Agilent 1100 series LC and an Agilent
6410B tandem mass spectrometer as previously described
[34, 35, 37]. Laboratory researchers were blinded to case/
control status.
Method detection limits (MDLs) were calculated as

three times the standard deviation of the laboratory
blanks, normalized to the average urine volume (3 ml).
Average recoveries were 110% for dBDCIPP and 85% for
dDPHP. Laboratory blind duplicates (n = 10) had a mean
and median coefficient of variation of 19 and 15%. Spe-
cific gravity-corrected and uncorrected concentrations
were highly correlated across the 6 metabolites (rSpear-
man > 0.91) and results were very similar; therefore only
SG-corrected measurements are presented, consistent
with previous studies [35, 37].

Statistical analysis
Odds ratios (ORs) and 95% confidence intervals (CIs)
were calculated using logistic regression models to esti-
mate associations between exposures to PFRs and the
risk of thyroid cancer, while controlling for potential
confounders. Potential confounding variables included
in the final model were age (< 40, 40–49, 50–59, 60–69,
≥70), body mass index (BMI, < 25, 25–29.99, ≥30), edu-
cation level, family history of thyroid cancer, previous
benign thyroid disease (hyper- or hypothyroidism), and
alcohol consumption (lifetime consumption of ≤12 alco-
holic drinks vs. > 12 drinks). Adjustment for other vari-
ables, such as family income, smoking, and season of
interview did not result in a 10% change in the ORs, and
thus they were not included in the final models.
We modeled categories of exposure to individual and

summed PFRs and thyroid cancer risk using tertiles,
based on the distribution among controls, for the four
compounds detected in > 97% of samples (DPHP,
BDCIPP, ip-PPP, BCIPHIPP). We categorized BCIPP, de-
tectable in only 46% of samples, as <MDL, ≤ median of
detectable values, and >median of detectable values,
using the median among controls. tb-PPP was only
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detected in 6% of samples and was therefore excluded
from further statistical analyses. Tests for trend were
based on trisected chemical concentrations in the re-
gression models. For the compounds detectable in > 97%
of samples, we also modeled the continuous concentra-
tions of individual and summed PFRs (natural
log-transformed), replacing values <MDL with one-half
the detection limit. We also conducted analyses stratified
by tumor size (tumor diameter ≤ 1 cm [microcarcinoma]
and > 1 cm). All tests of statistical significance were
two-sided with an alpha of 0.05. Analyses were con-
ducted using R (version 3.2.4, platform
x86_64-apple-darwin13.4.0).
We used multiple linear regression models to examine

the relationship between natural log-transformed con-
centrations of PFR metabolites and self-reported individ-
ual characteristics (age, smoking status, alcohol
consumption, BMI, income, education) and temporal
factors (date of sample collection [continuous measure
scaled to years] and season of collection [December–
February, March–May, June–August, September–No-
vember]). We used step-wise backward elimination to
construct models with covariates of p-values< 0.1, a
benchmark commonly used in exposure determinants
analyses.

Results
Exposure to PFRs was ubiquitous in our study popula-
tion (Table 1). ip-PPP was present at the highest concen-
trations, with a median concentration and interquartile
range (IQR) of 2.35 ng/ml (1.33–4.51) across all samples,
followed by DPHP (median = 0.82 ng/ml, IQR = 0.49–
1.5), BDCIPP (median = 0.65 ng/ml, IQR = 0.31–1.6),
and BCIPHIPP (median = 0.19 ng/ml, IQR = 0.09–0.45).
Concentrations were similar between cases and controls
(Table 1). The concentrations of the specific-gravity cor-
rected PFRs were weakly correlated with each other
(rSpearman = 0.11–0.30; median = 0.21; correlations were
moderate among uncorrected values (median rSpearman =
0.19–0.44; median = 0.27) (Additional file 1: Table S1a
and 1b).

The distributions of demographic characteristics of the
female papillary thyroid cancer cases and controls are pre-
sented in Table 2. Compared with controls, cases were less
educated (p-value = 0.009) and were more likely to have a
previous benign thyroid disease (p-value = 0.02). Distribu-
tions of family income, and smoking status were similar
among cases and controls.
None of the individual PFRs were positively associated

with risk of papillary thyroid cancer, based on categorical
and continuous forms of the exposure variables (Table 3).
The odds ratios for BCIPP presented a suggestion of an
inverse association with thyroid cancer risk; however all
95% confidence intervals included the null (p-value for
trend = 0.06). Results stratified by tumor sizes were also
generally null (Table 4). The odds ratios comparing the
highest to lowest exposure categories for the larger tumor
sizes suggested an elevated risk for DPHP, BDCIPP,
IPDPP; however, confidence intervals were wide.
Our exposure determinants analysis demonstrated a

relationship between higher BMI and two of the urin-
ary PFR metabolite concentrations (BDCIPP, ip-IPP)
(Table 5). Compared to women in the normal BMI
categories, women in the obese BMI categories had
approximately 1.7-times higher levels of all the PFRs
and summed PRF. We observed lower concentrations
of BCIPP and the summed PFRs in 2011–2013 com-
pared to 2010. We observed some seasonal differ-
ences with BDCPP, ip-IPP and the summed PFR
concentrations highest in summer and lowest in win-
ter. Ever smokers had lower concentrations of
BDCIPP and ever alcohol consumers had higher con-
centrations of DPHP. No associations with age, in-
come, or education were observed.

Discussion
To our knowledge, this is the first study evaluating bio-
markers of exposure to PFRs and risk of thyroid cancer.
In our analysis of adult women, we found no association
between exposure to PFRs and risk of papillary thyroid
cancer. We observed that urinary PFR levels vary by sea-
son and BMI.

Table 1 Distributions of concentrations of urinary metabolites of organophosphate flame retardants (ng/ml; specific gravity-
corrected) in female papillary thyroid cancer cases and controls

Flame
retardant

MDL %
Detected

Cases (n = 100) Controls (n = 100)

Median 25th–75th Percentile Median 25th–75th Percentile

BCIPP 0.185 44.5 0.242 <MDL – 0.280 <MDL <MDL – 0.705

DPHP 0.104 97 0.802 0.457–1.549 0.843 0.506–1.450

BDCIPP 0.046 97.5 0.729 0.344–1.777 0.604 0.276–1.336

ipPPP 0.020 100 2.569 1.361–4.758 2.251 1.300–4.201

BCIPHIPP 0.001 99.5 0.160 0.084–0.377 0.214 0.093–0.564

bis(1-chloro-2-propyl)1-hydroxy-2-propyl phosphate (BCIPHIPP), bis(1-chloro-2-propyl) phosphate (BCIPP), diphenyl phosphate (DPP), bis(1,3-dichloro-2-propyl)
phosphate (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and tert-butyl phenyl phenyl phosphate (tb-PPP), MDL (method detection limit)
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In general, the concentrations of PFR metabolites in
our adult, female Connecticut population (2010–2013)
were lower than those observed in adults (mostly preg-
nant women) in other time frames and geographic areas,
as reviewed in a recent study [58]. The exception was
ip-PPP; our observed concentrations were similar or
higher to the few recent cohorts measuring that specific
compound. The lower observed concentrations in urin-
ary PFR metabolites in our study could be attributable to
differences in toxicokinetics (e.g., kidney function) or ex-
posure patterns among our population of women, who
were not pregnant and had median age 10–20 years
greater than the previous studies of pregnant women.
Differences could also reflect geographic variations in
flammability standards.
Exposure to PFRs was widespread in our population.

Our exposure determinants analysis revealed associa-
tions between higher PFR concentrations and increased
BMI. Possible explanations include the obesogenic po-
tential of PFRs themselves [59] or common activities or
behaviors leading to both higher BMI and higher expos-
ure [58]. Neither income nor education were linked to
urinary PFR concentrations; however, the participants
were generally white, well-educated women living above
the poverty line, reducing our power to fully examine
these demographic patterns. We also observed a strong
seasonal pattern, with higher urinary PFR levels in the
summer, consistent with a previous exposure determi-
nants analysis [58]. This relationship could reflect in-
creased volatilization of PFRs and subsequent increased
inhalation exposure in warmer months [60], increased
dermal exposure due to greater surface area of exposed
skin and increased perspiration, or possibly incomplete
adjustment for relative dehydration in summer months
(i.e., lower dilution of samples), although all samples
were corrected for specific gravity.
Our study has several strengths, including its novel

study question, population-based study design, and rapid
and thorough identification of incident cases using the
Connecticut Tumor Registry. All the cases were histo-
logically confirmed to minimize misclassification of out-
comes; information on tumor size was available for
analysis. Detailed information on potential confounding
factors were collected and controlled for in the analysis.
Finally, the use of a biological marker of PFR exposure is
an objective exposure measure. Finally, our study pro-
vides additional exposure data on these ubiquitous,
endocrine-disrupting chemicals.
Several limitations warrant consideration. The most

important is that our samples were collected
post-diagnosis. As with all retrospective case-control
studies of biomarkers and chronic disease, the exposures
may not be representative of past exposure during etio-
logically relevant time windows, which have not yet been

Table 2 Distribution of selected characteristics of the papillary
thyroid cancer cases and controls

Cases (n = 100) Control
(n = 100)

N or %a N or (%)a p-valueb

Age 0.47

< 40 23 17

40–49 24 28

50–59 39 31

60–69 19 15

> =70 4 9

Years of education 0.009

High school or less 25 9

College/Technical
school

47 55

Graduate/Professional
school

25 35

Other 3 1

Family income 0.83

Below poverty level 6 5

Above poverty level 71 68

Unknown 23 27

BMI 0.18

< 25 32 38

25–29.99 32 38

> =30 36 24

Family history of
thyroid cancer

0.39

No 49 49

Thyroid Cancer 16 10

Other Cancer 35 41

Thyroid disease 0.02

Yes 14 4

No 86 96

Smoking 0.76

Yes 29 32

No 71 68

Alcohol consumption 0.20

Yes 37 47

No 63 53

Tumor diameter –

≤ 1 cm 47 –

> 1 cm and≤ 2 cm 29 –

> 2 cm 22 –

Not available 2 –
aThe frequency and percentage are equivalent because the number of cases
and controls each equals 100
bBased on chi-squared test or Fisher’s exact test when ≥1 cell has an
expected frequency ≤ 5
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established for thyroid cancer. Additionally, measure-
ments of PFRs in spot urine collections may not be rep-
resentative of usual, long-term exposure due to their
short half-lives. Intra-class correlation coefficients for re-
peated urinary BDCIPP and DPHP concentrations mea-
sured over 3 to 9 months range from 0.3 to 0.7 [36, 61].
The resulting misclassification from post-diagnosis, spot
urine samples would likely attenuate risk estimates. Un-
fortunately, no long-term biomarkers of exposure exist.
Another potential limitation with a post-diagnosis urine
sample is that disease status or chemo- or radio-therapy

could affect the concentrations of PFRs, though we do
not expect this. Unlike other cancer sites, papillary thy-
roid cancer patients are treated either by surgery alone
or surgery and postoperative 131I treatment. This is an
extremely effective and specific treatment for thyroid
cancer; no other organs or cells are affected by the
radioactive iodine. As such, the treatment for papillary
thyroid cancer patients is less likely to affect the urinary
levels of PFRs. A nested case-control or cohort study
with repeated samples would be needed to overcome
these limitations. Measurement of PFRs in residential

Table 3 Adjusted and unadjusted odds ratios and 95% confidence intervals for the association of urinary concentrations of
organophosphate flame retardants (ng/ml; specific gravity-corrected) and papillary thyroid cancer in Connecticut women

Organophosphate flame retardant (ng/ml) Cases Controls Unadjusted OR (95% CI) p- trend Adjusted OR (95% CI)a p-trend

BCIPP

<MDL 61 50 1 1

≥MDL - 0.45 26 25 0.85 (0.44, 1.66) 0.72 (0.34, 1.54) 0.06

> 0.45 13 25 0.43 (0.19, 0.91) 0.04 0.44 (0.18, 1.03)

Continuousb 100 100 0.88 (0.77, 1.01) 0.89 (0.76, 1.04)

DPHP

< 0.59 34 33 1 1

0.59–1.28 34 33 1.00 (0.51, 1.97) 1.02 (0.47, 2.22) 0.88

> 1.28 32 34 0.91 (0.46, 1.80) 0.80 1.06 (0.49, 2.29)

Continuousb 100 100 0.94 (0.72, 1.21) 0.99 (0.74, 1.31)

BDCIPP

< 0.37 31 33 1 1

0.37–0.96 28 33 1.17 (0.59, 2.35) 1.08 (0.50, 2.36) 0.46

> 0.96 41 34 1.24 (0.63, 2.46) 0.54 1.33 (0.62, 2.86)

Continuousb 100 100 1.07 (0.87, 1.31) 1.07 (0.85, 1.34)

IPDPP

< 1.60 32 33 1 1

1.60–3.56 26 33 0.90 (0.45, 1.83) 0.89 (0.41, 1.59) 0.66

> 3.56 42 34 1.28 (0.66, 2.51) 0.45 1.17 (0.54, 2.54)

Continuousb 100 100 1.12 (0.83, 1.52) 1.06 (0.75, 1.48)

BCIPHIPP

< 0.12 38 33 1 1

0.12–0.32 34 33 0.89 (0.46, 1.75) 0.92 (0.44, 1.93) 0.30

> 0.32 28 34 0.72 (0.36, 1.41) 0.34 0.66 (0.30, 1.42)

Continuousb 100 100 0.85 (0.69, 1.03) 0.82 (0.65, 1.01)

Summed PFR

< 4.10 35 34 1 1

4.10–7.95 29 33 0.85 (0.43, 1.70) 0.94 (0.43, 2.00)

> 7.95 36 33 1.06 (0.54, 2.07) 0.87 1.07 (0.50, 2.31) 0.86

Continuousb 100 100 0.96 (0.71, 1.31) 0.93 (0.65, 1.33)

bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), bis(1-chloro-2-propyl) phosphate (BCIPP), diphenyl phosphate (DPP), bis(1,3-dichloro-2-propyl)
phosphate (BDCIPP), isopropyl-phenyl phenyl phosphate (IP-PPP), and tert-butyl phenyl phenyl phosphate (tb-PPP), odds ratio (OR), 95% confidence interval (95%
CI), PFR (organophosphate flame retardant)
aAdjusted for age, BMI, education level, family history of thyroid cancer, previous benign thyroid disease, and alcohol consumption
bOdds ratio calculated for each 1og of 1 ng/ml
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dust samples could also be used to as a proxy for past
exposures, as they may be representative of longer time
periods. However, these measures only capture the home
environment and do not capture exposures occurring in
vehicles, the workplace, or via dietary intake.
Limitations related to our population were our

moderate number of cases (n = 100). Also, though our
study was population-based, the generalizability is
limited to those populations with similar exposures
and to Caucasian women. Future studies could

explore whether there are associations between PFR
exposure and risk of thyroid cancer in men, women
of other races and ethnicities, and populations in
other geographic regions.

Conclusions
The widespread PFR exposures within our population
were linked to BMI and season. Despite the evidence
of disruption of thyroid homeostasis by PFRs, this
study does not provide support for an increased risk

Table 4 Odds ratios and 95% confidence intervals for the association of urinary concentrations of organophosphate flame
retardants (ng/ml; specific gravity-corrected) and microcarcinomas and larger tumor papillary thyroid cancer in Connecticut women

Microcarcinomas (Tumor Diameter≤ 1 cm) Larger Tumor Size (Tumor Diameter > 1 cm)

Organophosphate Flame Retardant (ng/ml) Cases Controls ORa 95% CI p- trend Cases Controls ORa 95% CI p- trend

BCIPP

<MDL 32 50 1 28 50 1

≥MDL - 0.45 9 25 0.52 (0.18, 1.38) 0.06 16 25 0.99 (0.38, 2.56) 0.31

> 0.45 6 25 0.38 (0.12, 1.09) 7 25 0.51 (0.15, 1.56)

Continuousb 47 100 0.84 (0.69, 1.03) 51 100 0.94 (0.77, 1.14)

DPHP

< 0.59 17 33 1 16 33 1

0.59–1.28 15 33 0.87 (0.33, 2.29) 0.61 18 33 0.94 (0.33, 2.67) 0.57

> 1.28 15 34 0.78 (0.29, 2.05) 17 34 1.32 (0.49, 3.64)

Continuousb 47 100 0.86 (0.56, 1.26) 51 100 1.08 (0.76, 1.55)

BDCIPP

< 0.37 15 33 1 14 33 1

0.37–0.96 15 33 0.76 (0.28, 2.03) 0.90 18 33 1.02 (0.36, 2.86) 0.49

> 0.85 17 34 1.03 (0.41, 2.65) 19 34 1.43 (0.51, 4.08)

Continuousb 47 100 0.98 (0.74, 1.31) 51 100 1.12 (0.84, 1.51)

IPDPP

< 1.60 17 33 1 13 33 1

1.60–3.56 12 33 0.79 (0.30, 2.08) 0.99 16 33 1.00 (0.35, 2.84) 0.52

> 3.56 18 34 1.01 (0.39, 2.55) 22 34 1.37 (0.50, 3.83)

Continuousb 47 100 1.06 (0.70, 1.60) 51 100 0.98 (0.62, 1.54)

BCIPHIPP

< 0.12 18 33 1 20 33 1

0.12–0.32 18 33 1.06 (0.44, 2.57) 0.25 15 33 0.81 (031, 2.10) 0.27

> 0.32 11 34 0.54 (0.19, 1.45) 16 34 0.57 (0.21, 1.52)

Continuousb 47 100 0.79 (0.57, 1.06) 51 100 0.77 (0.59, 1.00)

Summed PFR

< 4.10 20 34 1 14 34 1

4.10–7.95 12 33 0.65 (0.25, 1.66) 17 33 1.37 (0.50, 3.83) 0.55

> 7.95 15 33 0.75 (0.29, 1.93) 0.53 20 33 1.37 (0.50, 3.79)

Continuousb 47 100 0.77 (0.47, 1.22) 51 100 1.02 (0.66, 1.57)

bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), bis(1-chloro-2-propyl) phosphate (BCPP), diphenyl phosphate (DPP), bis(1,3-dichloro-2-propyl)
phosphate (BDCPP), isopropyl-phenyl phenyl phosphate (IP-DPP), and tert-butyl phenyl phenyl phosphate (tb-PPP), odds ratio (OR), 95% confidence interval
(95%CI), PFR (organophosphate flame retardant)
aAdjusted for age, BMI, education level, family history of thyroid cancer, previous benign thyroid disease, and alcohol consumption
bBased on log-transformed PFR concentrations; odds ratio calculated for each 1og of 1 ng/ml
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of thyroid cancer associated with exposure to PFRs,
measured at the time of diagnosis. Given the biologic
plausibility, the relationships between PFR exposure
and thyroid cancer risk warrant further investigation
in a larger study population with additional biomarker
measurements.

Additional file

Additional file 1: Table S1a. Spearman correlations among
organophosphate flame retardants (specific gravity-corrected) (n = 200).
Table S1b. Spearman correlations among organophosphate flame retar-
dants (not specific gravity-corrected) (n = 200). (DOCX 17 kb)
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dichloro-2-propyl) phosphate; BMI: Body mass index; DPHP: Diphenyl
phosphate; ip-PPP: Isopropyl-phenyl phenyl phosphate; OR: Odds ratio;
PBDE: Polybrominated diphenyl ether; PFRs: Organophosphate flame
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