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Abstract

Background: Progesterone receptor (PR) is expressed from a single gene as two isoforms, PRA and PRB. In normal
breast human tissue, PRA and PRB are expressed in equimolar ratios, but isoform ratio is altered during malignant
progression, usually leading to high PRA:PRB ratios. We took advantage of a transgenic mouse model where PRA
isoform is predominant (PRA transgenics) and identified the key transcriptional events and associated pathways
underlying the preneoplastic phenotype in mammary glands of PRA transgenics as compared with normal
wild-type littermates.

Methods: The transcriptomic profiles of PRA transgenics and wild-type mammary glands were generated using
microarray technology. We identified differentially expressed genes and analyzed clustering, gene ontology (GO),
gene set enrichment analysis (GSEA), and pathway profiles. We also performed comparisons with publicly available
gene expression data sets of human breast cancer.

Results: We identified a large number of differentially expressed genes which were mainly associated with
metabolic pathways for the PRA transgenics phenotype while inflammation- related pathways were negatively
correlated. Further, we determined a significant overlap of the pathways characterizing PRA transgenics and those
in breast cancer subtypes Luminal A and Luminal B and identified novel putative biomarkers, such as PDHB and
LAMBS.

Conclusion: The transcriptional targets identified in this study should facilitate the formulation or refinement of
useful molecular descriptors for diagnosis, prognosis, and therapy of breast cancer.
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Background

Estrogen and progesterone signaling via their receptors
play important roles not only in normal mammary gland
development but also in breast cancer progression [1, 2].
Gene expression profiling has revealed at least five
subtypes of breast cancer: luminal A (LumA), luminal B
(LumB), HER2, basal and normal [3, 4]. Importantly, the
immunophenotypic evaluation, i.e, the analysis of markers
by immunohistochemistry such as estrogen receptor (ER),
PR, Ki67, HER2 and basal cytokeratins (CK 5/6, CK14) is
a useful surrogate of the gene expression defined-subtypes
in the clinical setting [5].

PR is expressed from a single gene as two isoforms,
PRA and PRB. The two isoforms are expressed at similar
levels in the breast, but the ratio can be altered in
human breast tumors, with the PRA isoform predomin-
ating [6]. Moreover, high PRA/PRB ratios predicted
shorter disease-free survival in patients who received
local therapy followed by adjuvant tamoxifen, indicating
resistance to tamoxifen and underscoring the prognostic
value of discriminating PR isoforms [7, 8]. Importantly,
preclinical studies with murine and human tumors and
ex vivo human breast cancer tissue culture assays
showed that antiprogestin responsiveness in breast can-
cer is determined by the PRA/PRB expression ratio, spe-
cifically, an inhibitory effect of the antiprogestin
mifepristone is only obtained in tumors with higher
levels of PRA than PRB [9, 10].

In vitro, inducing a high PRA/PRB ratio in the T47D
cell line conferred responsiveness to progestins to a set
of genes involved in cellular metabolism and regulation
of cell shape and adhesion. In accordance, progestin
treatment resulted in reduced cell adhesion, which was
significantly decreased even further when PRA was pre-
dominant [11]. Other studies aiming to determine the
relative contributions of PR isoforms functions of PRA
and PRB have employed cell lines engineered to express
only a single PR isoform [12]. Due to common features,
the mouse mammary gland is a useful model for normal
human breast, and breast cancer [1] and transgenic mice
allow exploring hormone receptor actions in the gland.
Transgenic mice carrying either an additional A form of
PR (PRA transgenics) or the B form of PR show abnor-
mal mammary gland features [13]. In particular, mam-
mary glands of PRA transgenics exhibit extensive lateral
branching, ductal hyperplasia, a disorganized basement
membrane and loss of cell-cell adhesion [13—15]. Studies
using the molecular markers for transformation, as
defined by Medina [16], revealed that these mammary
glands contained at least two distinct populations of
transformed epithelial cells. The ducts with normal
histology contained cells resembling immortalized cells,
while hyperplasias consisted of cells in later stages of
transformation associated with early pre-neoplasias and
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exhibited increased epithelial cell proliferation [15].
Similarly, loss of coordinate expression of PRA and PRB
occurs early in human breast cancer progression [17].
Therefore, evidence supports that misregulation of the
PRA/PRB expression ratio can have major implications
for mammary carcinogenesis.

In the present study, using the well characterized PRA
transgenic mouse model, we sought to determine the full
repertoire of target transcripts and pathways underlying
the aberrant phenotype of mammary glands in PRA
transgenics as compared with wild-type litter-mates in a
relevant in vivo microenvironment under physiological
hormone conditions. Further, using publicly available
gene expression data sets of human breast cancer, we
have explored the potential overlapping relevant pathways
with breast cancer and identified novel putative bio-
markers. Understanding the molecular context of deregu-
lated PR action in the mammary gland may well
accelerate the formulation of useful molecular descriptors
for diagnosis, prognosis, and therapy of breast cancer.

Methods

Mice

Nulliparous adult FVB mice (20-25 weeks) were used in
this study. The generation of PR-A transgenic mice,
which carry an imbalance in the normal ratio of the two
forms of PR by overexpression of the A form, has been
previously described [13]. In brief, we used a binary trans-
genic system in which the GAL-4 gene, driven by the mur-
ine cytomegalovirus (CMV) promoter (CMV-GAL-4
mice), served as the transactivator of the PR-A gene, car-
rying four GAL-4-binding sites (UAS; UAS-PR-A mice).
Crossing the CMV-GAL-4 mice with UAS-PR-A mice re-
sulted in bigenic mice carrying additional PR-A gene [13].
The animals were housed in the Animal Care Division at
the Institute of Oncology “Angel H. Roffo” in an
air-conditioned room at 22 °C under a 12-h light/dark
cycle with access to food and tap water ad libitum and
treated in accordance with the NIH Guide for Humane
Use of Animals in Research.

Harvesting mammary gland RNA

Mice were euthanized by cervical dislocation, and mam-
mary glands were harvested from all mice at diestrus,
given that serum progesterone levels and the morpho-
logical grade, epithelial proliferation, and apoptosis in
the mammary gland all peak at this stage [18]. A total of
seven animals were used (3 wild-type, 4 PRA transgenic).
In each case, a single abdominal gland was removed
following excision of lymph nodes and immediately
frozen in liquid nitrogen. Tissue was pulverized in a
Thermo-vac tissue pulverizer (Thermovac Industries
Corp.) at liquid nitrogen temperature. The resulting
powder was transferred into tubes containing 1.5 ml of
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Trizol reagent (Thermo Fisher Scientific Inc.) and homog-
enized by passing the lysate through sterile, disposable
21G needle 5 times twice. Following homogenization,
samples were centrifuged at 12000xg for 10 min at 4 °C.
The fatty layer above the supernatant was removed and
discarded, and the cleared supernatant was transferred to
a new tube. Total RNA was extracted according to manu-
facturer’s instructions, followed by additional column
purification (RNeasy Mini Kit, Qiagen Inc.). We chose a
reference-based 2-color microarray design given that it de-
creases intra- and inter-experimental variability by relating
expression measurements of experimental RNA to a com-
mon reference, rather than relying on absolute signal
intensity. At the same time, the use of spike-in controls
allowed to monitor the system for linearity, sensitivity,
and accuracy (https://www.genomics.agilent.com/files/
Manual/Spike-in_Kit.pdf). RNA integrity was assessed
using the RNA 6000 Nano Assay and Agilent 2100
Bioanalyzer (Agilent Technologies Inc.).

Microarray analysis

Labeled cRNA was prepared from 50 ng RNA using the
Low Input QuickAmp Labeling Kit Two-Color and RNA
Spike-In Kit for Two colors v4.0 (Agilent Technologies
Inc.) according to manufacturer’s instructions, followed
by RNeasy Mini Kit (Qiagen Inc.) purification. Experi-
mental samples were labeled with Cy5 and Universal
Mouse Reference RNA (Agilent Technologies Inc.) with
Cy3. Dye incorporation and cRNA yield were checked
with the NanoDrop Spectrophotometer (NanoDrop
Technologies Inc.). Then, 300 ng of Cy5/Cy3-labeled
cRNA was fragmented and prepared for hybridization
using the Gene Expression Hybridization Kit (Agilent
Technologies Inc.) following manufacturer’s instructions
and hybridized to SurePrint G3 Mouse Gene Expression
v2 8x60K (Agilent Technologies Inc.) for 17 h at 65 °C
in a rotating hybridization oven. After hybridization, mi-
croarrays were washed for 1 min at room temperature
with GE Wash Buffer 1 (Agilent Technologies Inc.) and
1 min with 37 °C GE Wash buffer 2 (Agilent Technolo-
gies Inc.) containing 0.005% Triton X-100. Slides were
scanned immediately after washing using the G4900DA
SureScan microarray scanner system, features were
extracted with Agilent Feature Extraction Software
(Agilent Technologies Inc.) and good quality control
metrics were confirmed for all report files. Data analyses
were conducted with GeneSpring GX software (Agilent
Technologies Inc.). Input data was pre-processed by
baseline transformation to the median of all samples.
After grouping of replicates according to their respective
experimental condition differential gene expression was
statistically determined by unpaired T-test with signifi-
cance set at p <0.05. An unbiased grouping of samples
was created only on the basis of their molecular profiles
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by unsupervised clustering analysis. Transcripts were
subjected to hierarchical clustering with Euclidean
distance metrics and average linkage using GeneSpring.
In the supervised analysis, the transcripts identified as
differentially expressed were used for hierarchical clus-
tering as described above.

Gene ontology analysis

Statistically overrepresented GO categories within differ-
entially expressed gene lists were determined using
BiNGO (Biological Network GO) [19] and visualized
using Cytoscape. The statistical test was the Hypergeo-
metric test with Benjamini & Hochberg False Discovery
Rate (FDR) correction and 0.05 significance level. GO
annotation and ontology files were from the GO consor-
tium (www.geneontology.org), and the reference set
included all the genes on the microarray.

Gene set enrichment analysis

GSEA [20] was carried out by using the GSEA software,
version 3.0, obtained from the Broad Institute (http://
www.broadinstitute.org/gsea/downloads.jsp). Expression
data sets (.GCT format), phenotype labels (.CLS format)
and annotations (.CHIP format) were created according
to GSEA specifications. We computed overlaps with the
H (hallmark gene sets), C2 (curated gene sets) and C5
(GO gene sets) collections. The C2 collection analysis
was divided for the subcollections cp (canonical path-
ways: Biocarta, KEGG, and Reactome) and CGP (chem-
ical and genomic perturbations), the latter was filtered
by the search “mammary OR breast” and “Mus muscu-
lus” and “Homo sapiens” organisms, resulting in a collec-
tion of 442 gene sets. Gene set permutations (to avoid
the potential problem of a small sample size) were done
1000 times for each analysis using the weighted enrich-
ment statistic and signal to noise metric. Gene sets that
met the false discovery rate lower than 25% criterion
were considered significant. When necessary, enrich-
ment maps [21] were plotted to visualize GSEA analysis
results and overcome gene set redundancy.

For comparison purposes, GSEA files were prepared for
breast cancer gene expression data (METABRIC, [22, 23],
downloaded from ¢BIO portal [24, 25] using the PR+ sam-
ples in LumA and LumB subtypes, and the Basal and
Her2+ subtypes compared with Normal. GSEA was
computed with the H collection. The pathway list overlap
between the significant pathways in PRA transgenics
and the breast cancer subtypes was calculated with
overlap stats program (http://www.nemates.org/MA/
progs/overlap_stats.html) which calculates the signifi-
cance of the overlap (P value) by using hypergeo-
metric probability.
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Kaplan-Meier curves

Kaplan-Meier plotter (http://kmplot.com/analysis/) was
used to perform a meta-analysis based biomarker assess-
ment. Relapse-free survival curves were generated with
patients split according to the best cutoff values
auto-selected by the tool, using only JetSet best probe
sets, removing redundant probes and excluding biased
arrays. P values are from log-rank test.

Results

Transcriptional changes in PRA transgenic mammary glands
To better understand the effects of PRA overexpression
on breast cancer, we compared the expression profile in
mammary glands of PRA transgenics with wild-type lit-
termates using oligonucleotide microarray analysis. The
expression signatures for wild-type and PRA transgenic
mammary glands were strong enough to be recognized
by unsupervised clustering (Fig. la). A volcano plot
representing the distribution of the fold changes (FC)
and P-values, showed that 401 of 56,344 probes were
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significantly (P <0.01, unpaired t-test, FC>2) different
in PRA transgenic mice as compared with wild-type
(255 down and 92 up-regulated, Fig. 1b). Focusing on
these most differentially expressed genes (DEG), we
applied clustering across samples and genes, using the
Euclidean distance metric and average-linkage and plot-
ted a heat map, where the genes (columns) and samples
(rows) are ordered by their corresponding hierarchical
clusters (Fig. 1c). As expected, we observed robust gene
clusters from replicate data sets.

Gene ontology analysis

DEGs were interrogated for their GO classes using
BiNGO (Biological Network GO) to identify overrepre-
sented functional themes, using the complete list of
transcripts in the microarray as a reference set. We
could not identify significantly enriched categories with
this first approach. Therefore we used a less stringent
cut-off (=1.5 FC and P<0.05) to define the DEG list.
BiNGO mapping outputs are presented as Cytoscape
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Fig. 1 a) Dendrogram depicting unsupervised clustering of array data for 4 PR-A transgenics and 3 wild-type samples. b) Volcano plot for
differentially expressed genes (DEG). DEG appear above the green horizontal line (unpaired t-test, P < 0.01). Genes induced > 2-fold are on the
right of the right green vertical line (red colored), and the ones repressed > 2-fold are on the left of the left green vertical line (blue colored).
c) Heat map depicting the relative fold change in expression levels of the 401 transcripts that were differentially expressed by 22.0-fold
(P<0.01, 255 downregulated, blue and 92 upregulated, red) between the PRA transgenic and the wild-type group
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graphs (Fig. 2). For the upregulated genes, the anatom-
ical structure development category amongst the bio-
logical processes was significantly overrepresented
(corrected P<0.05), suggesting an active remodeling
process (Fig. 2a). As for downregulated genes (Fig. 2b),
there were changes mainly at the plasma membrane, as in-
dicated by over-representation of this cellular compart-
ment (corrected P<0.01). Consequently, the enriched
cellular processes included transmembrane transport and
cell adhesion (corrected P < 0.001).

Also, as an in silico approach to validate the micro-
array data generated in the present study, we compared
our DEG data set with PR regulated genes identified in a
previous study. Fifty-five genes of our list (1.5 FC and
P <0.05) had been previously identified as regulated by
PR in a human breast cancer cell line model that allows
controlled expression of PRA/PRB [26] (Table 1).

Gene set enrichment analysis

GSEA was performed for the PRA > wild-type compari-
son using C2 (curated gene sets), C5 (GO gene sets) and
the H (hallmark gene sets) collections in MSigDB. We
chose to interrogate the C2 collection to identify
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Fig. 2 BiINGO results visualized as Cytoscape graphs for a) down-
regulated genes and b) up-regulated genes in PRA transgenic
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Test with Benjamini & Hochberg's False Discovery Rate correction).
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relevant pathways, C5 to confirm and extend our previ-
ous GO analysis and H collection for detecting specific
biological processes, given that the latter was developed
by a combination of automated approaches and expert
curation and is more effective and accurate by reducing
noise and redundancy [27].

The C2 collection (chemical and genomic perturbation
-CGP- sub-collection) was limited to the specific context
of the mammary gland, employing a search with the
terms “mammary OR breast” in the MSigDB resource.
Three gene sets were positively correlated with the PRA
phenotype, including two sets of genes within amplicons
16p13 and 22ql3 identified in a study of 191 breast
tumor samples [28]; the corresponding enrichment plots
are depicted in Fig. 3a. Of note, amplicon 16p13 is one
of the most frequent and well-characterized amplicons
in human breast cancer. A high number of gene sets
(115) were correlated with the wild-type phenotype. To
overcome gene-set redundancy and help in the interpret-
ation we used enrichment map visualization and three
approximately homogeneous clusters were manually
identified as: (i) gene sets related to mammary gland
morphological changes or breast cancer subtypes; (ii)
gene sets related to estradiol or tamoxifen response and
(ili) gene sets comprising targets of polycomb complexes
(Fig. 3b).

Finally, analysis of the H collection revealed eight
pathways positively correlated with the PRA phenotype,
including metabolism-related pathways (cholesterol
homeostasis, metabolism of fatty acids, oxidative phos-
phorylation, glycolysis and mTORC]1 signaling), as well
as genes important for mitotic spindle assembly and a
subgroup of genes regulated by MYC-version 2 (v2).
Nineteen gene sets were positively correlated with the
wild-type phenotype (downregulated in PRA). Four gene
sets comprised genes involved in inflammation-related
pathways. The remaining included hallmark pathways of
apoptosis and UV response, epithelial-to-mesenchymal
transition (EMT) and TGEF-beta signaling, and the devel-
opmental hedgehog signaling pathway. The complete list
of pathways is presented in Table 2.

The results of querying the C2.CP Reactome and
KEGG pathways subcollections reinforced the findings
obtained with the Hallmark collection. Interestingly, the
steroid hormone biosynthesis KEGG pathway correlated
with PRA downregulated genes (FDR =0.106). Also, as
expected, C5 GO collection provided similar results as
BinGO, thus cross-checking our first analysis.

Overlapping hallmark pathways in human breast cancer
subtypes

It has been reported that the distinct stages of human
breast cancer progression premalignant, preinvasive and
invasive have remarkable similar transcriptomes with the
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Table 1 Differentially expressed genes in our gene set supported by previous data [26]

Upregulated (12)

Downregulated (43)

CACNG7 DOCK4 FAM46A GLIS3 KDM4A NEBL NLRP3
ODC1 PITX2 STEAP2 TLR4 TOM1L2

ATP8B1 BTNL2 CAV3 CDC14A DDIT4 ETS1 FAM84A FNDC5 GIGYF2 GPR39 HDACO IER3 IL7R
KLF2 KLRC1 LAMB3 LIMCH1 LYPD1 MALT1T MAMLD1 NAV2 NEK10 NR4A1 PCDH17 PDE1C

PDE4B PDE4DIP PDK4 PDZD2 RGS7 ROR1T SDK1 SH3TC2 SHISA3 SLC16A9 SNCAIP SOCS1
SYT12 TACC2 TNST TSGA10 TTC39A VAMP1 ZFYVE28

most significant gene expression changes taking place in
the early stages [29, 30]. Porter et al. reported that the
most dramatic changes occurred at the normal to ductal
carcinoma in situ (DCIS) transition, including the uni-
form downregulation of 34 genes; while no “in situ” or
“invasive” signature was clear [30]. Further, aberrant PR
isoform ratios are detected early in the progression of
breast lesions from the normal state to malignancy [17].
In view of this, we aimed to assess to what extent the
key pathways described above for the PRA > wild-type
comparison (Table 2) were similarly enriched in human
breast cancer tumor samples of different subtypes. To
this end, we determined the enriched pathways for
breast cancer subtypes using the transcriptomic data
from a much larger data set (METABRIC, [22, 23])
downloaded from cBioPortal [24, 25]. We run GSEA
analysis using the hallmark collection with this data,
comparing the subtypes mainly positive for PR, LumA

and LumB, with normal. Then, we calculated the overlap
of the obtained pathways with those identified in our
study (Table 3). Of note, we observed a significant over-
lap of upregulated pathways between the mammary
glands of PR-A transgenic and the human LumB breast
cancer subtype. Further, the downregulated pathways
overlapped significantly with both LumA and LumB sub-
types, while no overlapping was observed with the path-
ways associated with the non-PR expressing subtypes
Her2 and Basal (data not shown). To narrow down fur-
ther analysis we focused on the most upregulated and
downregulated pathways: oxidative phosphorylation and
TNFA signaling via NFKB, respectively to study the par-
ticipating genes in more detail.

Genes from the oxidative phosphorylation pathway
When comparing genes obtained by GSEA statistic com-
putation and Genespring (which we used to obtain our
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Table 2 Significant up or downregulated pathways of the hallmark MSigDB collection in PRA transgenic mammary glands, according to
GSEA analysis with FDR < 25%

Pathways NES NOM p-val FDR g-val
Upregulated OXIDATIVE PHOSPHORYLATION 1.90 0.00 0.003
ADIPOGENESIS 140 0.01 0.139
MITOTIC SPINDLE 1.40 0.01 0.124
GLYCOLYSIS 130 0.05 0219
CHOLESTEROL HOMEOSTASIS 1.30 0.12 0.224
DNA REPAIR 1.20 0.10 0.259
MTORC1 SIGNALING 1.20 0.08 0.234
MYC TARGETS V2 1.20 0.17 0.231
FATTY ACID METABOLISM 1.20 0.15 0.221
Downregulated TNFA SIGNALING VIA NFKB -2.20 0.00 0.000
IL6 JAK STAT3 SIGNALING —-2.00 0.00 0.001
ALLOGRAFT REJECTION -1.90 0.00 0.003
INFLAMMATORY RESPONSE -1.80 0.00 0.003
TGF BETA SIGNALING -1.70 0.00 0.005
KRAS SIGNALING UP —-1.60 0.00 0.025
APOPTOSIS -1.60 0.00 0.025
EPITHELIAL MESENCHYMAL TRANSITION -1.60 0.00 0.023
UV RESPONSE DN —-1.60 0.00 0.020
HEDGEHOG SIGNALING -1.60 0.04 0.025
INTERFERON GAMMA RESPONSE -1.50 0.01 0.034
IL2 STAT5 SIGNALING -140 0.02 0.100
COMPLEMENT -1.30 0.04 0.125
KRAS SIGNALING DOWN -1.30 0.07 0212
HYPOXIA -1.30 0.06 0.205
APICAL SURFACE -1.30 0.18 0214
APICAL JUNCTION -1.30 0.07 0.203
PI3K AKT MTOR SIGNALING -1.20 013 0.239
G2M CHECKPOINT -1.20 0. 0.248

NES normalized enrichment score, NOM p-val nominal p-value, FDR g-val false discovery rate g-value

Table 3 Significantly up and downregulated hallmark pathways for breast cancer subtypes and statistical significance of the overlap

with those found for PRA transgenics

Number of significant pathways Number of overlapping P value
in the set (out of 50 total) pathways
Upregulated PRA Transgenic 8
Luminal A 10 3 0.188
Luminal B 15 5 0.043
Downregulated PRA Transgenic 19
Luminal A 28 16 0.002
Luminal B 24 15 7.10E-04

Bolded values indicate statistically significant overlap (i.e., p-value < 0.05)
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list of DEG) we found only two genes from the oxidative
phosphorylation pathway overlapping between PRA
transgenics and LumB subtype that were in both lists
(Table 4 and Additional file 1: Table S1 for a complete
list of the genes identified by GSEA analysis). However,
one of these (TIMM9) was not significantly modulated
in the breast cancer dataset, neither had an impact in
patient survival (Additional file 1: Figure S1). On the
other hand, PDHB (Pyruvate dehydrogenase E1 compo-
nent subunit beta, mitochondrial) upregulated in PRA
transgenics (FC 1.43, P = 0.02) although with a FC at the
borderline of our criteria (>1.5 FC and P < 0.05) was not
only upregulated in LumB subtype from the METABRIC
study, as expected from GSEA analysis, but also in
LumA subtype (Fig. 5a). Moreover, we explored the po-
tential prognostic value of PDHB using Kaplan Meier
plotter [31] and found that high PDHB expression corre-
lated with poor relapse-free survival for patients with
LumA, LumB and Basal tumor subtypes (Fig. 4b).

Genes from the TNFA signaling via NFKB pathway

For this pathway, we found several genes from our
original list overlapping with the LumA and LumB phe-
notypes (Table 4 and Additional file 1: Table S2 for a
complete list of the genes identified by GSEA analysis).

Table 4 Genes contributing to the upregulated oxidative
phosphorylation pathway and the downregulated TNFA
signaling through NFKB pathway in PRA transgenics and
LumA/LumB subtypes

Gene symbol FC P-value
TIMM9 1.8 0.019
PDHB 14 0.024
IL7R -46 0.036
KYNU =31 0.006
EGR3 -29 0.029
EGR1 -29 0.037
MSC —24 0.022
LAMB3 -23 0.001
BMP2 =20 0.019
PDE4B -20 0.018
NR4A1 -19 0.032
FOSB -19 0.011
KLF2 -18 0.041
PMEPA1 -18 0.043
JUNB -16 0.009
CD44 -16 0.035
CCL2 -15 0.001
IER2 =15 0.047
ZFP36 -15 0.029

P-value and fold change (FC) of PRA/wild-type comparison
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With the only exception of CD44, when analyzing the
expression data for these genes in the METABRIC study,
they were downregulated in the LumA and/or LumB
phenotypes, compared with normal as it was expected
(9/17 downregulated in both subtypes, 1/17 only in
LumA, 6/17 only in LumB). Fig. 5a shows the plot for
LAMB3 as an example (see Additional file 1: Figure S2
for the remaining genes). The potential prognostic value
of these genes was also assessed, showing promising re-
sults for many of them. The Kaplan Meier plots for
LAMB3, indicating that low expression was correlated
with poor relapse-free survival for patients with LumA
and LumB tumor subtypes is shown in Fig. 5b. Globally,
low expression of 16/17 genes correlated with poor
relapse-free survival in luminal subtype breast cancer
(11/17 with both subtypes, 2/17 only with LumB, 3/
17 only with LumA, 1 discordant, Additional file 1:
Figure S3).

Discussion

Changes in the native ratio of A to B isoforms of PR
have major implications to normal mammary gland biol-
ogy and also tumorigenesis. For this reason, several
groups have previously used expression profiling to iden-
tify genes associated with PRA:PRB imbalanced ratio in
breast cancer cell lines [11, 26, 32, 33]. However, none
have explored the transcriptional changes of preneoplas-
tic lesions that are associated with PRA:PRB imbalance
and tumor progression in an in vivo model. In this
study, we took advantage of PRA transgenics, a previ-
ously described transgenic mouse model where PRA iso-
form is predominant. Using oligonucleotide microarray
technology, we identified the complete repertoire of
genes that are altered in expression in the abnormal
mammary glands of PRA transgenics and characterized
the associated pathways. Importantly, several of the DEG
identified in this study (Table 1) had been previously re-
ported as PR targets [26].

Based on the distinct transcriptomics of PRA trans-
genics, we first identified by GO analysis an enrichment in
the biological processes anatomical structure development
and cell adhesion for upregulated and downregulated
genes, respectively (Fig. 2a and b). This is in accordance
with the key morphological features of PRA transgenic
mammary glands, including extensive lateral branch-
ing, the disruption in the organization of the base-
ment membrane and a decrease in cell-cell adhesion
[13]. The influence of PRA:PRB ratio in cell adhesion
has also been described in PR-positive T-47D breast
cancer cells in which PRA can be induced to result
in PRA predominance. Cell adhesion of T-47D cells
was decreased upon progestin treatment and reduced
even further with PRA predominance [11]. Another
enriched biological process identified in this study for
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downregulated genes was transmembrane transport,
and the cell membrane itself was enriched amongst
the cellular compartments. Similarly, Richer et al.
found an extensive number of genes involved in
membrane-initiated events that were regulated by PR
isoforms in response to progesterone, thus stressing
the membrane as an important target of progesterone
action [33]. Also, more recently, SLC- mediated trans-
membrane transport was found amongst enriched
pathways in human breast PRA high tumors as com-
pared to PRB high tumors [10].

Then, we used GSEA to identify pathways and unify-
ing themes. The GSEA method focuses on gene sets ra-
ther than a handful of high scoring genes at the top and
bottom (which can suffer from arbitrary cutoff regarding
fold-change or significance) giving more reproducible
and easy to interpret results [20]. When necessary, we
plotted enrichment maps of gene sets to aid interpretation
[21]. Interestingly, we found a positive correlation of PRA
transgenics with gene sets comprising amplicons previ-
ously identified in human breast cancer (Fig. 3a). One ex-
ample is amplicon 16p13, which was previously correlated
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with luminal breast cancer subtype and comprises effector
proteins such as proteases [28]. For genes downregulated
in PRA transgenics, we identified three clusters based on
the enrichment map (Fig. 3b). Not surprisingly, one cluster
(ii) included gene sets related to mammary gland morpho-
logical changes or breast cancer subtypes. For example, a
set comprising genes downregulated in ductal carcinoma
vs normal ductal breast cells identified by laser microdis-
section and microarray analysis [34] and another set of
genes that were downregulated in HMLE cells (immortal-
ized nontransformed mammary epithelial) cells after loss
of function of E-cadherin (CDH1) achieved by RNAi
knockdown or by expression of a dominant-negative form
[35]. Of note, mammary glands of PRA transgenics exhib-
ited diminished E-cadherin in a disorganized pattern [13].
Another region in the map (ii) clustered gene sets related
to estradiol or tamoxifen response like one set of genes
downregulated in breast cancer SUM44/LCCTam cells
resistant to 4-hydroxytamoxifen relative to the parental
sensitive cells [36]. Importantly, in PR-positive breast
cancer patients who received local therapy followed by ad-
juvant tamoxifen, high PRA:PRB ratios predicted shorter
disease-free survival, indicating resistance to tamoxifen [7].
Our third (iii) identified cluster included gene sets com-
prising targets of polycomb complexes. In particular, Poly-
comb Repression Complex 2 (PRC) targets that possess
H3K27me3 mark in their promoters and are bound by
SUZ12 and EED Polycomb proteins [37]. This suggests
that PRC2 may be an upstream regulator accounting for
the high number of downregulated genes in PRA trans-
genics. Interestingly, H3K27me3 mark has been positively
associated with the LumA subtype compared to all other
subtypes in a cohort of breast cancer patients [38].

We then performed GSEA analysis using the Hallmark
collection (Table 2). We found positive enrichments mainly
in metabolic pathways for the PRA transgenics phenotype.
Changes in metabolism during tumorigenesis are well
known. Our analysis suggests metabolic plasticity, as oxida-
tive phosphorylation in addition to glycolysis were signifi-
cantly enriched, and this adaptability may be important as
tumorigenesis progresses [39]. Pathways negatively correlat-
ing with PRA transgenics phenotype pointed to an
anti-inflammatory effect. PR action has been linked previ-
ously with inhibition of inflammatory response in breast
cancer cells [40] and myometrial cells [41]. However, the
uterine phenotype of PRA transgenics included endome-
tritis and pelvic inflammatory disease (together with hyper-
plasia) [42], therefore effects on inflammation may be
context-dependent in PRA transgenics. Recently, Cai et al.
analyzed gene expression from four distinct stages of mam-
mary tumor progression using the MMTV-PyMT mouse
model and found similar enriched hallmark pathways
amongst up and downregulated genes in the hyperplasia
stage [43]. For example, apical junction, epithelial to
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mesenchymal transition, UV response, KRAS signaling up,
IL2 STATS5 signaling and hypoxia (all also enriched in the
present study) were enriched in the down-regulated DEGs
at normal to premalignant (hyperplasia) transition in the
MMTV-PyMT model. Importantly, most DEGs identified
in the same study in the late carcinoma stage first appeared
in the much earlier hyperplasia stage, consistently with pre-
vious human cancer studies [29, 30]. This prompted us to
compare the hallmark pathways identified for PRA
transgenics to those obtained using the same methodology
in a much larger data set of human breast cancer samples
[22, 23]. Interestingly, we found significant overlapping be-
tween pathways exclusively with luminal breast cancer sub-
types (Table 4). Rojas et al. have recently classified human
breast tumors according to their PRA:PRB ratio (high ver-
sus low) by western blot detection and predicted according
to the PAM50 gene set that PRB-High and PRA-High tu-
mors were either luminal B or A phenotypes, respectively
[10]. It would be interesting to determine by the same
method the intrinsic subtype based on PRA transgenics
gene expression profile, as at least by our approach overlap-
ping with luminal B subtype is predicted according to path-
way analysis. Finally, we explored the potential prognostic
value of common candidate genes from the most signifi-
cantly enriched pathways and found an association with
worse relapse free survival and high PDHB (upregulated in
PRA transgenics, Fig. 4) or low LAMB3 (downregulated in
PRA transgenics, Fig. 5) for luminal breast cancer subtypes.
To the best of our knowledge, this is the first report of the
potential prognostic value of this particular laminin subunit
and PDHB in breast cancer.

Conclusion

Further characterization of these and other genes identi-
fied in the present study would greatly increase our un-
derstanding of the early tumorigenic events associated
with high PRA:PRB ratio and the underlying biological
mechanisms and may provide new prognostic markers
for breast cancer.

Additional files

Additional file 1: Table S1. Provides a complete list of the genes
identified by GSEA analysis contributing to the upregulated oxidative
phosphorylation pathway in both PRA transgenics and LumB breast
cancer subtype. Figure S1. Provides TIMM9 expression, from the
oxidative phosphorylation pathway, in samples from the METABRIC study,
classified by subtype and relapse-free survival curves according to TIMM9
expression for the luminal breast cancer subtypes. Table S2. Provides a
complete list of the genes identified by GSEA analysis contributing to the
downregulated TNFA signaling via NFKB pathway in PRA transgenics,
LumA and LumB breast cancer subtypes. Figure S2. Provides expression
of genes, other than LAMB3, from the TNFA signaling through NFKB
pathway in samples from the METABRIC study, classified by subtype.
Figure S3. Provides relapse-free survival according to expression of the
genes presented in Figure S2. for the luminal breast cancer subtypes.
(PDF 5906 kb)
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