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Gene expression profiling of 1200
pancreatic ductal adenocarcinoma
reveals novel subtypes
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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer related death in the
world with a five-year survival rate of less than 5%. Not all PDAC are the same, because there exist intra-tumoral
heterogeneity between PDAC, which poses a great challenge to personalized treatments for PDAC.

Methods: To dissect the molecular heterogeneity of PDAC, we performed a retrospective meta-analysis on whole
transcriptome data from more than 1200 PDAC patients. Subtypes were identified based on non-negative matrix
factorization (NMF) biclustering method. We used the gene set enrichment analysis (GSEA) and survival analysis to
conduct the molecular and clinical characterization of the identified subtypes, respectively.

Results: Six molecular and clinical distinct subtypes of PDAC: L1-L6, are identified and grouped into tumor-specific
(L1, L2 and L6) and stroma-specific subtypes (L3, L4 and L5). For tumor-specific subtypes, L1 (~ 22%) has enriched
carbohydrate metabolism-related gene sets and has intermediate survival. L2 (~ 22%) has the worst clinical outcomes,
and is enriched for cell proliferation-related gene sets. About 23% patients can be classified into L6, which leads to
intermediate survival and is enriched for lipid and protein metabolism-related gene sets. Stroma-specific subtypes may
contain high non-epithelial contents such as collagen, immune and islet cells, respectively. For instance, L3 (~ 12%) has
poor survival and is enriched for collagen-associated gene sets. L4 (~ 14%) is enriched for various immune-related gene
sets and has relatively good survival. And L5 (~ 7%) has good clinical outcomes and is enriched for neurotransmitter
and insulin secretion related gene sets. In the meantime, we identified 160 subtype-specific markers and built a deep
learning-based classifier for PDAC. We also applied our classification system on validation datasets and observed much
similar molecular and clinical characteristics between subtypes.

Conclusions: Our study is the largest cohort of PDAC gene expression profiles investigated so far, which greatly
increased the statistical power and provided more robust results. We identified six molecular and clinical distinct subtypes
to describe a more complete picture of the PDAC heterogeneity. The 160 subtype-specific markers and a deep learning
based classification system may be used to better stratify PDAC patients for personalized treatments.
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Background
The pancreas is both an exocrine and endocrine gland,
playing important roles in the digestive and endocrine
systems. There are two kinds of cells in the pancreas:
exocrine cells and endocrine cells. When exocrine cells
grow out of control, they may form pancreatic exocrine
tumors. About 95% of pancreatic cancers can be classi-
fied into pancreatic exocrine tumors. One kind of
pancreatic exocrine tumor called pancreatic ductal
adenocarcinoma (PDAC) is the most common type,
making up more than 85% of all pancreatic cancers.
PDAC is the fourth leading cause of cancer related death
in the world with a 5-year survival rate of only 5% [1].
Surgery is by far the most effective treatment strategy
for PDAC, but less than 20% of PDAC patients have re-
sectable tumors at the time of diagnosis [2, 3], with the
improving 5-year survival rate after resection to 10–25%
[4, 5]. The etiology of PDAC are poorly understood.
However, several factors like cigarette smoking [6], family
history of pancreatic cancer [7], diabetes [8] and chronic
pancreatitis [9] are contributing factors for PDAC.
Like other malignancies, the intra-tumoral heterogen-

eity makes PDAC not a single disease, but a group of
biologically and clinically distinct diseases [10, 11]. Thus,
there is a great need to identify homogeneous groups
which is an essential step towards personalized treat-
ment of PDAC. Traditional classification of PDAC has
been carried out by pathologists based on histologic
appearance and phenotypic traits. However, in reality,
tumors with similar morphological appearance may have
very distinct molecular features and clinical outcomes
[12, 13]. Recent advancements in genome wide molecu-
lar profiling may change these situations by providing an
opportunity to investigate the tumor heterogeneity at
the whole genome level. Gene expression profiling, one
of the most commonly used molecular profiling ap-
proaches, is the measurement of the expression levels of
thousands of genes simultaneously. And, microarray and
RNA sequencing (RNA-Seq) are the two most used
techniques. Gene expression profiling have allowed re-
searchers to classify cancers into homogeneous groups
with improved diagnosis [14–16] and correlated better
with survival information than traditional classification
of cancers [17]. Over the last few years, increasing mo-
lecular classification studies have been conducted in
PDAC which proved that it can be classified into 2 to 4
subgroups [18–24]. However, these studies used tumor
samples ranging from dozens to more than few hun-
dreds as their discovery cohort. They may not fully rep-
resent the intra-tumoral heterogeneity and limit the
ability to identify rare subtypes of PDAC.
Another concern in dissecting the tumor heterogeneity

is the methods used in the identification process. Given
a set of gene expression profiles, clustering, a machine

learning technique, can be used to group data objects of
similar characteristics together into distinct clusters
without prior assignment (unsupervised classification).
There are three kinds of clustering strategies [25]: first,
gene-based clustering, which the genes are treated as the
objects, while the samples are the features. Second,
sample-based clustering which the samples are the ob-
jects and genes are the features. And third, biclustering
(or subspace clustering) which capture clusters formed
by a subset of genes across a subset of samples. The pre-
vious two strategies apply a global model to identify
clusters. That is, each sample in a subtype is determined
by the activity of all the genes. Similarly, each gene in a
given gene cluster is defined using all the samples when
performing the clustering analysis [26]. Since subsets of
genes are active or silent only under certain experimen-
tal conditions, and behave almost independently under
other conditions [26], the classification results are rela-
tively poor when using the global model [27].
Only biclustering employ a local model to identify co-

herent patterns in an expression matrix. Instead of clus-
tering gene and sample separately, biclustering allows
simultaneous clustering of genes and samples [26]. Thus,
biclustering has become a popular technique and lots of
algorithms are proposed, such as distance-based [28, 29],
factorization-based [30, 31] and geometric-based biclus-
tering [32, 33]. Most biclustering algorithms [34–38]
allow bi-clusters to have partially overlap, and some ob-
jects (samples or genes) may not belong to any bi-cluster
at all [39, 40]. This character of biclustering, although use-
ful in some instances [26], is not good for interpretation.
Non-negative Matrix Factorization (NMF), a dimensional-
ity reduction and factorization-based biclustering algo-
rithm, aims to find groups of linear combination of
metagenes representing local patterns in the expression
matrix. NMF has been proven useful in many cancer sub-
typing studies [18, 20, 23, 41, 42] due to its easy interpret-
ation and desired performances.
In our study, we focused on using NMF to extract

biclusters from gene expression data, thus to describe
and characterize the heterogeneity of PDAC. We
overcame the sample shortage by combining different
sources of PDAC into a single and large dataset. Specif-
ically, we collected publically available PDAC gene ex-
pression profilings from 11 microarrays and 3 RNA-Seq
datasets. In total, our study involves more than 1200
PDAC patients, and 796 of them were used as the dis-
covery cohort. This is the largest cohort of PDAC gene
expression profiles investigated so far, which greatly in-
creased the statistical power and provided more robust
results. We identified six molecular and clinical distinct
subtypes, and provided a deep learning-based classifica-
tion system for PDAC. Compared with previous studies
[18–24], our study has several advantages. First, we
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included more PDAC cases to increase statistical reli-
ability. Second, we selected genes as subtype-specific
biomarkers directly from biclusters. Third, we identified
six subtypes to provide and describe a more complete
picture of the PDAC heterogeneity. Last but not least,
we used deep learning to build a classification system for
PDAC, which can be used to classify new patients. The
classification model will be publicly available upon request.

Methods
Data curation and pre-processing
We searched multiple data repositories, including the
International Cancer Genome Consortium (ICGC,
www.icgc.org), the Cancer Genome Atlas (TCGA,
http://cancergenome.nih.gov/), Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/) for available gene ex-
pression profiling datasets for PDAC. We came across
altogether 14 datasets, which were listed below:
We collected 3 RNA-Seq datasets in our study, one

from TCGA, and another two from ICGC and GSE79670.
RNA-Seq datasets were pre-processed as follows: RSEM
values of TCGA Pancreatic Adenocarcinoma mRNA-Seq
were downloaded through TCGA2STAT R package [43],
which contains 172 non-overlapping primary PDAC pa-
tients with detailed clinical information. Data were subse-
quently normalized using TMM (weighted trimmed mean
of M-values) with the EdgeR package [44], and converted
to counts per million (cpm) and log2 transformed. A
filtering process was also performed to exclude the genes
without at least 1 cpm in 20% of the samples. Raw counts
data of GSE79670, which contains 51 primary PDAC pa-
tients, were downloaded from GEO and normalized in the
same way as in the TCGA dataset. The third and the last
RNA-Seq dataset can be downloaded either from ICGC
under the identifier PACA-AU, or from the supplemental
material in the corresponding publication [23]. We chose
to download this dataset from the latter option and named
this dataset as Bailey. This dataset contains normal-
ized expression values (data were normalized in the
same way as in the previously mentioned two
RNA-Seq datasets) of 96 pancreatic cancer patients
and 71 of them were PDAC. Only PDAC samples
were retained for the following analysis.
There were also 11 microarray datasets in our study,

which were listed below according to their sample size:
MTAB-1791 (195 primary PDAC, Illumina WG6 Bead-
Chip v3 array), ICGCarray (178 primary PDAC, Illumina
HT12 v3 array), GSE71729 (145 primary PDAC,
Agilent-014850 array), GSE62165 (118 primary PDAC,
Affymetrix U219 array), GSE62452 (69 primary PDAC,
Affymetrix 1.0 ST array), GSE57495 (63 primary PDAC,
Rosetta/Merck Affymetrix 2.0 array), GSE60980 (49 pri-
mary PDAC, Agilent-028004 array), GSE77858 (46 primary

PDAC, Agilent-012097 array), GSE55643 (45 primary
PDAC, Agilent-014850 array), GSE15471 (39 primary
PDAC, Affymetrix U133 Plus 2.0 array) and Collisson (27
primary PDAC, Affymetrix U133 Plus 2.0 array). Among
them, ICGCarray originally contains 269 PDAC tissue and
pancreatic cell lines samples. After removing cell lines,
non-PDACs and metastatic tumors, 178 primary PDAC
tumor samples were retained. Datasets used in our study
can be found in Table 1.
We downloaded raw counts, processed microarray

data, and associated clinical information from public
data repositories for each dataset. Counts data were
pre-processed as mentioned above. Then, the gene ex-
pression profile on probe level (or Ensembl ID level) was
converted into official gene symbol level. When multiple
probe sets (or Ensembl IDs) were mapped to the same
gene symbol, the probe sets (or Ensembl IDs) with the
largest mean expression values across samples were kept.
Only primary tumor samples were retained. Metastasis
samples or treated patients samples were excluded from
the analysis. Datasets without clinical information were
used for training. Except for GSE77858 dataset, which
without clinical information, and used as one of the val-
idation dataset, because this dataset has relatively low
variable genes (~ 42 variable genes). In order to deter-
mine whether the identified subtypes have distinct sur-
vival differences, we also included two large datasets
from ICGC and TCGA, which contain detailed clinical
information, as our training datasets as well. So in total,
7 independent datasets from 5 platforms, with 796
primary PDAC patients were used for training. The
remaining 7 datasets with 472 primary PDAC patients,
were either combined or independently used as the valid-
ation datasets. Datasets were combined by concatenating

Table 1 Datasets used in the study

DataSet Sample Size Platform clinical Data Note

ICGCarray 178 Illumina Yes Training set

TCGA 172 RNA-Seq Yes Training set

MTAB-1791 195 Illumina No Training set

GSE62165 118 Affymetrix No Training set

GSE60980 49 Agilent-028004 No Training set

GSE15471 39 Affymetrix, plus2 No Training set

GSE55643 45 Agilent-014850 No Training set

Bailey 71 RNA-Seq Yes Validation set

GSE71729 145 Agilent-014850 Yes Validation set

GSE57495 63 Rosetta/Merck Yes Validation set

GSE79670 51 RNA-Seq Yes Validation set

GSE62452 69 Affymetrix Yes Validation set

Collisson 27 Affymetrix, plus2 Yes Validation set

GSE77858 46 Agilent-012097 No Validation set
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data matrices together, followed by using ComBat [45] to
adjust the introduced batch effects. Additional file 1:
Figure S1 shows the principal component analysis (PCA)
before and after batch effect correction for training and
validation datasets.

Identification of PDAC subtypes
Before performing NMF, a filtering procedure was ap-
plied to remove genes with low variability across the
samples in 7 dataset from the training cohorts, respect-
ively. The idea is that higher variable genes are inform-
ative in the clustering process. Specifically, the median
absolute deviation (MAD) value of each gene was calcu-
lated. If the value was less than 0.5, then that gene was
excluded from the clustering analysis.
The filtering step resulted in 411 most variable genes

that were kept for the clustering process. NMF R pack-
age [46] was used to perform clustering using the Brunet
algorithm. We varied the number of clusters k from 2 to
10 and repeated the clustering process 30 times. The
value of k that results in the maximum cophenetic cor-
relation coefficient was chosen as the optimal number of
clusters. Then we performed clustering 200 times with
optimal k and random initialization to obtain the con-
sensus matrix, sample labels and associated meta-genes.

Generation of the PDAC classifier and classification
A classifier was built on the most representative samples
and most predictive genes for each cluster. Silhouette
width [47] was computed to identify the most represen-
tative samples using the R package Cluster. Subtype spe-
cific genes were determined using the extractFeatures
function in the NMF package [46], with the largest row
feature scores. Then, SAM (Significance Analysis of Mi-
croarrays) [48] analysis was performed to filter out un-
stable genes between clusters. Figure 1 summarized the
classifier building process.
We trained a deep learning model as the PDAC classi-

fier using the H2O R package [49]. We split the training
dataset into three parts when building the model: 60%
for training, 20% for validation and the remaining 20%
for testing. The parameters we used were as follows:
TanhWithDropout activation, bernoulli distribution, and
two hidden layers with 500 neurons each. The other pa-
rameters were set as default. The classification perform-
ance of the classifier was verified on the training and
validation datasets.

Gene set enrichment analysis (GSEA)
Before GSEA, we used the limma package [50] to calcu-
late the fold changes of one subtype versus all other sub-
types in the combined training dataset. For each
subtype, more than 10, 000 genes fold change values
were used as the input data in the GSEA analysis. In our

study, GSEA was performed using the R package Piano
[51], together with the version 6.0 annotated gene sets
(H, C2 and C5) downloaded from the MsigDB database.
We used the gene sets with the number of genes ranging
from 10 to 500, 1, 000 permutations for gene sampling
and 20 cpus to conduct the analysis. Significantly
enriched gene sets (adjust p-value less than 0.05) were
ranked according to consensus scores [51], top 10 repre-
sentative gene sets with largest consensus scores were
selected for each subtype, respectively, and used for
heatmap visualization. Specifically, a data matrix was
generated with rows defined by the selected gene sets,
and columns by consensus scores for each subtype.
Then, pheatmap R package was used for the heatmap
visualization.

Survival analysis
Clinical data were downloaded from associated pub-
lished results. Median survival was estimated using the
Kaplan–Meier method and the difference was tested
using the log-rank test. P-values of less than 0.05 were
considered statistically significant. We also applied Fisher’s
exact test to investigate the relationships among subtype,
tumor stage, tumor grade and other clinical information
(Additional file 2: Table S1).

Results
NMF identifies six subtypes in PDAC
We applied NMF to the merged training dataset (796
PDAC patients), and obtained 2 to 6 well-defined clus-
ters (Additional file 3: Figure S2). Cophenetic correlation
coefficients were calculated to determine the optimal
number of clusters, and a peak was found at k = 6
(Fig. 2a). The consensus matrix heatmap contains sharp
and crisp boundaries, which implies stable and robust
clustering for the samples (Fig. 2b). Silhouette width
analysis was subsequently performed to select the most
representative samples within each cluster (Fig. 2c). The
average silhouette width was 0.55 (range, from 0.41 to
0.64), indicating the robustness of the classification. A
total number of 781 samples (~ 98%) with positive sil-
houette width were retained to build the classifier.
Next, 160 metagenes identified by NMF were selected

as features (Table 2), together with 781 sample’s Z-score
normalized data to build a deep learning classifier of
PDAC. We used the H2O package to split the merged
training dataset into three parts: internal training set
(470 PDAC, 60%), internal validation set (152 PDAC,
20%) and internal test set (159 PDAC, 20%). The internal
training set was used for building the model, the internal
validation set for early stopping, and internal test set for
testing the classification error. The classification errors on
the internal training set and internal test set were 0.8
and 13%, respectively (Additional file 4: Table S2).
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The classifier can be used to classify all the 796
PDAC patients in the training dataset into six sub-
types: L1 (174 patients, 21.9%), L2 (176 patients,
22.1%), L3 (93 patients, 11.7%), L4 (113 patients,
14.2%), L5 (56 patients, 7.0%) and L6 (184 patients,
23.1%) (Fig. 2d). We also did the classification with
the combined validation dataset. Patients in this data-
set can also be classified into six subtypes with a
similar proportions of patients being distributed
among subtypes (Fig. 2e). In addition, we found that
there were 65 overlapped samples between our train-
ing and combined validation dataset. More specific-
ally, 65 samples were overlapped between ICGCarray
set (178 PDAC, microarray platform) and Bailey set
(71 PDAC, RNA-Seq platform). We extracted the 65
predicted sample labels from these two cohorts and
compared the similarities between them. Result shows
that the two lists were similar, except that there were
17 samples with inconsistent classification results,
which may be jointly caused by platform differences
and the classification error of the classifier.

Functional annotation of PDAC subtypes
There are distinct gene expression patterns between sub-
types as observed in the heatmaps from both training
and merged validation datasets (Fig. 3a-b). In the heat-
map, columns correspond to PDAC patients, and rows

to 160 genes. Gene expression matrices were median
centered and expression values were represented by dif-
ferent colors, red means higher expression values, and
green, lower ones. We have found that carbohydrate me-
tabolism genes such as ALDOB, CA2, NPC1L1 and PGC
are highly expressed in L1. Cell proliferation and
epithelium-associated genes, such as CCNB2, CDKN2A,
SFN, UBE2C, SPRR3, DHRS9 and CRABP2 are enriched
in L2 subtypes. GREM1, MFAP5, COL12A1, COL10A1,
COL8A1 and other collagen or ECM-related genes are
upregulated in L3. Immune related genes such as CCL,
CCR7 and CD gene families are enriched in L4 subtype.
Neuroendocrine-associated genes such as PAX6, IAPP,
G6PC2, ABCC8 and ZBTB16 are highly expressed in L5.
And lastly, CLPS, PLA2G1B, CEL, ALB, CPA1, CPB1,
CTRL, SLC3A1, PRSS3 and ANPEP, which are involved
in lipid and protein metabolism, are enriched in the L6
subtype (Table 2 and Additional file 5: Figure S3).
To identify gene sets enriched in each subtype, we

then performed GSEA analysis. GSEA is a widely used
method to interpret expression data at the level of gene
sets, or groups of genes that share a common biological
function, or regulation [52]. We subsequently selected
altogether 60 most representative gene sets for L1-L6 to
build a pathway heatmap, which reveals distinct gene
sets enriched in each subtype (Fig. 3c). Based on the bio-
logical functions of the selected gene sets, we further
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Fig. 1 The flowchart of the classifier building process. a Data processing step. Fourteen datasets were collected and separated into training and
validation datasets. Four hundred eleven most variable genes were then selected based on the median absolute deviation (MAD > 0.5), and were
kept for the clustering process. b NMF clustering step. Six-cluster resulted the maximum cophenetic correlation coefficient was chosen as the optimal
number of clusters. Then, NMF clustering were performed of 200 times with optimal number of clusters to obtain the consensus matrix. c Classifier
building steps. A classifier was built on the most representative samples and most predictive genes for each cluster
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grouped the six-subtype into tumor-specific and
stroma-specific subtypes. Tumor-specific subtypes in-
clude L1, L2 and L6, which are associated with cell pro-
liferation and metabolism-related gene sets. Specifically,
L1 has enriched carbohydrate metabolism-related gene sets.
L2 is enriched for cell proliferation and epithelium-associ-
ated gene sets. And L6 is enriched for lipid and protein
metabolism-related gene sets. Stroma-specific subtypes in-
clude L3, L4 and L5, which may contain high nonepithelial
contents such as collagen, immune and islet cells, respect-
ively. For instance, L3 is enriched for collagen and ECM re-
lated gene sets. L4 is enriched for various immune related
gene sets. And L5 is enriched for neurotransmitter and in-
sulin secretion related gene sets. Significantly enriched
gene sets for each subtype were displayed in Add-
itional file 6: Table S3.

Clinical characterization of PDAC subtypes
About 348 patients (~ 43.7%) in the training dataset have
clinical information. Their subtype labels and associated
overall survival information were used to perform
survival analysis and clinical characterizations. Kaplan-
Meier analysis indicated that L2 has the worst clinical

outcomes compared with other five subtypes (Fig. 4a). Dur-
ing the first 24 months after diagnosis, approximately 75%
patients in L2 and L3, respectively, were censored. And the
death rate in L2 was larger than that in L3, as observed in a
steeper slope in the survival curves (Fig. 4a). Although there
were no significant survival differences in L1, L3, L4 and L6
during the first 20 months after diagnosis, the survival dif-
ferences were observed after 20 months, and the death rate
of L3 and L6 rapidly increased compared with L1 and L4.
L5 always has good clinical outcomes compared with the
other 5 subtypes. We also observed a similar overall sur-
vival differences between subtypes in the merged validation
dataset (Fig. 4b). Lastly, we did the Fisher’s exact test to in-
vestigate if the subtype memberships have any associations
with other clinical factors, such as age, gender, race, tumor
stage and grade. Results shows that only tumor grade have
certain associations with subtypes (p-value < 0.01). For ex-
ample, more than 97% patients in L2 and more than 95%
patients in L3 have moderately or poorly differentiated
tumor cells, whereas about 32% patients in L5 have well
differentiated tumor cells (Additional file 2: Table S1). This
analysis demonstrates that other clinical factors (such as
age, gender, race and tumor stage) cannot predict overall

a b

c d

e

Fig. 2 Classification of PDAC into 6 subtypes. a Unsupervised classification of PDAC using NMF. A peak cophenetic correlation was observed for
k = 6 classes. b Consensus matrix for k = 6 is shown. c Silhouette information for k = 6 classes. d Patient distribution in the training dataset (n = 796).
e Patient distribution in the merged validation dataset (n = 472)
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survival, and supports the use of subtypes as a new and reli-
able prognostic factor in PDAC.

Cross comparison of the identified subtypes with
published studies
To compare our classification system with three previ-
ously published results [18, 20, 23], we then used our
PDAC classifier to classify these three cohorts, separ-
ately. Gene expression heatmaps (Fig. 3d-f ) and survival

curves (Fig. 4c-e) show much similar patterns between
validation datasets and the training dataset, which indi-
cate the existence of six subtypes in other cohorts as
well. Although some inconsistent results exist, such as
the log rank p-value was not significant in GSE71729
dataset, and the survival curves in all three datasets were
not followed the exact patterns as observed in the train-
ing dataset. We believe such inconsistency were caused
by the smaller sample size in the validation datasets

Table 2 Subtype specific gene lists

Tumor-specific subtypes Stroma-specific subtypes

L1 L2 L6 L3 L4 L5

AGR2 ADM AKAP7 ACTG2 ADAMTS1 ABCC8

ALDOB ANGPTL4 ALB CDH11 C1orf162 ADAMTSL2

ANXA13 C19orf33 ANPEP COL10A1 CCL2, 19, 21 C7

AQP5 CCNB2 AQP8 COL12A1 CCR7 CHGA

ARL14 CDH3 CEL COL8A1 CD2, CD3D,
CD6, CD8A,
CD36, CD48,
CD52, CD69,
CD79B, CD163,
CD247

COLEC11

C4BPB CDKN2A CLPS COLEC12 CFD CPE

CA2 COL7A1 CPA1 GAS1 CILP F2RL2

CDCA7 CRABP2 CPB1 GREM1 CXCL9, 10, 12 FRZB

CTSE CST6 CTRC LRRC17 CXCR4 G6PC2

CYP3A5 DCBLD2 CTRL MFAP5 EVI2B IAPP

DMBT1 DHRS9 GATM MYH11 FAM107A NPTX2

DPCR1 DKK1 KLK1 PDGFRL FCN1 PAX6

F5 ENO2 LEFTY1 RGS16 FOSB PTGDS

FAM3D IFI44L LGALS2 SCUBE2 FPR1 QPCT

GPX2 IFIT1 MT1G SFRP2 FYB RAB26

LGALS4 IGF2BP3 PLA2G1B GIMAP7 SCG5

MMP1 IRX3 PPY GZMA STMN2

NPC1L1 ISG15 PRSS3 GZMB THBS4

PGC KRT7 REG1A HBB ZBTB16

PIGR LAMA3 SERPINA5 HLA-DQA1

ST6GALNAC1 LAMB3 SLC30A2 IL1B

TFF1 LAMC2 SLC3A1 IL33

TFF2 MYEOV TMED6 IL6

TFF3 PHACTR3 IL7R

VILL PSCA LTB

VNN1 PTGS2 S100A8

VSIG2 S100A4 SCARA5

SFN SFRP1

SLC2A1 SLIT3

SPRR3 SPOCK2

UBE2C SRGN
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(145 PDAC in GSE71729, 71 PDAC in Bailey and 27
PDAC in Collisson set), as compared with a larger cohort
size in the training dataset (796 PDAC). The correspond-
ing sample labels in these three datasets were downloaded
from the published papers, contingency tables were subse-
quently built and visualized by heatmaps (Fig. 5a-d). L1
and L6 were much similar to the GSE71729’s classical sub-
type. L2 was close to the GSE71729’s basal subtype. L4
was resemble to the GSE71729’s normal subtype. L6, L1
and L2 were similar to the GSE71729’s activated subtype.
In the Bailey dataset, L6 was similar to the ADEX subtype.
L4 and L1 were close to the immunogenic subtype. L2
was resemble to the squamous subtype, and L3 was
similar to the pancreatic progenitor subtype. Lastly,
L1 and L3 were similar to the Collison’s classical
subtype. L6 was close to the Collison’s exocrine-like
subtype. L2 was related to the Collison’s quasi-mesen-
chymal subtype. All these similarities corresponded
well with the molecular and clinical characteristics of the
six subtypes identified in our study, which confirmed
the correctness of the characteristics we found on
these six subtypes.

Discussion
Heterogeneity makes a cancer not just a single disease
and this poses a significant challenge to the treatment of
cancer patients. With the advent of genome-wide mo-
lecular profiling of cancers, especially the advancements
in gene expression profiling technologies, researchers
can depict genetic changes to better understand the het-
erogeneity of cancers. Compared with traditional classifi-
cation of cancers, gene expression based classification
can be used to classify cancers into subgroups with dis-
tinct molecular characteristics and clinical implications.
Gene expression based classification of cancer was first
proposed by Golub et al. [12]. The expression pattern of
the 50 most informative genes was measured, and
self-organizing maps (SOMs) clustering method was ap-
plied [53] to classify 38 leukemia patients into two prog-
nostic groups without previous knowledge of these
classes. This demonstrated the fidelity of cancer classifi-
cation based solely on gene expression patterns [12]. In
our study, we applied NMF to perform gene expression
based classification of PDAC. We identified six molecu-
lar and clinical distinct subtypes, which not only proved

a

d e f

b c

Fig. 3 Functional annotation of PDAC subtypes. a Heatmap showing six subtypes of PDAC in training dataset using the 160 subtype specific genes,
which reveals distinct gene expression patterns between subtypes. b Heatmap also showing six subtypes of PDAC in merged validation dataset using
the 160 subtype specific genes, with similar gene expression patterns (subtype specific genes are highly expressed in the corresponded subtype) as
observed in the training dataset. c GSEA analysis reveals distinct enriched gene sets between subtypes. In the heatmap, rows are defined by the
selected 60 gene sets, and columns by consensus scores for each subtype. Subtype enriched gene sets are highlighted by different color,
L1 (light red), L2 (light brown), L3 (light blue), L4 (light orange), L5 (light purple) and L6 (light green). d-f Heatmaps showing six subtypes of PDAC in
three independent validation datasets (GSE71729, Bailey and Collisson) using the 160 subtype specific genes, with similar gene expression patterns
(subtype specific genes are highly expressed in the corresponded subtype) as observed in the training dataset

Zhao et al. BMC Cancer  (2018) 18:603 Page 8 of 13



that PDAC is a highly heterogeneous disease, but also
demonstrated that gene expression based classification
of cancer is molecular and clinical significant.
The identification of cancer subtypes can be difficult

due to the lack of tumor samples available for study.
The majority of PDAC patients (~ 80%) were first diag-
nosed with advanced tumor stages and were not suitable
for resection. Some studies have overcome this problem
by combining different sources of samples into their
studies to increase the sample size [18, 54, 55]. Concat-
enating different datasets into a single dataset can be
both significant and challenging. On one hand, integrat-
ing samples from various of independent studies can in-
crease the statistical power and robustness. On the other
hand, there exist batch effects or called non-biological
differences between these datasets. Luckily, methods like
Empirical Bayes (EB) [56], Surrogate Variable Analysis
(SVA) [57] or Distance Weighted Discrimination (DWD)
[58] can be used to remove such batch effects. For ex-
ample, TCGA’s glioblastoma (GBM) subtyping study [59]
integrated gene expression data from 200 GBM assayed
on three platforms (Affymetrix HuEx array, Affymetrix
U133A array and Agilent 244 K array) into a single data-
set. Factor analysis and consensus hierarchical clustering
[60] were subsequently performed for feature selection

and cluster identification, respectively. The above work
also used an independent dataset which contains 260
GBMs from four previously published datasets as
validation dataset, and subtypes were predicted using
840 gene expression profiles and ClaNC (a nearest
centroid-based classifier) [61]. In a recent publication of
diffuse glioma subtyping study from TCGA [62], the au-
thors used ComBat batch effect removal method [45] to
combine multi-platform and multi-tumor mRNA ex-
pression data.
Using different patient cohorts, gene expression plat-

forms and clustering methods can produce totally differ-
ent classification results. For example, epithelial ovarian
cancer (EOC) has been classified into 4 to 6 subtypes
[63–65], colorectal cancer (CRC) 3 to 6 subtypes [66],
and PDAC 2 to 4 subtypes were identified by different
research groups [18–23]. Thus, integrating multiple pa-
tient cohorts to reduce the racial/ethnic and platforms
differences, together with a unified clustering method
for classification is necessary and important. In our
study, in order to build a generalizable classification
model for PDAC, we combined multiple PDAC gene ex-
pression datasets, and adjusted the introduced batch ef-
fect using ComBat. Our study involves more than 1200
PDAC patients, therefore, the statistical power was

a b

c d e

Fig. 4 Clinical characterization of PDAC subtypes. a Kaplan-Meier survival curve comparing survival of L1 (red), L2 (brown), L3 (blue), L4 (orange),
L5 (purple) and L6 (green) patients in the training dataset. Survival difference was tested using the log-rank test. P-values of less than 0.05 were
considered statistically significant. b Kaplan-Meier survival curve in the merged validation dataset. c-e Kaplan-Meier survival curves in GSE71729,
Bailey and Collisson datasets
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significantly increased. We have several advantages com-
pared with previous studies [18–23], such as we identi-
fied novel subtypes in PDAC, we used NMF biclustering
method to extract features which are more subtype spe-
cific, and finally we built a deep learning-based classifi-
cation system for PDAC which can be used to classify
new patients.
The expression profiling of the 160 genes identified

from our study can stratify PDAC patients into six sub-
types. And each subtype is characterized by the expres-
sion of a subset of genes which sharing similar biological

functions, respectively. For example, L1 and L6 subtypes
have enriched with metabolism-related genes; L2 and L3
have enriched with epithelium-associated and ECM-re-
lated genes, respectively; immune response genes in L4,
and neuroendocrine related genes in L5. These specific
expression profiles can be used to predict the clinical
outcomes for each subtype, such as epithelium and cell
proliferation gene profiles in L2 are related with poor
prognosis; metabolism and ECM profiles in L1, L6 and
L3 are associated with intermediate survival; and im-
mune and neuroendocrine-associated profiles in L4 and

a b

c d

Fig. 5 Cross comparison of identified subtypes with published results. We used our classifier and three published classifiers to classify PDAC patients,
respectively, which produced two-dimensional matrices with rows correspond to our classification results and columns correspond to other
classification results. a Contingency heatmap of GSE71729 dataset. Numbers in the heatmap represent patient numbers. Row labels: our
classifier’s results, and column labels: GSE71729 stroma classifier’s results. b Contingency heatmap of GSE71729 dataset. Numbers in the
heatmap represent patient numbers. Row labels: our classifier’s results, and column labels: GSE71729 tumor classifier’s results. c Contingency heatmap
of Bailey dataset. Numbers in the heatmap represent patient numbers. Row labels: our classifier’s results, and column labels: Bailey classifier’s results. d
Contingency heatmap of Collisson dataset. Numbers in the heatmap represent patient numbers. Row labels: our classifier’s results, and column labels:
Collisson classifier’s classification results
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L5 are correlated with relatively good clinical outcomes.
The subtyping results from our study can also be inter-
preted at the cellular level. Low tumor cellularity and
the presence of abundant stroma intermixed with nor-
mal cells are the common features of PDAC [20, 24]. Al-
though microdissection can be used to enrich tumor
cells, non-tumor components still account for a signifi-
cant proportion in PDAC tissue biopsies. For example,
stroma comprises on average 48% of Moffitt et al. [20]
primary tumor samples with a standard deviation of
30%; and in the TCGA’s samples [24], the tumor purity
ranged from 0 to 53% (median 18%). Current tissue-level
expression profiling technologies process thousands of
tumor and non-tumor cells at the same time, so differences
or heterogeneity between patients may also result from
changes in the proportions of cell types in samples. If so,
then what machine learning models learned from bulk data
is the cell-type proportions among samples, which can be
benefit from a large group of patient’s data. Perhaps
cell-type proportions are really informative, which have im-
portant implications in the treatment strategies for cancer
patients. In our study, epithelial cells concentration in
tumor-specific subtypes (L1, L2 and L6) may greater than
the stroma-specific subtypes (L3, L4 and L5), which may
suggest that L3, L4 and L5 should be treated differently
from L1, L2 and L6. For instance, malignant epithelial cells
in L2 may account for the largest proportion, thus more in-
tensive treatments should be considered for L2 patients. L1
and L6, two metabolism-related subtypes may be treated by
some metabolic drugs [67]. Furthermore, collagen-targeted
therapies for L2, immunotherapies for L4, and endocrine
cell therapies for L5.

Conclusions
In summary, we have identified six biologically inform-
ative subtypes of PDAC, which corresponding well with
their molecular features and clinical outcomes. The 160
subtype specific biomarkers and the deep learning model
have the potential to drive personalized therapies [68]
and risk prediction [69] for the PDAC patients.
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