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Abstract

Background: Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities.
Heterogeneity exists in the patients’ response to treatments, for example, bortezomib. This urges efforts to identify
biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit
from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a
binary response where only responsive and non-responsive groups are considered.

Methods: It is desirable to directly analyze the multi-level drug response, rather than combining the response to
two groups. In this study, we present a novel method to identify significantly associated biomarkers and then
develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal
logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton
algorithm.

Results: We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM
with five-level drug response and numerous gene expression measures. Our results show that our method is able
to identify genes associated with the multi-level drug response and to generate powerful predictive models for
predicting the multi-level response.

Conclusions: The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient
models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be
more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for
predicting multi-level drug response and has important impact on cancer studies.
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Background
Multiple myeloma (MM) is a malignant plasma cell
disorder characterized by the proliferation in the bone
marrow of clonal plasma cells [1, 2]. Around 30,280 new
multiple myeloma cases are expected to be diagnosed in

2017 [3]. Meanwhile, MM is an incurable disease using
conventional treatment, which results in a median over-
all survival of 3 to 4 years [4, 5]. Nevertheless, treatment
outcome in MM has improved significantly in the last
decade, partially due to the introduction of novel agents,
such as the proteasome inhibitors (e.g. bortezomib) and
immunomodulatory drugs (e.g. thalidomide) [6]. In spite
of that, the heterogeneity exists in the patients’ response
to those new treatments and molecular features
responsible for the variability in response remain un-
defined [7–9]. It urges more efforts to identify
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biomarkers from numerous molecular features and build
predictive models for identifying patients that can bene-
fit from a certain treatment scheme [7].
MM, like other cancers, is caused by the accumulation

of genetic abnormalities [2, 10]. Various molecular
analyses suggest that myeloma is composed of distinct
subtypes that have different molecular pathologies and
prognosis [10]. For example, cytogenetic studies reveal
that 60 to 80% of myeloma cases reveal chromosomal
translocations involving the immunoglobulin heavy
(IgH) locus [10]. The most prevalent of these transloca-
tions are t(11;14)(q13;q32) and t(4;14)(p16;q32), where
the former has better survival than the latter. Another
chromosomal translocation in t(8;14)(q24;q32), causing
MYC activation, is considered as a secondary hit. Other
genetic abnormalities include mutations and copy num-
ber changes. Mutational spectrum reveals a heteroge-
neous landscape with few recurrently affected genes.
Only three genes have been reported in more than 10%
patients, including KRAS, NRAS, and FAM46C [11–14].
For copy number changes, the most common ones being
gains are on 1q, 3p, 6p, 9p, 11q, 19p, 19q and 21q along
with deletions of 1p, 4q, 16q and 22q, among which can-
didate oncogenes and tumor suppressors have been
identified [15–18]. Thus, it is anticipated that identifying
and applying molecular biomarkers to predict clinical
response to drugs will help to provide more precise
prognostic and predictive classifiers for a specific
therapy in MM.
With the emergence of high-throughput sequencing

technology, it is expected that the number of biomarkers
will rise. The markers in predicting drug response will
become more reproducible as well [19, 20]. However,
the effect sizes of the discovered markers are usually
small, which only could contribute a relatively trivial
portion to the drug response since it is typically a com-
plex trait, generally influenced by many genomic and
environmental factors [19]. Thus, predictive modeling
with multiple markers should be used to predict com-
plex traits, such as drug response [19].
Distinct gene expression profiling is believed to be

associated with the drug response variability of bortezo-
mib, leading to various disease prognoses [10]. The rela-
tionships between the heterogeneity of drug response in
bortezomib or its combined therapy with the genomic
background of multiple myeloma patients have been
investigated [2, 10]. Mulligan et al. [10] generated gene
expression data from a national and international phase
2 and 3 clinical trials of bortezomib to develop a gen-
omic classifier for prediction of drug response in re-
lapsed MM. Terragna et al. [2] analyzed the gene
expression from MM patients to explore predictors of
bortezomib-thalidomide-dexamethasone (VTD) first-line
therapy. According to European Group for Bone

Marrow Transplantation criteria, drug responses in MM
were classified as achieving complete response (CR), par-
tial response (PR), minimal response (MR), no change
(NC) and Progressive Disease (PD) [21]. However, in
Mulligan et al. [10], the five-level ordinal drug response
was categorized as a binary response where only respon-
sive and non-responsive groups were considered.
Terragna et al. [2] focused on CR vs non-CR groups by
converting the ordinal outcome to a binary outcome. To
provide more informative prediction and more efficiently
identify biomarkers, it is desirable to analyze multi-level
drug response, rather than combining the response to
two groups. To address this shortcoming in the previous
analyses, we here present a novel approach to identify
significantly associated biomarkers and develop genomic
classifier using hierarchical ordinal logistic regression.
We apply our approach to two public available datasets
[2, 10]. Our results show that our hierarchical ordinal
regression approach is able to identify genes associated
with the multi-level response and to generate predictive
models for predicting the multi-level response.

Methods
Datasets acquisition for ordinal response prediction
The gene expression datasets analyzed to predict the
drug response were acquired from two independent clin-
ical trials. The two datasets are publically available from
GEO under accession number [GEO: GSE9782] and
[GEO: GSE68871]. They were originally published in
Mulligan et al. [10] and Terragna et al. [2]. Mulligan et
al. [10] recruited patients (n = 169) with relapsed mye-
loma enrolled in phase 2 and phase 3 clinical trials of
bortezomib, whose pretreated tumor samples were
further analyzed for genomic profiling with consent.
Myeloma samples were collected prior to enrollment in
clinical trials of bortezomib and samples were subject to
replicate gene expression profiling using the Affymetrix
133A microarray (22,283 probes). Terragna et al. [2] fo-
cused primarily on treating the new MM patients (n = 118)
with the induction therapy of VTD. The gene expression
profiling (54,677 probes) was carried out in the Affymetrix
Human Genome U133 Plus 2.0 Array. We standardized all
the probes for statistical analysis in both datasets.

Outcome definitions
The original datasets contained drug response and over-
all survival as two outcomes. We here focused on devel-
oping genomic classifier for the drug response. In
Mulligan et al. [10], patients were classified as achieving
complete response (CR), partial response (PR), minimal
response (MR), no change (NC) and Progressive Disease
(PD) according to European Group for Bone Marrow
Transplantation criteria [21]. In Terragna et al. [2],
patients’ drug responses were classified as five
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categories: complete response (CR), near complete re-
sponse (nCR), very good partial response (VGPR), partial
response (PR) and stable disease (SD). For both datasets,
the five-level ordinal drug response was used in our ana-
lysis. In the meantime, we combined the five-level drug
response to a new three-level drug response in both
datasets to avoid low frequencies in certain levels. For
Mulligan et al. [10], we combined PD and NC to a new
level, and PR and MR as another new level. For
Terragna et al. [2], we combined SD and PR as a new
level, and VGPR and nCR as another new level. Both the
original five-level and the new three-level outcomes were
separately analyzed for these two datasets.

Ordinal drug response prediction modeling
Let yi be the ordinal outcome for which there exists a
clear ordering of the response categories, and Xij the
gene expression profile for the ith individual and jth
probe in the data of sample size n with a total number J
of probes. For notational convenience, we code the
ordinal outcome as the integers 1, 2, ···, K, with K being
the number of categories.

Univariate ordinal logistic regression to rank top probes
It will not be efficient to include all the genes in a pre-
dictive model, due to the large number of genes. We
thus first use the univariate ordinal logistic regression to
filter top q associated probes of the gene expression
profile with the ordinal outcome. For the j-th gene
expression Xij, the univariate ordinal logistic regression
is expressed as:

Pr yi ¼ kð Þ ¼
1−logit−1 Xijα−c1 j

� �
if k ¼ 1

logit−1 Xijα−c k−1ð Þ j
� �

−logit−1 Xijα−ckj
� �

if 1 < k < K
logit−1 Xijα−c k−1ð Þ j

� �
if k ¼ K

8
<

:

where ckj denoted cut-points or thresholds, are con-
strained to increase, c1j <⋯ < c(K − 1)j. We then select the
top q associated probes based on the p-value for testing
the hypothesis H0: α = 0.

Predictive modeling for genomic classifiers
We use all the q selected probes to build a multivariable
ordinal model for predicting the multi-level response, i.
e.

Pr yi ¼ kð Þ ¼
1−logit−1 Xiβ−c1ð Þ if k ¼ 1
logit−1 Xiβ−ck−1ð Þ−logit−1 Xijβ−ck

� �
if 1 < k < K

logit−1 Xiβ−ck−1ð Þ if k ¼ K

8
<

:

where the vector Xi includes the expression measures of
the q genes, and β = (β1, · ··, βq)

T is a vector of the
effects. With hundreds or tens of correlated top
associated probes, however, the standard ordinal logistic
regression may fail, due to the non-identifiability and
overfitting. To overcome the problems, we use an

appropriate prior distribution to constrain the coeffi-
cients to lie in reasonable ranges and allow the model to
be reliably fitted and to identify important predictors
[22, 23]. We employ the commonly used Cauchy prior
distribution on the coefficients in the ordered logistic
regression:

p β j

� �
¼ Caucy 0; sð Þ ¼ 1

πs
1

1þ β2j=s
2

The scale parameter s controls the amount of shrink-
age in the coefficient estimate; smaller s induces stron-
ger shrinkage and forces more coefficients towards zero.
For the cut-points parameters, we use a uniform prior.
We have developed a quasi-Newton algorithm (BFGS)
for fitting the hierarchical ordinal model by finding the
posterior mode of the parameters (β, c), i.e., estimating
the parameters by maximizing the posterior density.
Our algorithm has been implemented in our R pack-

age BhGLM, which is freely available from the website
http://www.ssg.uab.edu/bhglm/ and the public GitHub
repository https://github.com/abbyyan3/BhGLM that in-
cludes R codes for examples.

Assessing the performance of a fitted hierarchical ordinal
logistic regression
After fitting a hierarchical ordinal model, we obtain the

estimate ( β̂; ĉ ) and can estimate the probabilities: pik
¼ Prðyi ¼ kjXiβ̂; ĉÞ; i ¼ 1;⋯; n; k ¼ 1;⋯;K . Denote yik
= I(yi = k) as the binary indictor response for the k-th
category. We can evaluate the performance using several
measures:

(1) Deviance: d ¼ −2
Pn

i¼1 logpik . Deviance measures
the overall quality of a fitted model;

(2) AUC (area under the ROC curve). We can calculate
AUC for the k-th category using {yik, pik: i = 1, ···, n}
as usual. Then the AUC for all the categories is
defined as1K

PK
k¼1AUCk .

(3) MSE (mean squared error). MSE is defined as: MSE
¼ 1

K

PK
k¼1½1n

Pn
i¼1ðyik−pikÞ2�.

(4) Misclassification. The misclassification is defined as:
MIS ¼ 1

K

PK
k¼1½1n

Pn
i¼1Iðjyik−pik j > 0:5Þ�, where I(|

yik − pik| >0.5) = 1 if ∣yik − pik∣ > 0.5, and I(| yik −
pik| >0.5) = 0 if ∣yik − pik∣ ≤ 0.5;

To evaluate the predictive performance of the model,
we use the pre-validation method, a variant of cross-
validation [24, 25], by randomly splitting the data to H
subsets of roughly the same size, and using (H – 1)
subsets to fit a model. We then calculate the measures
described above with hth subset and cycle through all H
subsets to get the averaged measurements to evaluate
the predictive performance. To get stable results, we can
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run H-fold cross-validation multiple times and use the
average of the measure over the repeats to assess the pre-
dictive performance. We also can use leave-one-out cross-
validation (i.e., H= n) to obtain unique result. In this
study, 10-fold cross-validation with 10 repeats and leave-
one-out cross-validation were both utilized. Deviance
AUC, MSE and misclassification rate were all reported.

Selecting optimal scale values
The performance of the hierarchical ordinal model can
depend on the scale parameter in the Cauchy prior. We
fit a sequence of models with different scales ranging
from 0.01 to 1 by 0.01, from which we can choose an
optimal one based on the criteria described above.

Selecting the optimal number of q probes
To select an optimal number of top q probes, we fit a se-
quence of models with a different number of probes with
the options from 30 and 50 to 500 by 50. The number q
will be determined based on the predictive performance of
the hierarchical ordinal logistic regression by evaluating
the deviance of the models. The chosen top q probes will
be identified as associated significant biomarkers and
present in heatmaps for visual examination.

Results
Data summary
There were 169 samples analyzed in the dataset, with a
total of 22,283 gene expression probes in Mulligan et al.
[10]. In Terragna et al. [2], we analyzed 118 samples
with a total of 54,677 gene expression probes. The de-
tails of both studies and the frequencies of the five-level
ordinal drug response outcomes were summarized in
Table 1. To avoid low frequencies in some levels for
both datasets, we combined the five-level drug response
to a new three-level drug response. By combining drug
response in Mulligan et al. [10] as the new three-level
ordinal outcome, there were 73 patients having a
response as PD or NC, 55 patients having a response as
MR or PR and 41 patients having a response as CR. By
combining drug response in Terragna et al. [2] as the
new three-level ordinal outcome, there were 49 patients
having a response as SD or PR, 54 patients having a
response as VGPR or nCR and 15 patients having a
response as CR.

Predictive genomic classifiers analysis
For the original ordinal drug response outcome in Mulligan
et al. [10], we first filtered probes based on all the options
from top 30 and then 50 probes to top 500 probes by 50
probes. Based on the predictive performance of all the 11
models (Table 2) evaluated with 10-fold cross-validation
with 10 repeats, it showed that the best predictive model
would include all 450 top probes for smallest deviance.

However, for the final predictive model, we included top 50
probes as predictors with a balance between a reasonable
decrease in deviance and simplicity in predictive model for
clinical application. The prior scale in the final model was
chosen at 0.14. Deviance of the final model was 441.919
and AUC was 0.632; while MSE was 0.136 and misclassifi-
cation rate was 0.189. For the new combined ordinal drug
response outcome in Mulligan et al. [10], we filtered probes
based on all the options from top 30 and then 50 probes to
top 500 probes by 50 probes. Based on the predictive
performance of all the 11 models (Table S1 [See
Additional file 1]) evaluated by 10-fold cross-validation with
10 repeats, it showed that the best predictive model
included all 400 top probes for smallest deviance. However,
for the final predictive model, we included top 50 probes as
predictors with a balance between a reasonable decrease in
deviance and simplicity in predictive model for clinical
application. The prior scale in the final model was chosen
at 0.16. For the final model, deviance was 316.118, AUC
was 0.696, MSE was 0.190 and misclassification rate was 0.
273. Comparing the predictive modeling performance
between five-level ordinal drug response and the new com-
bined ordinal drug response, AUC increased by 0.060 and
deviance decreased by 125.801 for the combined ordinal
outcome with a trade-off in MSE increasing by 0.054 and
misclassification rate increasing by 0.084.
For the original ordinal drug response outcome in

Terragna et al. [2], we also filtered probes based on all
the options from top 30 and then 50 probes to top 500
probes by 50 probes. Based on the predictive

Table 1 Summary of studies and frequency table for original
ordinal outcome in both studies

Study Mulligan et al. [10] Terragna et al. [2]

Treatment Bortezomib VTD

Number of Samples 169 118

Number of Probes 22,283 54,677

Patients Population Relapsed MM New-Diagnosis

Progressive
Disease (PD)

Stable Disease (SD)

13 (7.70%) 7 (5.93%)

No Change (NC) Partial Response (PR)

60 (35.50%) 42 (35.59%)

Minimal Response
(MR)

Very good partial
response (VGPR)

12 (7.10%) 40 (33.90%)

Partial Response
(PR)

near Complete
Response (nCR)

43 (25.44%) 14 (11.87%)

Complete Response
(CR)

Complete Response
(CR)

41 (24.26%) 15 (12.71%)
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performance of all the 11 models (Table 2), it showed
that the best predictive model included all 500 top
probes for smallest deviance. However, for the final pre-
dictive model, we included top 30 probes as predictors
with a balance between a comparable low deviance and
simplicity in predictive model for clinical application.
The prior scale in the final model was chosen at 0.95.
For the final model, deviance was 270.440, AUC was 0.
776, MSE was 0.126 and misclassification rate was 0.188.
For the new combined ordinal drug response outcome
in Terragna et al. [2], we filtered probes based on all the
options from top 30 and then 50 probes to top 500
probes by 50 probes. Based on the predictive perform-
ance of all the 11 models (Additional file 1: Table S1), it
showed that the best predictive model included all 500
top probes for smallest deviance. However, for the final
predictive model, we included top 50 probes as predic-
tors with a balance between a comparable low deviance
and simplicity in predictive model for clinical applica-
tion. The prior scale in the final model was chosen at 0.

26. Deviance of the final model was 167.130 and AUC
was 0.800; while MSE was 0.152 and misclassification
rate was 0.233. We compared the predictive perform-
ance of all models using 10-fold cross-validation with 10
repeats and leave one out cross-validation, which lead to
similar results. The results were shown in Table 2 and
Additional file 1: Table S1. Comparing the predictive
modeling performance between five-level ordinal drug
response and the new combined ordinal drug response,
AUC increased by 0.024 and deviance decreased by 103.
310 for the combined ordinal outcome with a trade-off
in MSE increasing by 0.026 and misclassification rate in-
creasing by 0.045.

Genes identification
To visualize the selected significant probes and its rela-
tionship with the clinical outcome in Mulligan et al.
[10], a heatmap was presented in Fig. 1 with the top 50
significant probes which were used as predictive gen-
omic factors for the five-level ordinal drug response.

Table 2 Summary of predictive performance using different number of top probes for drug response prediction (five levels) in two
studies

10 fold with 10 repeats cross-validation Leave one out cross-validation

Number of top genes Prior Scale Deviance AUC MSE misclassification Deviance AUC MSE misclassification

Mulligan et al. [10] (Five Level Drug response Outcome)

30 0.4 452.868 0.616 0.140 0.204 452.805 0.605 0.140 0.201

50 0.14 441.919 0.632 0.136 0.189 442.235 0.618 0.137 0.194

100 0.14 439.464 0.634 0.136 0.190 438.839 0.625 0.136 0.188

150 0.15 431.669 0.657 0.133 0.185 434.309 0.645 0.134 0.186

200 0.15 425.471 0.673 0.132 0.186 427.950 0.662 0.133 0.189

250 0.15 428.840 0.669 0.133 0.187 431.478 0.661 0.133 0.189

300 0.15 437.913 0.660 0.135 0.189 443.893 0.642 0.137 0.194

350 0.15 425.215 0.690 0.133 0.185 430.448 0.679 0.135 0.186

400 0.09 411.556 0.692 0.130 0.181 407.755 0.690 0.129 0.178

450 0.09 410.313 0.700 0.129 0.179 402.852 0.704 0.127 0.179

500 0.14 426.196 0.705 0.134 0.194 434.344 0.691 0.138 0.209

Terragna et al. [2] (Five Level drug response Outcome)

30 0.95 270.440 0.776 0.126 0.188 266.318 0.780 0.126 0.186

50 0.17 270.285 0.755 0.128 0.195 267.102 0.764 0.127 0.192

100 0.17 267.890 0.757 0.126 0.185 264.300 0.764 0.124 0.183

150 0.26 277.956 0.766 0.129 0.190 276.060 0.770 0.130 0.197

200 0.26 277.353 0.767 0.130 0.187 275.197 0.765 0.130 0.188

250 0.26 274.008 0.775 0.128 0.187 265.904 0.778 0.127 0.169

300 0.23 273.854 0.779 0.128 0.185 268.504 0.779 0.126 0.180

350 0.23 272.087 0.776 0.126 0.174 271.819 0.779 0.124 0.169

400 0.12 264.856 0.769 0.126 0.182 258.087 0.774 0.121 0.173

450 0.16 263.406 0.779 0.124 0.176 258.174 0.785 0.121 0.173

500 0.16 259.613 0.789 0.122 0.166 252.812 0.796 0.118 0.159
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The top 50 significant probes represent genes of known
function. Most of the probes are overexpressed in
patients with PR or CR, which covers various functions
including ribosomal protein (RPL11, RPL15, RPS7,
RPS13), mitochondrial (COX7C), eukaryotic translation
initiation factors (EIF3D, EIF3E, EIF3F, EIF3H) genes.
Two of the probes are under-expressed in patients achiev-
ing PR or CR, which represent the gene function as
ATPase plasma membrane Ca2+ transporting 4
(ATP2B4). For the three-level ordinal drug response, a
heatmap was presented in Figure S1 [See Additional file 2]
with the top 50 significant probes which were used as pre-
dictive genomic factors in our final predictive model. The
top 50 probes for three-level drug response overlapped
with most of the top 50 probes for five-level drug
response. Only a few probes represent different genes of
functions, including eukaryotic translation elongation fac-
tor (EEF2), chloride voltage-gated channel (CLCN3),
abhydrolase domain containing (ABHD14A).
To visualize the selected significant probes and its

relationship with the clinical outcome in Terragna et al.
[2], a heatmap was presented in Fig. 2 with the top 30
significant probes which were used as predictive gen-
omic factors for the five-level ordinal drug response.
The top 30 probes in this dataset differentiated with
similar chance to over-express or down-express, which
also cover various functions including BTG anti-

proliferation factor 1 (BTG1), CDP-diacylglycerol syn-
thase 1 (CDS1), RNA polymerase I subunit B (POLR1B),
acylglycerol kinase (AGK), cyclin D1 (CCND1), cyclin
D2 (CCND2), major histocompatibility complex, class II,
DQ beta 1 (HLA-DQB1), mitogen-activated protein kin-
ase 7 (MAP2K7) and suppressor of cytokine signaling 5
(SOCS5) genes. For the three-level ordinal drug
response, a heatmap was presented in Figure S2 [See
Additional file 3] with the top 50 significant probes
which were used as predictive genomic factors in our
final predictive model. The top 30 probes for three-level
drug response overlapped with most of the top 50
probes for five-level drug response. Only a few probes
represent different genes of functions, including SRC
proto-oncogene, non-receptor tyrosine kinase (SRC),
TNF receptor superfamily member 13C (TNFRSF13C)
and checkpoint kinase 1 (CHEK1).

Discussion
It is highly important to identify genetic biomarkers to
predict drug response with a narrow therapeutic index
[19, 26]. Chemotherapeutic agents are medications in
that category, since the response is variable with poten-
tially lethal side effects [19, 26]. Many studies have been
conducted and a large number of biomarkers have been
reported [19]. However, a complex outcome, such as
drug response, is generally affected by many genomic

Fig. 1 Heatmap with Top 50 Significantly Probes with Drug response (Five Levels) in Mulligan et al. [10]. A heatmap for the gene expression of
selected top significant 50 probes which were used as predictive genomic factors for the five-level ordinal drug response from Mulligan et al.
[10]. The bottom of the heatmap presents the names of the 50 probes; while the left side color bar stands for five-level ordinal drug response,
including complete response (CR), partial response (PR), minimal response (MR), no change (NC) and progressive disease (PD)
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and environmental factors [19]. Thus, it is desirable that
a predictive procedure will possess the capability to
consider mutual effects of various biomarkers for drug
response [19].
Another potential issue is that the multi-level ordinal

drug response is usually recoded in clinical practice. For
analytic simplicity, however, such multi-level ordinal
outcome is usually combined as just two levels, as in the
original papers [2, 10] that we reanalyzed in this study.
However, this strategy not only risks both the loss of infor-
mation in the data and arbitrary to select the recode strat-
egy, but also cannot provide informative prediction [27].
We here utilized a more efficient approach by combin-

ing the standard ordinal logistic regression and the hier-
archical modeling. Our method can jointly analyze
numerous variables for detecting important predictors
and for predicting multi-level drug response. We applied
our method to reanalyze two publicly available clinical
trial datasets, which assessed response to bortezomib in
relapsed MM patients [10] and VTD in newly diagnosed
MM patients [2]. The original studies both treated the
five-level ordinal drug responses as binary responses. To
address the drawback of the potential loss of information
from recoding, we reanalyzed the datasets by using the
original ordinal drug responses. To avoid low frequen-
cies in several levels of the five-level drug responses, we

redefined the five-level drug response as a three-level
ordinal drug response in both datasets. The results re-
veal that the predictive performance from VTD in new
MM patients is more powerful than treating relapsed
MM patients with bortezomib alone. Meanwhile, com-
paring the analysis results between five-level ordinal
drug response and reduced three-level ordinal drug re-
sponse, AUC increased and deviance decreased for the
combined ordinal outcome with a trade-off in MSE and
misclassification rate. Our analyses show that the com-
bining ordinal outcome could result in higher MSE and
misclassification rate, thus, potential loss of information
and misleading interpretation. Although we only com-
pared the five-level ordinal outcome with three-level or-
dinal outcome, it is anticipated that similar differences will
exist if compared with binary outcome. It also implies that
the original approach to analyze ordinal outcome as
binary outcome will possibly lead to information loss.
Furthermore, we identified probes that represent genes

of known function. In Mulligan et al. [10], for both five
level and three level ordinal drug response, most of the
top significant probes are overexpressed in patients with
PR or CR, including ribosomal protein (RPL11, RPL15,
RPS7, RPS13), mitochondrial (COX7C), eukaryotic
translation initiation factors (EIF3D, EIF3E, EIF3F,
EIF3H) genes. Among them, ribosomal protein has been

Fig. 2 Heatmap with Top 30 Significantly Probes with Drug response (Five Levels) in Terragna et al. [2]. A heatmap for the gene expression of selected top
significant 30 probes which were used as predictive genomic factors for the five-level ordinal drug response from Terragna et al. [2]. The bottom of the
heatmap presents the names of the 30 probes; while the left side color bar stands for five-level ordinal drug response, including complete response (CR),
near complete response (nCR), very good partial response (VGPR), partial response (PR) and stable disease (SD)
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investigated by multiple studies to show that mutations
in ribosomal protein genes have been found in endomet-
rial cancer (RPL22), T-cell acute lymphoblastic leukemia
(RPL10, RPL5 and RPL11), chronic lymphocytic
leukemia (RPS15), colorectal cancer (RPS20), and glioma
(RPL5) [28]. Moreover, it has also been discussed that
eukaryotic initiation factors (EIFs) play an important role
in translation initiation and protein synthesis which
could alter angiogenesis, tumor development, and apop-
tosis in cancer progression [29]. Two of the probes are
under-expressed in patients achieving PR or CR, which
represent the gene ATP2B4. ATP2B4 plays a critical role
in intracellular calcium homeostasis by regulating the
enzymes to remove bivalent calcium ions from
eukaryotic cells against very large concentration gradi-
ents [30]. In Terragna et al. [2], we carried a function
enrichment analysis to identify the functional annotation
of the top probes with KEGG [31] using the Bioinfor-
matics tool DAVID [32, 33]. The top 30 probes for the
five-level ordinal drug response also cover various gene
functions which belong to multiple important pathways,
e.g., Metabolic pathways, p53 signaling pathway, PI3K-
Akt signaling pathway, AMPK signaling pathway, Wnt
signaling pathway, Jak-STAT signaling pathway, Viral
carcinogenesis and MAPK signaling pathway. For the
three-level ordinal drug response, the top 50 significant
probes cover similar functions as the top 30 probes for
the five-level ordinal drug response, with several add-
itional functions such as Cytokine-cytokine receptor
interaction, NF-kappa B signaling pathway, Intestinal
immune network for IgA production, HTLV-I infection
and Primary immunodeficiency. This suggests that the
probes we identified are correlated biologically. Based on
the functional enrichment analysis results, the probes
could be grouped to multiple pathways. One plausible
solution is to utilize a pathway-structured model to
incorporate that biological information into the predict-
ive model to include more probe information into the
prediction, which will be considered in our further work.
Although the predictive classifier and genetic bio-

markers described here are promising, further research
is necessary to assess the relevance of these genomic
predictors with more data from other trials or other tri-
als with novel or multi-agent therapy. Our analysis strat-
egy is directly applicable to new data with bortezomib or
other therapies in multiple myeloma for patients with
newly diagnosed or relapsed cancer. This analysis will
help to quickly identify the patient groups that could
benefit from the proposed drug therapy or in need of
other novel therapies.

Conclusions
We propose a novel method to directly analyze the
multi-level drug response, rather than combining the

response to two groups. Our method employs a hier-
archical ordinal logistic model with the heavy-tailed
Cauchy prior on the coefficients. The proposed method
allows us to jointly fit numerous correlated predictors
and thus build efficient models for predicting the multi-
level drug response. The predictive model for the multi-
level drug response can be more informative than the
previous approaches. Thus, the proposed approach
provides a powerful tool for predicting multi-level drug
response and has important impact on cancer studies.
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