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Abstract

Background: Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in
its early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods
are costly and cumbersome due to the involvement of experienced experts as well as the requirements for the highly
equipped environment. The recent advancements in computerized solutions for this diagnosis are highly promising
with improved accuracy and efficiency.

Methods: In this article, a method for the identification and classification of the lesion based on probabilistic
distribution and best features selection is proposed. The probabilistic distribution such as normal distribution and
uniform distribution are implemented for segmentation of lesion in the dermoscopic images. Then multi-level
features are extracted and parallel strategy is performed for fusion. A novel entropy-based method with the
combination of Bhattacharyya distance and variance are calculated for the selection of best features. Only selected
features are classified using multi-class support vector machine, which is selected as a base classifier.

Results: The proposed method is validated on three publicly available datasets such as PH2, ISIC (i.e. ISIC MSK-2 and
ISIC UDA), and Combined (ISBI 2016 and ISBI 2017), including multi-resolution RGB images and achieved accuracy of
97.5%, 97.75%, and 93.2%, respectively.

Conclusion: The base classifier performs significantly better on proposed features fusion and selection method as
compared to other methods in terms of sensitivity, specificity, and accuracy. Furthermore, the presented method
achieved satisfactory segmentation results on selected datasets.

Keywords: Image enhancement, Uniform distribution, Image fusion, Multi-level features extraction, Features fusion,
Features selection

Background
Skin cancer is reported to be one of the most rapidly
spreading cancer amongst other types. It is broadly clas-
sified into two primary classes; Melanoma and Benign.
The Melanoma is the deadliest type of cancer with high-
est mortality rate worldwide [1]. In the US alone, an
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astonishing mortality rate of 75% is reported due to
melanoma compared to other types of skin cancers [2].
The occurrence of melanoma reported to be doubled
(increases 2 to 3% per year) in the last two decades, faster
than any other types of cancer. American Cancer Society
(ACS) has estimated, 87,110 new cases of melanoma will
be diagnosed and 9,730 people will die in the US only in
2017 [3]. Malignant melanoma can be cured if detected at
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its early stages, e.g., if diagnosed at stage I, the possible
survival rate is 96%, compared to 5% at its stage IV [4, 5].
However, early detection is strenuous due to its high
resemblance with benign cancer, even an expert derma-
tologist can diagnose it wrongly. A specialized technique
of dermatoscopy is mostly followed by dermatologist to
diagnose melanoma. In a clinical examination, most com-
monly adopted methods of visual features inspection are;
Menzies method [6], ABCD rule [7], and 7-point check-
list [8]. The most commonly used methods are the ABCD
(atypical, border, color, diameter) rules and pattern analy-
sis. It is reported that this traditional dermoscopy method
can increase the detection rate 10 to 27% [9]. These meth-
ods distinctly increases the detection rate compared to
conventional methods but still dependent on dermatolo-
gist’s skills and training [10]. To facilitate experts numer-
ous computerized analysis systems have been proposed
recently [11, 12] which are referred to as pattern analysis/
computerized dermoscopic analysis systems. These meth-
ods are non-invasive and image analysis based technique
to diagnose the melanoma.
In the last decade, several non-invasive methods

were introduced for the diagnosis of melanoma includ-
ing optical imaging system (OIS) [13], optical coher-
ence tomography (OCT) [14], light scattering (LS)
[15], spectropolarimetric imaging system (SIM) [16, 17],
fourier polarimetry (FP) [18], polarimetric imaging [19],
reectance confocal microscopy (RCM) [20, 21], photo-
acoustic microscopy [22], optical transfer diagnosis
(OTD) [23], etc. All these above mentioned methods have
enough potential to diagnose the skin lesions and also
accurate enough to distinguish the melanoma and benign.
The optical methods are mostly utilized during a clinal
tests to evaluate the presurgical boundaries of the basal
cell carcinoma. It can help in drawing boundaries around
the region of interest (ROI) in the dermoscopic images.
LS skin methods give the information about the micro-
architecture, which is represented with small pieces of
pigskin and mineral element and helps to determine the
extent of various types of skin cancers. The SIM method
correctly evaluates the polarimetric contrast of the region
of interest or infectious region such as melanoma, com-
pared to the background or healthy region. However,
in FP method human skins is observed with laser scat-
tering and difference is identified using optical method
for the diagnostic test for differentiating melanoma and
benign.

Problem statement
It is proved that malignant melanoma is a lethal skin
cancer that is extra dominant between the 15 and above
aged people [24]. The recent research shows high rate
of failure to detect and diagnose this type of cancer at
the early stages [25]. Generally, it consists of four major

steps: preprocessing, which consists of hair removal, con-
trast enhancement, segmentation, feature extraction, and
finally classification. The most challenging task in der-
moscopy is an accurate detection of lesion’s boundary
because of different artifacts such as hairs, illumination
effects, low lesion contrast, asymmetrical and irregular
border, nicked edges, etc. Therefore, for an early detec-
tion of melanoma, shape analysis is more important.
In features extraction step, several types of features are
extracted such as shape, color, texture, local etc. But,
we have no clear knowledge about salient features for
classification.

Contribution
In this article, we propose a new method of lesion detec-
tion and classification by implementing probabilistic dis-
tribution based segmentation method and conditional
entropy controlled features selection. The proposed tech-
nique is an amalgamation of five major steps: a) contrast
stretching; b) lesion extraction; c) multi-level features
extraction; d) features selection and e) classification of
malignant and benign. The results are tested on three pub-
licly available datasets which are PH2, ISIC (i.e. ISICMSK-
2 and ISIC UDA), and Combined (ISBI 2016 and ISBI
2017), containing RGB images of different resolutions,
which are later normalized in our proposed technique.
Our main contributions are enumerated below:

1 Enhanced the contrast of a lesion area by
implementing a novel contrast stretching technique,
in which we first calculated the global minima and
maxima from the input image and then utilized low
and high threshold values to enhance the lesion.

2 Implemented a novel segmentation method based on
normal and uniform distribution. Mean of the
uniform distribution is calculated from the enhanced
image and the value is added in an activation
function, which is introduced for segmentation.
Similarly, mean deviation of the normal distribution
is calculated using enhanced image and also inserted
their values in an activation function for
segmentation.

3 A fusion of segmented images is implemented by
utilizing additive law of probability.

4 Implemented a novel feature selection method,
which initially calculate the Euclidean distance
between fused feature vector by implementing an
Entropy-variance method. Only most discriminant
features are later utilized by multi-class support
vector machine for classification.

Paper organization
The chronological order of this article is as follows: The
related work of skin cancer detection and classification is
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described in “Related work” section. “Methods” section
explains the proposed method, which consists of several
sub steps including contrast stretching, segmentation, fea-
tures extraction, features fusion, classification etc. The
experimental results and conclusion of this article are
described in “Results” and “Discussion” sections.

Related work
In the last few decades, advance techniques in different
domains of medical image processing, machine learn-
ing, etc., have introduced tremendous improvements in
computer aided diagnostic systems. Similarly, improve-
ments in dermatological examination tools have led the
revolutions in the prognostic and diagnostic practices.
The computerized features extractions of cutaneous
lesion images and features analysis by machine learning
techniques have potential to enroute the conventional
surgical excision diagnostic methods towards CAD
systems.
In literature several methods are implemented for auto-

mated detection and classification of skin cancer from
the dermoscopic images. Omer et al. [26] introduced
an automated system for an early detection of skin
lesion. They utilized color features prior to global thresh-
olding for lesion’s segmentation. The enhanced image
was later subjected to 2D Discrete Fourier Transform
(DCT) and 2D Fast Fourier Transform (FFT) for fea-
tures extraction prior to the classification step. The results
were tested on a publicly available dataset PH2. Barata
et al. [27] described the importance of color features for

detection of skin lesion. The color sampling method is
utilized with Harris detector and compared their per-
formance with grayscale sampling. Also, compared the
color-SIFT (scale invariant feature transform) and SIFT
features and conclude that color-SIFT features performs
good as compare to SIFT. Yanyang et al. [28] intro-
duced an novel method for melanoma detection based
on Mahalanobis distance learning and graph regular-
ized non-negative matrix factorization. The introduced
method treated as a supervised learning method and
reduced the dimensionality of extracted set of features
and improves the classification rate. The method is eval-
uated on PH2 dataset and achieved improved perfor-
mance. Catarina et al. [29] described the strategy of
combination of global and local features. The local fea-
tures (BagOf Features) and global features (shape and
geometric) are extracted from original image and fused
these features based of early fusion and late fusion. The
author claim the late fusion is never been utilized in this
context and it gives better results as compared to early
fusion.
Ebtihal et al. [30] introduced an hybrid method for

lesion classification using color and texture features.
Four moments such as mean standard deviation, degree
of asymmetry and variance is calculated against each
channel, which are treated as a features. The local binary
pattern (LBP) and gray level co-occurrences matrices
(GLCM) were extracted as a texture features. Finally,
the combined features were classified using support
vector machine (SVM). Agn et al. [31] introduced a

Fig. 1 Proposed architecture of skin lesion detection and classification
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Fig. 2 Information of original image and their respective channels: a original image; b red channel; c green channel; d blue channel

saliency detection technique for accurate lesion detec-
tion. The introduced method resolve the problems when
the lesion borders are vague and the contrast between
the lesion and inundating skin is low. The saliency
method is reproduced with the sparse representaion
method. Further, a Bayesian network is introduced that
better explains the shape and boundary of the lesion.
Euijoon et al. [38] introduced a saliency based segmen-
tation technique where the background of original image

was detected by spatial layout which includes boundaries
and color information. They implemented Bayesian
framework to minimize the detection errors. Similarly,
Lei et al. [32] introduced a new method of lesion detec-
tion and classification based on multi-scale lesion biased
representation (MLR). This proposed method has the
advantage of detecting the lesion using different rotations
and scales, compared to conventional methods of single
rotation.

Fig. 3 Proposed contrast stretching results
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Fig. 4 Proposed uniform distribution based mean segmentation results. a original image; b enhanced image; c proposed uniform based mean
segmentation; d 2D contour image; e Contour plot; f 3D contour plot; g lesion area

From above recent studies, we noticed that the colour
information and contrast stretching is an important
factor for accurately detection of lesion from der-
moscopic images. Since the contrast stretching meth-
ods improves the visual quality of lesion area and
improves the segmentation accuracy. Additionally, for

improved classification, several features are utilized
in literature but according to best our knowledge,
serial based features fusion is not yet utilized. How-
ever, in our case only salient features are utilized
which are later subjected to fusion for improved
classification.

Fig. 5 Proposed normal distribution based M.D segmentation results. a original image; b enhanced image; c proposed M.D based segmentation;
d 2D contour image; e Contour plot; f 3D contour plot; g lesion area
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Table 1 Ground truth table for z1

X1 ∈ i X2 ∈ j S

0 0 0

0 1 1

1 0 1

1 1 1

Methods
A new method is proposed for lesion detection and clas-
sification using probabilistic distribution based segmenta-
tion method and conditional entropy controlled features
selection. The proposed method is consists of two major
steps: a) lesion identification; b) lesion classification. For
lesion identification, we first enhance the contrast of input
image and then segment the lesion by implementation
of novel probabilistic distribution (uniform distribution,
normal distribution). The lesion classification is done
based of multiple features extraction and entropy con-
trolled most prominent features selection. The detailed
flow diagram of proposed method is shown in Fig. 1.

Contrast stretching
There are numerous contrast stretching or normaliza-
tion techniques [34], which attempt to improve the image
contrast by stretching pixels’ specific intensity range to
a different level. Most of the available options take gray
image as an input and generate an improved output gray
image. In our research work, the primary objective is to
acquire a three channel RGB image having dimensions
m × n × 3. Although, the proposed technique can only
work on a single channel of size m × n, therefore, in pro-
posed algorithm we separately processed red, green and
blue channel.

In RGB dermoscopic images, mostly the available con-
tents are visually distinguishable into foreground which is
infected region and the background. This distinctness is
also evident in each and every gray channel, as shown in
Fig. 2.
Considering the fact [35], details are always high with

higher gradient regions which is foreground and details
are low with the background due to low gradient values.
We firstly divide the image into equal sized blocks and the
compute weights for all regions and for each channel. For
a single channel information, details are given below.

1 Gray channel is preprocessed using Sobel edge filter
to compute gradients where kernel size is selected to
be 3 × 3.

2 Gradient calculation for each equal sized block and
rearranging in an ascending order. For each block the
weights are assigned according to the gradient
magnitude.

�ζ(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ςb1
w if υc(x, y) ≤ T1;

ςb2
w T1 < υc(x, y) ≤ T2;

ςb3
w T1 < υc(x, y) ≤ T3;

ςb4
w otherwise

(1)

where ςbi
w (i ≤ 4) are statistical weight coefficient

and Ti is gradient intervals threshold.
3 Cumulative weighted gray value is calculated for each

block using:

Ng(z) =
4∑

i=1
ςbi
w ni(z) (2)

where ni(z) represents cumulative number of gray
level pixels for each block i.

Fig. 6 Proposed fusion results. a original image; b fused segmented image; cmapped on fused image; d ground truth image
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4 Concatenate red, green and blue channel to produce
enhanced RGB image.

For each channel, three basic conditions are considered
for optimized solution: I) extraction of regions with max-
imum information; II) selection of a block size; III) an
improved weighting criteria. In most of the dermoscopic
images, maximum informative regions are with in the
range of 25 − 75%. Therefore, considering the minimum
value of 25%, the number of blocks are selected to be 12
as an optimal number, with an aspect ratio of 8.3%. These
blocks are later selected according to the criteria of maxi-
mal information retained (cumulative number of pixels for
each block). Laplacian of Gaussian method (LOG) [36] is
used with sigma value of two for edge detection. Weights
are assigned according to the number of edge points, Epi
for each block:

Bwi = Epi
Ebmax

(3)

where Ebmax is the block with maximum edges. Finally,
adjust the intensity levels of enhance image and perform
log operation to improved lesion region as compare to
original.

ϕ(AI) = ζ(Bwi) (4)

ϕ(t) = C × log(β + ϕ(AI)) (5)
Where β is a constant value, (β ≤ 10), which is selected

to be 3 for producing most optimal results. ζ denotes the
adjust intensity operation, ϕ(AI) is enhance image after
ζ operation and ϕ(t) is final enhance image. The final
contrast stretching results are shown in Fig. 3.

Lesion segmentation
Segmentation of skin lesion is an important task in the
analysis of skin lesions due to several problems such as
color variation, presence of hairs, irregularity of lesion
in the image and necked edges. Accurate segmentation
provides important cues for accurate border detection.

Fig. 7 Proposed fusion results. a original image; b proposed segmented image; cmapped on proposed image; d ground truth image; e border
on proposed segmented image
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In this article, a novel method is implemented based of
probabilistic distribution. The probabilistic distribution
is consists of two major steps: a) uniform distribution
based mean segmentation; b) normal distribution based
segmentation.

Mean segmentation
The uniform distribution of mean segmentation is
calculated from enhanced image ϕ(t) and then perform
threshold function for lesion extraction. The detailed
description of mean segmentation is defined below: Let
t denotes the enhanced dermoscopic image and f (t)
denotes the function of uniform distribution, which is
determined as f (t) = 1

y−x . Where y and x denotes the
maximum and minimum pixels values of ϕ(t). Then the
mean value is calculated as follows:

μ =
∫ y

x
t f (t) dt (6)

=
∫ y

x
t

1
y − x

dt (7)

= 1
y − x

[
t2

2

]y

x
(8)

= 1
2(y − x)

[
(y + x)(y − x)

]
(9)

μ = 1
2

[
(y + x)

]
(10)

Then perform an activation function, which is define as
follows:

A(μ) = 1
(
1 +

(
μ

ϕ(t)

))α + 1
2μ

+ C (11)

F(μ) =
{
1 if A(μ) ≥ δthresh
0 if A(μ) < δthresh

(12)

where δthresh is Otus’s threshold, α is a scaling factor which
controls the lesion area and its value is selected on the
basis of simulations performed, α ≤ 10, and finally got
α = 7 to be most optimal number. C is a constant value
which is randomly initialized within the range of 0 to 1.
The segmentation results are shown in Fig. 4.

Mean deviation based segmentation
The mean deviation (M.D) of normal distribution is
is calculated from ϕ(t) having parameter μ and σ .
The value of M.D is utilized by activation function for
extraction of lesion from the dermoscopic images. Let
t denotes the enhanced dermoscopic image and f (t)
denotes the normalized function, which determined as
f (t) = 1√

2πσ
e− 1

2 (
t−μ
σ

)2 . Then initialize the M.D as:

M.D =
∫ +∞

−∞
|t − μ| f (t) (13)

=
∫ +∞

−∞
|t − μ| 1√

2πσ
e−

1
2

(
t−μ
σ

)2

dt (14)

Then put g = t−μ
σ

in Eq. 14.

M.D = 1√
2πσ

∫ +∞

−∞
∣
∣σ g

∣
∣ e

−g2
2 dg (15)

= σ√
2π

[∫ ∞

0
g e

−g2
2 dg +

∫ ∞

0
g e

−g2
2 dg

]

(16)

M.D = 2σ√
2π

∫ ∞

0
g e

−g2
2 dg (17)

Put g2
2 = l in Eq. 17 and it becomes:

M.D = 2σ√
2π

∫ ∞

0

√
2l e−l dl√

2l
(18)

= 2σ√
2π

∫ ∞

0
e−l dl (19)

=
√

2
π

σ

[
e−l

−1

]∞

0
(20)

= −
√

2
π

σ

[
1
el

]∞

0
(21)

= −
√

2
π

σ(−1) (22)

Table 2 Lesion detection accuracy as compared to ground truth
values

Image description Similarity rate Image description Similarity rate

IMD038 95.69 IMD199 94.70

IMD020 92.52 IMD380 97.94

IMD039 91.35 IMD385 94.37

IMD144 88.33 IMD392 94.47

IMD203 86.44 IMD394 96.96

IMD379 88.41 IMD047 90.07

IMD429 94.87 IMD075 95.85

IMD211 92.81 IMD078 94.70

IMD285 95.59 IMD140 96.94

IMD022 96.02 IMD256 95.82

IMD025 96.35 IMD312 96.04

IMD042 91.26 IMD369 96.08

IMD173 96.04 IMD376 93.07

IMD182 97.97 IMD427 93.14

IMD430 98.10 IMD168 92.88

Data in bold are significant
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Fig. 8 A system architecture of multiple features fusion and selection

Fig. 9 Selected channels for color features extraction
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Table 3 Proposed features fusion and selection results on PH2 dataset

Method Execution time /sec Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

DT 7 88.33 88.73 92.50 10.0 0.04 90.0

QDA 2 90.83 89.40 91.20 9.0 0.04 91.0

Q-SVM 2 95.83 96.60 98.70 3.0 0.01 97.0

LR 6 92.10 92.76 96.96 6.0 0.02 94.0

N-B 3 89.60 91.73 96.90 7.5 0.03 92.5

W-KNN 2 91.67 92.33 96.20 6.5 0.02 93.5

EBT 5 95.43 96.67 98.12 3.5 0.02 96.5

ESD 10 94.20 94.53 97.50 4.5 0.02 95.5

C-KNN 2 91.26 91.56 95.61 7.0 0.03 93.0

Multi-class SVM 1 96.67 97.06 98.74 2.5 0.01 97.5

Data in bold are significant

Table 4 Results of individual extracted set of features using PH2 dataset

Name Features Performance measures

Classification Method Harlick HOG Color Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

Decision tree � 67.53 67.50 70.05 31.50 0.16 68.5

� 71.67 72.1 85.0 23.0 0.11 77.0

� 87.93 86.93 86.9 12.5 0.06 87.5

Quadratic discriminant analysis � 70.0 68.43 70.0 30.0 0.14 70.0

� 74.60 75.83 88.15 20.0 0.09 80.0

� 84.6 81.9 80.65 17.0 0.08 83.0

Quadratic SVM � 68.33 70.27 76.25 28.5 0.14 71.5

� 82.5 83.37 92.7 13.5 0.06 86.5

� 93.77 93.33 94.44 6.0 0.03 94.0

Logistic regression � 63.36 64.06 70.05 34.0 0.17 66.0

� 86.27 85.83 91.9 11.5 0.09 88.5

� 89.2 90.43 92.55 9.5 0.04 90.5

Naive bayes � 62.9 62.9 66.85 35.5 0.18 64.5

� 81.25 81.93 90.65 15.0 0.07 85.0

� 87.93 87.63 90.65 11.0 0.06 89.0

Weighted KNN � 66.67 67.5 72.5 31.0 0.16 69.0

� 81.67 83.27 92.5 14.0 0.06 86.0

� 90.87 90.83 92.55 8.5 0.03 91.5

Ensemble boosted tree � 68.33 67.77 68.75 31.5 0.16 68.5

� 80.67 82.57 91.3 15.0 0.07 85.0

� 88.37 89.47 91.3 10.5 0.04 89.5

Ensemble subspace discriminant � 68.76 68.4 71.9 30.0 0.15 70.0

� 87.1 87.03 91.9 11.0 0.05 89.0

� 92.9 94.7 96.9 5.5 0.03 94.1

Cubic KNN � 65.43 66.4 71.9 32.0 0.16 68.0

� 80.4 80.8 89.4 16.0 0.07 84.0

� 90.3 89.83 91.7 9.5 0.04 90.5

Proposed � 69.6 72.23 75.65 28.0 0.14 72.0

� 86.27 87.37 94.4 10.5 0.02 89.5

� 94.6 93.97 94.4 5.5 0.02 94.5
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Hence

M.D = 0.7979σ (23)

Then perform an activation function to utilize M.D as:

AC(M.D) = 1
(
1 +

(
M.D
ϕ(t)

))α + 1
2M.D

+ C (24)

F(M.D) =
{
1 if AC(M.D) ≥ δthresh
0 if AC(M.D) < δthresh

(25)

The segmentation results of M.D is shown in Fig. 5.

Image fusion
The term image fusion mean to combine the information
of two or more than two images in one resultant image,
which contains better information as compare to any indi-
vidual image or source. The image fusion reduces the
redundancy between two or more images and increase the
clinical applicability for diagnosis. In this work, we imple-
mented a union based fusion of two segmented images
into one image. The resultant image is more accurate
and having much information as compare to individual.
Suppose N denotes the sample space, which contains
200 dermoscopic images. Let X1 ∈ F(μ) which is mean
segmented image. Let X2 ∈ F(M.D) which M.D based
segmented image. Let i denotes the X1 pixels values and j
denotes the X2 pixels values and S denotes the both i and

j pixels which pixels values are 1. It mean all 1 value pixels
fall in S. Then X1 ∪ X2 written as:

X1 ∪ X2 = (X1 ∪ X2) ∩ φ (26)

P(X1 ∪ X2) = P((X1 ∪ X2)) ∩ P(φ) (27)

=
{

ξ((X1,X2) == 1) if (i, j) ∈ z1
ξ((X1,X2) == 0) if (i, j) ∈ z2

(28)

Where z1 represented as ground truth Table 1.
Hence

�(t) =
{
1 if

∑[
i, j

]
> 1

0 Otherwise (29)

P(X1 ∪ X2) = P(X1) + P(X2) − P(φ) (30)
Where P(φ) denotes the 0 values which presented

as background and 1 denotes the lesion. The graphical
results after fusion are shown in Fig. 6.

Analysis
In this section, we analyze our segmentation results in
terms of accuracy or similarity index as compared to
given ground truth values. We select randomly images
from PH2 dataset and shows their results in tabular and
graphical. The proposed segmentation results are directly

Table 5 Confusion matrix for PH2 dataset

Confusion Matrix: Proposed features fusion and selection

Class Tested images Melanoma Benign Caricinoma

Melanoma 20 92.5% 7.5%

Benign 40 2.5% 97.5%

Caricinoma 40 100%

Confusion matrix: Harlick features

Class Total Images Melanoma Benign Caricinoma

Melanoma 20 57.5% 35% 7.5%

Benign 40 8.8% 68.8% 22.5%

Caricinoma 40 3.8% 13.8% 82.5%

Confusion matrix: HOG features

Class Total Images Melanoma Benign Caricinoma

Melanoma 20 70% 30% -

Benign 40 10% 88.8% 1.3%

Caricinoma 40 - - 100%

Confusion matrix: Color features

Class Total Images Melanoma Benign Caricinoma

Melanoma 20 95% 5.0% -

Benign 40 3.8% 95% 1.3%

Caricinoma 40 1.3% 5.0% 93.8%
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Table 6 PH2 dataset: Comparison of proposed algorithm with
existing methods

Method Year Sensitivity % Specificity % Accuracy %

Abuzaghleh et al.
[26]

2014 - - 91

Barata et al. [27] 2013 85 87 87

Abuza et al. [43] 2015 - - 96.5

Kruck et al. [44] 2015 95 88.1 -

Rula et al. [45] 2017 96 83 -

Waheed et al. [46] 2017 97 84 96

Sath et al. [47] 2017 96 97 -

GUU et al. [48] 2017 94.43 81.01 -

Lei et al. [49] 2016 87.50 93.13 92.0

MRastagoo et al.
[50]

2015 94 92 -

Proposed 2017 96.67 98.7 97.5

Data in bold are significant

compare to ground truth images as shown in Fig. 7. The
testing accuracy against each selected dermoscopic image
are depicted in Table 2. From Table 2 the accuracy of
each image is above 90% and the maximum similarity
rate is 98.10. From our analysis, the proposed segmenta-
tion results perform well as compare to existing methods
[31, 37–39] in terms of border detection rate.

Image representation
In this three types of features are extracted for the repre-
sentation of an input image. The basic purpose of feature
extraction is to find out a combination of most efficient
features for classification. The performance of dermo-
scopic images mostly depends on the quality and the
consistency of the selected features. In this work, three
types of features are extracted such as color, texture and
HOG for classification of skin lesion.

HOG features
The Histogram Oriented Gradients (HOG) features are
originally introduced by Dalal [40] in 2005 for human
detection. The HOG features are also called shape based
features because they work on the shape of the object.
In our case, the HOG features are extracted from seg-
mented skin lesion and work efficiently because every
segmented lesion have their own shape. As shown in
Fig. 8, the HOG features are extracted from segmented
lesion and obtain a feature vector of size 1× 3780 because
we have the size of segmented image is 96 × 128 and
size of bins is 8 × 8. The size of extracted features are
too high and they effect on the classification accuracy.
For this reason, we implement a weighted conditional
entropy with PCA (principle component analysis) on
extracted feature vector. The PCA return the score
against each feature and then weighted entropy is utilized
to reduced the feature space and select the maximum
200 score features. The weighted conditional entropy is
define as:

EW =
K∑

i=1

K∑

j=1
Wi,j. P(i, j)log

P(i)
P(i, j)

(31)

Where i, j denotes the current and next feature respec-
tively.Wi,j denotes the weights of selected features, which
is selected between 0 and 1

(
0 ≤ Wij ≤ 1

)
and P(i, j) =

Wij . nij
∑K

ij=1 Wij . nij
. Hence the new reduce vector size is 1 × 200.

Harlick features
Texture information of an input image is an important
component, which is utilized to identify the region of
interest such as a lesion. For texture information of lesion,
we extract the harlick features [41]. The harlick features
are extracted from the segmented image as shown in

Table 7 Proposed features fusion and selection results on ISIC-MSK dataset

Method
Performance measures

Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

Decision tree 92.95 93.1 94.30 6.9 0.07 93.1

Quadratic discriminant analysis 95.95 95.45 91.90 4.5 0.04 95.5

Quadratic SVM 96.25 96.10 95.60 3.8 0.03 96.2

Logistic regression 95.10 95.10 95.60 4.8 0.04 95.2

Naive bayes 92.80 93.30 95.60 6.9 0.07 93.1

Weighted KNN 95.10 95.10 95.60 4.8 0.04 95.2

Ensemble boosted tree 95.10 95.10 95.60 4.80 0.04 95.2

Ensemble subspace discriminant 95.10 95.10 95.60 4.8 0.04 95.2

Cubic KNN 89.35 90.65 95.60 10.0 0.10 90.0

Proposed 96.60 97.0 98.30 2.8 0.01 97.2

Data in bold are significant



Khan et al. BMC Cancer  (2018) 18:638 Page 13 of 20

Fig. 8. There are total 14 texture features implemented
(i.e. autocorrelation, contrast, cluster prominence, cluster
shade, dissimilarity, energy, entropy, homogeneity 1,
homogeneity 2, maximum probability, average, variances,
inverse difference normalized and inverse difference
moment normalized) and a feature vector of size 1 × 14
is created. After calculating the mean, range and vari-
ance of each feature, the final vector is calculated having
size 1 × 42.

Color features
The color information of the region of interest has
attained strong prevalence for classification of lesions in
malignant or benign. The color features provide a quick

processing and are deeply robust to geometric variations
of lesion patterns. Three types of color spaces are utilized
for color features extraction such as RGB, HSI, and LAB.
As shown in Fig. 9, the mean, variance, skewness and kur-
tosis are calculated for each selected channel. From Fig. 8,
its shown clearly that the 1×12 features are extracted from
each color space and total features of three color spaces
having dimension of 1 × 36.

Features fusion
The goal of feature fusion is to create a new feature
vector, which contains much information as compare to
individual feature vector. Different types of features are
extracted from same image always indicates the distinct

Table 8 Results for individual extracted set of features using ISIC-MSK dataset

Classifier Selected features Performance measures

Color HOG Harlick Sensitivity % Precision % Specificity FNR % FPR Accuracy %

DT � 89.4 89.65 0.919 10.3 0.105 89.7

� 92.25 93.10 0.944 6.9 0.06 93.1

� 80.95 82.15 0.888 18.3 0.18 81.7

QDA � 86.05 86.05 0.875 13.8 0.13 86.2

� 94.30 93.85 0.894 6.2 0.05 93.8

� 70.73 73.25 0.769 26.6 0.26 73.4

Q-SVM � 95.6 95.75 0.956 4.1 0.03 95.9

� 95.5 95.46 0.956 4.5 0.04 95.5

� 82.05 82.3 0.856 17.6 0.17 82.4

LR � 92.05 92.7 0.956 7.6 0.07 92.4

� 95.1 95.1 0.956 4.8 0.04 95.2

� 81.45 82.25 0.875 17.9 0.18 82.1

N-B � 90.9 91.8 0.956 8.6 0.08 91.4

� 93.95 94.2 0.956 5.9 0.05 94.1

� 82.2 83.95 0.913 16.9 0.03 83.1

W-KNN � 90.9 91.9 0.956 8.6 0.08 91.4

� 93.95 94.2 0.956 5.9 0.05 94.1

� 81.15 84.2 0.938 17.6 0.08 82.4

EBT � 91.45 91.85 0.994 8.3 0.08 91.7

� 93.35 93.4 0.944 6.6 0.06 93.4

� 81.45 82.25 0.875 17.9 0.18 82.1

ESD � 86.95 88.05 0.931 12.4 0.125 87.6

� 95.5 95.45 0.956 4.5 0.04 95.5

� 78.0 79.5 0.875 21.0 0.21 79.0

Cubic KNN � 93.25 93.5 0.95 6.6 0.06 93.4

� 93.15 92.7 0.973 7.2 0.07 92.8

� 76.6 76.6 0.788 23.1 0.23 76.9

Proposed � 95.85 95.85 0.963 4.1 0.03 95.9

� 97.1 96.75 0.963 3.8 0.02 96.2

� 82.55 84.7 0.913 16.6 0.13 83.4
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Table 9 Confusion matrix for all set of extracted features using
ISIC-MSK dataset

Class Total images Melanoma Benign

Confusion matrix: Proposed features fusion and selection

Melanoma 130 99.2% 1%

Benign 160 4.4% 95.6%

Confusion matrix: Harlick features

Melanoma 130 73.8% 26.2%

Benign 160 8.8% 91.3%

Confusion matrix: HOG features

Melanoma 130 99.2% 0.8%

Benign 160 5.0% 95.0%

Confusion matrix: Color features

Melanoma 130 96.2% 3.8%

Benign 160 3.8% 96.3%

characteristics of an image. The combination of these fea-
tures effectively discriminate the information of extracted
features and also eliminates the redundant information
between them. The elimination of redundant informa-
tion between extracted set of features provides improved
classification performance. In this work, we implemented
a parallel features fusion technique. The implemented
technique efficiently fuse the all extracted features and
also remove the redundant information between them.
The fusion process is detailed as: Suppose C1,C2, and
C3 are known lesion classes (i.e. melanoma, atypical nevi
and benign). Let � = {

ψ | ψ ∈ R
K}

denotes the test-
ing images. As given three extracted feature sets D ={
α | α ∈ R

h} ,E = {
j | j ∈ R

t} , {o | o ∈ R
c}, where α, j and

o are three feature vector (i.e. HOG, texture and color).
Then the parallel fusion is define as:

F
(
P//

) = (α1,α2, . . . αd)(j1, j2, . . . jd)(o1, o2, . . . od)
(32)

Where d denotes the dimension of extracted set of fea-
tures. As we know the dimension of each extracted feature
vector (i.e. HOG (1 × 200), Texture (1 × 42) and Color
(1 × 36). Then the fused vector is define as:

ϒ
(
F//
s

) = (
α + ι j,α + ι o | α ∈ D, j ∈ E, o ∈ F

)
(33)

It in an n dimensional complex vector, where n =
max(d(D), d(E), d(F)). From previous expression, the
HOG has maximum dimension 1 × 200. Hence, make the
size of E and F feature vector equally to D vector. For
this purpose adding zeros. For example below is a given
matrix, which consists of three feature vectors.

⎧
⎨

⎩

D = (0.2 0.7 0.9 0.11 0.10 0.56 . . . 0.90)
E = (0.1 0.3 0.5 0.17 0.15)
F = (0.3 0.17 0.93 0.15)

(34)

Then make the same size of feature vector, by adding
zeros.

⎧
⎨

⎩

D = (0.2 0.7 0.9 0.11 0.10 0.56 ... 0.90)
E = (0.1 0.3 0.5 0.17 0.15 0.0 ... 0.0)
F = (0.3 0.17 0.93 0.15 0.0 0.0 ... 0.0)

(35)

Finally, a novel feature selection technique is imple-
mented on fused features vector and select the most
prominent features for classification.

Features selection
The motivation behind the implementation of feature
selection technique is to select the most prominent fea-
tures for improving the accuracy and also make the sys-
tem fast in terms of execution time. The major reasons

Table 10 Proposed features fusion and feature selection results on ISIC-UDA dataset

Method
Measures

Sensitivity Precision Specificity FNR FPR Accuracy

DT 87.25 90.65 97.1 10.7 0.12 89.3

QDA 79.75 88.60 99.3 16.3 0.19 83.7

QSVM 98.05 98.40 99.3 1.7 0.02 98.3

LR 94.8 96.35 99.3 4.3 0.04 95.7

N-B 88.5 91.00 96.4 9.9 0.10 90.1

W-KNN 83.85 91.20 100 12.9 0.16 87.1

EBT 95.2 95.85 97.9 4.3 0.4 95.7

E-S-D 89.6 89.75 92.1 9.9 0.09 90.1

L-KNN 81.7 90.25 100 14.6 0.18 85.4

Proposed 97.85 98.60 100 1.7 0.02 98.3

Data in bold are significant
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behind feature selection technique are a) utilize only a
selected group prominent features leads to increased the
classification accuracy by the elimination of irrelevant
features; b) the miniature group of features is discov-
ered that maximally increases the performance of pro-
posed method; c) select a group of features from the
high dimensional features set for a dense and detailed
data representation. In this work, a novel Entropy-
Variances based feature selection method is imple-
mented. The proposed method performs in two steps.
First, it calculates the Bhattacharyya distance of fused fea-
ture vector. The Bhattacharyya distance find out the close-
ness between two features. It is utilized for classification

of lesion classes and also consider more reliable as com-
pare to Euclidean distance. Second, it implements an
entropy-variance method on closeness features and select
themost prominent features based on their maximum val-
ues. Entropy in a nutshell is the uncertainty measurement
associated with initialization of the closeness features.
Since base classifier is highly dependent on their initial
conditions for their fast convergence and accurate approx-
imation. Also, the selected closeness features should have
maximum entropy value. To the best of our knowledge,
entropy, especially in conjunction with Bhattacharyya dis-
tance and Variances, has never been adopted for selection
of most prominent features. Let fi and fi+1 are two features

Table 11 Results for individual extracted set of features using ISIC-UDA dataset

Method
Features Performance measures

Color HOG Harlick Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%)

Decision tree � 72.75 77.4 90.7 23.6 0.62 76.4

� 70.15 69.4 69.3 30.0 0.30 70.0

� 86.55 87.35 91.4 12.4 0.13 87.6

QDA � 74.04 74.04 79.3 24.9 0.21 75.1

� 77.4 88.45 100 18.0 0.22 82.0

� 82.65 83.15 87.9 16.3 0.17 83.7

QSVM � 73.7 77.25 89.3 23.2 0.73 76.8

� 81.35 89.3 99.3 15.0 0.18 85.0

� 94.45 95.8 98.6 4.7 0.05 95.3

LR � 68.5 68.35 73.6 30.5 0.31 69.5

� 78.5 88.9 100 17.2 0.21 82.8

� 93.4 94.65 97.1 5.6 0.05 94.4

N-B � 69.4 69.95 78.6 28.8 0.30 71.2

� 76.7 76.7 81.4 22.3 0.22 77.7

� 86.0 89.05 95.7 12.0 0.13 88.0

W-KNN � 74.04 77.9 90.0 22.7 0.21 77.3

� 80.8 87.15 97.1 15.9 0.17 84.1

� 88.55 92.3 98.6 9.4 0.11 90.6

EBT � 71.35 71.8 79.3 27.0 0.23 73.0

� 80.8 83.8 92.9 17.2 0.17 82.8

� 90.5 91.55 95.0 8.6 0.09 91.4

ESD � 69.95 71.6 82.9 27.5 0.30 72.5

� 60.2 74.5 85.0 24.9 0.27 75.1

� 83.9 86.5 93.6 14.2 0.15 85.8

Cubic KNN � 71.7 74.4 86.4 25.3 0.23 74.7

� 80.15 87.4 97.9 16.3 0.19 83.7

� 85.5 90.2 97.9 12.0 0.14 88.0

Proposed � 73.65 78.5 91.4 22.7 0.22 77.3

� 82.6 87.55 96.4 14.6 0.15 85.4

� 95.2 95.85 97.9 4.3 0.04 95.7
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of fused vector ϒ
(
F//
s

)
. The Bhattacharyya distance is

calculated as:

	Bd = −ln

⎛

⎜
⎝

∑

u∈ϒ
(
F//
s

)

√(
fi(u).fi+1(u)

)

⎞

⎟
⎠ (36)

Then Entropy-variance is performed on crossness vec-
tor to find out the best features based of their maximum
entropy value.

EV
( 	Bd

) = − ln
(
f(i+1) + σ 2)

ln
(
fi + σ 2) + ln

(
fi − σ 2)

ϒ∑

f=1

(
H0
fi/δH

)
log2

(
H0
fi/δH

) (37)

δH =
ϒ−1∑

f=0
Hi
0 (38)

where Hj
i denotes the closeness set of features. Hence the

size of selected feature vector is 1×172. The selected vec-
tor is feed to multi-class SVM for classification of lesion
(i.e. melanoma, benign). The one-against all multi-class
SVM [42] is utilized for classification.

Results
Evaluation protocol
The proposed method is evaluated on four publicly
available datasets including PH2, ISIC, and collective ISBI
(ISBI 2016 and ISBI 2017). The proposed method is a con-
junction of two primary steps: a) lesion identification; b)
lesion classification (i.e. melanoma, benign, atypical nevi).
The lesion identification results are discussed in their
own section. In this section, we discussed proposed lesion
classification results. Four classifications three types of
features are extracted (i.e. texture, HOG, and color). The
experimental results are obtained on each feature set
individually and then compare their results with pro-
posed feature vector (fused vector). The multi-class SVM
is selected as a base classifier and compare their results
with nine classifications method (decision tree (DT),
quadratic discriminant analysis (QDA), quadratic SVM
(Q-SVM), logistic regression (LR), Naive Bayes, weighted
K-Nearest Neighbor (w-KNN), ensemble boosted tree
(EBT), ensemble subspace discriminant (ESDA), and
cubic KNN (C-KNN)). Seven measures are calculated
for testing the performance of proposed method such as
sensitivity, specificity, precision, false negative rate (FNR),
false positive rate (FPR), and accuracy. Also, calculate
the execution time of one image. The proposed method
is implemented on MATLAB 2017a having personal
computer Core i7 with 16GB of RAM.

Datasets & results
PH2Dataset
The PH2 dataset [51] consists of 200 RGB dermoscopic
images and of resolution (768 × 560). This dataset has
three main divisions; a) melanoma; b) benign; c) common
nevi. There are 40 melanoma, 80 benign and 80 common
nev image are in this dataset. For validation 50:50 strategy
is performed for training and testing of proposed method.
Four experiments are done on different feature sets (i.e.
harlick features, color features, HOG features, proposed
features fusion and selection method) for given a compar-
ison between individual set of features and proposed fea-
ture set. The proposed features fusion and selection with
entropy-variances method results are depicted in Table 3.
The proposed method obtain maximum accuracy 97.06%,
sensitivity 96.67%, specificity 98.74%, precision 97.06%
and FPR is 0.01. The individual feature set by without
utilizing feature selection algorithm results are depicted
in Table 4. The results of Tables 3 and 4 are confirmed
by their confusion matrix in Table 5, which shows that
proposed features fusion and selection method efficiently
perform on base classifier as compare to other classi-
fication methods. The comparison of proposed method
on PH2 dataset also given in Table 6, which shows the
authenticity of proposed method.

ISIC dataset
The ISIC dataset [52] is an institutional database and
often used in skin cancer research. It is an open source
database having high-quality RGB dermoscopic images
of resolution (1022 × 1022). ISIC incorporates many sub-
datasets but we selected: a) ISICMSK-2 and b) ISIC-UDA.
From ISIC MSK-2 dataset, we collected 290 images

Table 12 Confusion matrix for all set of extracted features using
ISIC-UDA dataset

Class Total images Melanoma Benign

Confusion matrix: Proposed features fusion and selection

Melanoma 93 95.7% 4.3%

Benign 140 - 100%

Confusion matrix: Harlick features

Melanoma 93 55.9% 44.1%

Benign 140 8.6% 91.4%

Confusion matrix: HOG features

Melanoma 93 68.8% 31.2%

Benign 140 3.6% 96.4%

Confusion matrix: Color features

Melanoma 93 92.5% 7.5%

Benign 140 2.1% 97.9%
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Table 13 Classification results on ISBI 2016 dataset

Method Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%) AUC

DT 63.0 62.0 79.0 28.5 0.370 71.5 0.63

QDA 68.0 65.5 79.0 26.4 0.320 73.6 0.74

Q-SVM 68.5 78.5 95.0 17.7 0.315 82.3 0.81

LR 67.0 65.0 79.0 26.1 0.330 72.9 0.69

NB 74.5 77.0 91.5 17.1 0.255 82.9 0.84

W-KNN 70.5 75.0 91.0 18.7 0.295 81.3 0.83

EBT 66.0 80.0 97.0 18.3 0.034 81.7 0.79

ESDA 72.5 55.0 90.0 18.5 0.275 81.5 0.83

Proposed 75.5 78.0 93.0 16.8 0.270 83.2 0.85

Data in bold are significant

having 130 melanoma and 160 benign. For validation of
proposed algorithm, we have performed four experiments
on different types of features (i.e. Harlick features, Color
features, HOG features and proposed features fusion and
selection vector). Four different classification methods
are compared with the base classifier ( multi-class SVM).
The proposed features fusion and selection results are
shown in Table 7 having maximum accuracy 97.2%, sensi-
tivity 96.60% and specificity 98.30% on the base classifier.
The individual feature set results are depicted in Table 8,
and base classifier (multi-class SVM) perform well as
compared to other methods. The base classifier results
are confirmed by their confusion matrix given in Table 9.
From ISIC UDA dataset, we select total 233 images
having 93 melanoma and 140 benign. The proposed
method results are depicted in Table 10 having maximum
accuracy 98.3% and specificity 100% on the base classifier.
Also, the results on individual feature sets are depicted
in the Table 11, which shows that the proposed features
fusion and selection method perform significantly well as
compared to Table 10. The base classifier results are con-
firmed by their confusion matrix given in the Table 12,
which shows the authenticity of proposed method.

ISBI - 2016& 17
These datasets - ISBI 2016 [52] and ISBI 2017 [53], are
based on ISIC archive, which is a largest publicly avail-
able collection of quality controlled dermoscopic images
for skin lesions. It contains separate training and test-
ing RGB samples of different resolutions, such as ISBI
2016 contains 1279 images (273 melanoma and 1006
benign), where 900 images for training and 350 for test-
ing the algorithm. The ISBI 2017 dataset contains total
2750 images (517 melanoma and 2233 benign) including
2000 training images and 750 testing. For experimental
results, first experiments are done on each dataset sep-
arately and obtained classification accuracy 83.2%, and
88.2% on ISBI 2016, and ISBI 2017, respectively. The clas-
sification results are given in Tables 13 and 14, which
is proved by their confusion matrix given in Table 16.
After that, both datasets are combined and 10 fold cross-
validation is performed for classification results. Themax-
imum classification accuracy of 93.2% is achieved with
multi-class SVM, presented in Table 15, which is also
confirmed by their confusion matrix given in Table 16.
The proposed method is also compared with [54], which
has achieved maximum classification accuracy of 85.5%,

Table 14 Classification results on ISBI 2017 dataset

Method Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%) AUC

DT 74.5 75.0 77 25.5 0.255 74.8 0.77

QDA 77.5 78.0 81 22.5 0.254 77.6 0.78

Q-SVM 86.5 86.5 87 13.8 0.135 86.2 0.92

LR 84.5 84.5 86 15.4 0.135 84.6 0.92

NB 79.5 80.0 83 21.5 0.212 79.5 0.80

W-KNN 87.5 88.0 88 12.2 0.125 87.8 0.92

EBT 86.0 83.5 92 14.2 0.140 85.8 0.91

ESDA 83.5 83.5 87.0 16.5 0.165 83.5 0.90

Proposed 88.5 88.0 91.0 11.8 0.120 88.2 0.93

Data in bold are significant
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Table 15 Classification results for challenge ISBI 2016 & ISBI 2017 dataset

Method Performance measures

Sensitivity (%) Precision (%) Specificity (%) FNR (%) FPR Accuracy (%) AUC

DT 87.5 88.0 86.0 12.4 0.125 87.6 0.86

QDA 80.0 80.0 79.0 20.0 0.200 80.0 0.86

QSVM 92.5 92.5 95.0 7.4 0.075 92.6 0.95

LR 92.0 91.5 95.0 8.2 0.08 91.8 0.95

NB 92.0 92.5 97.0 8.2 0.08 91.8 0.93

W-KNN 88.5 88.5 91.0 11.6 0.115 88.4 0.88

EBT 92.0 92.0 97.0 8.3 0.08 91.7 0.95

ESDA 89.5 89.5 91.5 10.4 0.105 89.6 0.94

Proposed 93.0 93.5 97.0 6.8 0.07 93.2 0.96

Data in bold are significant

AUC 0.826, sensitivity 0.853, and specificity 0.993 on ISBI
2016 dataset. However, with our method, achieved clas-
sification accuracy is 93.2%, AUC 0.96, sensitivity 0.930,
and specificity 0.970, which confirms the authenticity and
efficiency of our algorithm on combined dataset com-
pared to [54]. Moreover, in [55] reported maximum AUC
is 0.94 for skin cancer classification for 130 melanoma
images, however, our method achieved AUC 0.96 on 315
melanoma images. In [56] and [57], the classification accu-
racy achieved is 85.0% and 81.33% for ISBI 2016 dataset.
Upon comparison with [54–56], and [57], the proposed
method performs significantly better on both (ISBI 2016
& 17) datasets.

Discussion
In this section, we epitomized our proposed method in
terms of tabular and visual results. The proposed method
consists of two major steps: a) lesion identification; b)
lesion classification as shown in the Fig. 1. The lesion iden-
tification phase has two major parts such as enhancement
and segmentation. The lesion enhancement results are
shown in the Fig. 3, which shows the efficiency of intro-
duced technique. Then the lesion segmentation method is
performed and their results in terms of quantitative and
tabular in Table 2 and Figs. 4, 5, 6 and 7. After this extract
multi-level features and fused based on parallel strategy.
Then a novel feature selection technique is introduced
and performed on fused feature vector to select the best
features as shown in Fig. 8. Finally, the selected features
are utilized by a multi-class SVM. The multi-class SVM
selected as a base classifier. The purpose of features fusion
and selection is to improve the classification accuracy and
also make the system more efficient. Three publicly avail-
able datasets are utilized for classification purposes such
as PH2, ISIC, and Combined dataset (ISBI 2016 and ISBI
2017). The individual feature results on selected datasets
are presented in the Tables 4, 8, and 11. Then compared

their results with proposed features fusion and selection
as presented in the Tables 3, 7, and 10, which shows that
proposedmethod performs significantly better in terms of
classification accuracy and execution time. The base clas-
sifier results are also confirmed by their confusion matrix
given in Tables 5, 9, and 12. Also, the comparison results of
the PH2 dataset with existing methods is presented in the
Table 6, which shows the efficiency of proposed method.
Moreover, the proposedmethod is also evaluated on com-
bination of ISBI 2016 and ISBI 2017 dataset and achieved
classification accuracy 93.2% as presented in Table 15.
The classification accuracy of proposed method on Com-
bined dataset is confirmed by their confusionmatrix given
in Table 16, which shows the authenticity of proposed
method as compared to existing methods.

Table 16 Confusion matrix for ISBI 2016, ISBI 2017, and
Combined images dataset

ISBI 2016

Classs Classification class
TPR (%) FNR (%)

Method Benign Melanoma

Benign 93% 3% 93% 3%

Melanoma 11% 53% 53% 11%

ISBI 2017

Class Classification class
TPR (%) FNR (%)

Benign Melanoma

Benign 91% 9% 91% 9%

Melanoma 14% 86% 86% 14%

Combined

Class Classification class
TPR (%) FNR (%)

Benign Melanoma

Benign 97% 3% 97% 3%

Melanoma 11% 89% 89% 11%

Data in bold are significant
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Conclusion
In this work, we have implemented a novel method for
the identification and classification of skin lesions. The
proposed framework incorporates two primary phases:
a) lesion identification; b) lesion classification. In the
identification step, a novel probabilistic method is intro-
duced prior to features extraction. An entropy controlled
variances based features selection method is also imple-
mented by combining Bhattacharyya distance, and with
an aim of considering only discriminant features. The
selected features are later utilized for classification in its
final step using multi-class SVM. The proposed method
is tested on three publicly available datasets (i.e. PH2,
ISBI 2016 & 17, and ISIC), and it is concluded that
the base classifier performs significantly better with pro-
posed features fusion and selection method, compared
to other existing techniques in term of sensitivity, speci-
ficity, and accuracy. Furthermore, the presented method
achieved satisfactory segmentation results on selected
datasets.
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